JPH052901B2 - - Google Patents

Info

Publication number
JPH052901B2
JPH052901B2 JP21623186A JP21623186A JPH052901B2 JP H052901 B2 JPH052901 B2 JP H052901B2 JP 21623186 A JP21623186 A JP 21623186A JP 21623186 A JP21623186 A JP 21623186A JP H052901 B2 JPH052901 B2 JP H052901B2
Authority
JP
Japan
Prior art keywords
compressor
capacity
expansion valve
electric expansion
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21623186A
Other languages
Japanese (ja)
Other versions
JPS6373058A (en
Inventor
Takashi Matsuzaki
Yukio Shigenaga
Akio Higuchi
Norifumi Maruyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP21623186A priority Critical patent/JPS6373058A/en
Publication of JPS6373058A publication Critical patent/JPS6373058A/en
Publication of JPH052901B2 publication Critical patent/JPH052901B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は運転容量を可変にする圧縮機を備えた
冷凍装置において、冷媒の過熱度を電動膨張弁の
開度により一定制御するようにしたものの改良に
関する。 (従来の技術) 従来より、インバータ等の容量可変型圧縮機を
用いた冷凍装置において、系の負荷に応じて圧縮
機の容量を変更するとともに電動膨張弁の開度を
調節して冷媒の循環量および蒸発器での物理的状
態特性を制御する方法が一般的に行われており、
特に蒸発器における過熱度を測定しその値を一定
にするように電動膨張弁の開度をPI制御しよう
とするものがある。 しかしながら、電動膨張弁の開度をPI制御す
る場合、開度の変化とその結果生ずる過熱度の変
化とに時間遅れがあるためにハンチングを生じや
すい。このハンチングを防止するためには積分時
間を長くして安定をはかる方法があるが、そうす
ると逆に応答遅れが大きくなり、容量が変化しつ
つある状態では、かえつてハンチングが増大する
という問題がある。 上記問題点に対処するために、例えば特開昭60
−178254号公報に開示されるごとく、上記PI制
御に更に微分要素を加えたPID制御を行い、蒸発
器での過熱度、圧縮機の吐出ガス温度、吸入ガス
温度、あるいは凝縮器、蒸発器における吸込空気
温度等を検出し、それらの冷媒サイクル稼働条件
に基づいて、予め記憶されたデータにより電動膨
張弁の開度をPID制御する関係式の定数をその都
度切換えて演算し、開度を決定しようとするもの
がある。 (発明が解決しようとする問題点) しかしながら、上記例ではPID制御定数をすべ
てのモードにわたつて決定する必要があるために
制御上繁雑となることに加えて、通常外気温度お
よび室外温度の変化がゆるやかでも圧縮機の容量
が大きく変化して系に大きな変化を与えるような
状態が存在するが、そのようなときにPID制御で
追随するのは前述のような積分時間の問題等があ
つて困難が伴い、やはり制御が不安定となる。 本発明は斯かる点に鑑みてなされたものであ
り、その目的は、圧縮機の容量が変化した状態で
は電動膨張弁の開度を圧縮機の変化前後の容量か
ら定まる値に補正制御することにより、ハンチン
グと制御遅れとを防止し、簡素な構成で過熱度制
御の制御性の向上を図ることにある。 (問題点を解決するための手段) 上記目的を達成するため、本発明の解決手段
は、第1図に示すように、容量可変型圧縮機1、
凝縮器12、冷媒の絞り作用を行う電動膨張弁
8、および蒸発器6を順次接続してなる冷媒循環
回路を備えた冷凍装置を対象とする。そして、圧
縮機1の容量に応じた電動膨張弁8の開度を記憶
する記憶手段31と、圧縮機1の容量が変化した
時を判別する判別手段51と、該判別手段51の
出力を受け、圧縮機1の容量変化時、電動膨張弁
8の開度変化量ΔPを、現在開度値P、上記記憶
手段31で記憶される圧縮機1の変化前の容量に
応じた開度値Po及び変化後の容量に応じた開度
値P1から、下記式 ΔP=P(P1/Po)−P に基づいて演算する演算手段52と、該演算手段
52の出力を受けて、電動膨張弁8の開度を制御
する制御手段53とを備えたことにある。 (作用) 以上の構成により、本発明では、圧縮機1の容
量制御が行われている時に圧縮機1の容量制御が
行われている時に圧縮機1の容量が変化すると、
それが判別手段51により判別される。この判別
手段51の出力を受けて演算手段52により、予
め記憶手段31に記憶されている圧縮機1の変化
前後の容量に応じた開度値Po,P1と現在開度値
Pから、 式 ΔP=P(P1/Po)−Pに基づいて、電動膨張
弁8の開度変化量ΔPが演算される。そして、制
御手段53により、演算手段52によつて演算さ
れた開度変化量ΔPだけ電動膨張弁8の開度が圧
縮機1の容量変化とほぼ同時に変更されることに
なる。これにより、圧縮機1の運転容量変化に対
して大きな制御遅れを生ぜずに速かに追随するこ
とができるので、ハンチングを有効に防止して簡
素な構成で過熱度制御の制御性の向上を得る。 (実施例) 以下、本発明の実施例を第2図以下の図面に基
づき説明する。 第2図は本発明を適用したマルチ型空気調和装
置の冷媒配管系統を示し、Aは室外ユニツト、B
〜Fは該室外ユニツトAに並列に接続された室内
ユニツトである。上記室外ユニツトAの内部に
は、出力周波数を30〜70Hzの範囲で10Hz毎に可変
に切換えられるインバータ2aにより容量が調整
される第1圧縮機1aと、パイロツト圧の高低で
差動するアンローダ2bにより容量がフルロード
(100%)およびアンフロード(50%)状態の2段
階に調整される第2圧縮機1bとを逆止弁1eを
介して並列に接続して構成される圧縮機1と、該
圧縮機1から吐出されるガス中の油を分離する油
分離器4と、暖房運転時には図中実線の如く切換
わり冷房運転時には図中破線の如く切換わる四路
切換弁5と、冷房運転時に凝縮機、暖房運転時に
蒸発器となる室外熱交換器6およびそのフアン6
aと、過冷却度コイル7と、冷房運転時には冷媒
流量を調節し、暖房運転時には冷媒の絞り作用を
行う室外電動膨張弁8と、液化した冷媒を貯蔵す
るレシーバ9と、アキユムレータ10とが主要機
器として内蔵されていて、該各機器1〜10は
各々冷媒の連絡配管11で冷媒の流通可能に接続
されている。また上記室内ユニツトB〜Fは同一
構成であり、各々、冷房運転時には蒸発器、暖房
運転時には凝縮器となる室内熱交換器12…およ
びそのフアン12a…を備え、かつ該室内熱交換
器12…の液冷媒分岐管11a…には、暖房運転
時に冷媒流量を調節し、冷房運転時に冷媒の絞り
作用を行う室内電動膨張弁13…がそれぞれ介設
され、合流後手動閉鎖弁17を介し連絡配管11
bによつて室外ユニツトAとの間を接続されてい
る。また、TH1……は各室内温度を検出する室
温サーモスタツト、TH2…およびTH3…は各々
室内熱交換器12…の液側およびガス側配管にお
ける冷媒の温度を検出する温度センサ、TH4は
圧縮機1の吐出管における冷媒の温度を検出する
温度センサ、TH5は暖房運転時に室外熱交換器
6(蒸発器)における蒸発温度を検出する温度セ
ンサー、TH6は圧縮機1に吸入される吸入ガス
の温度を検出する温度センサ、P1は暖房運転時
には吐出ガスの圧力と、冷房運転時には吸入ガス
の圧力を検知する圧力センサである。 なお、第2図において上記各主要機器以外に補
助用の諸機器が設けられている。1fは第2圧縮
機1bのバイパス回路11cに介設されて、第2
圧縮機1bの停止時およびアンロード状態時に
「開」となり、フルロード状態で「閉」となるア
ンローダ用電磁弁、1gはキヤピラリーチユー
ブ、1hおよび1iは油分離器4から油戻し配管
11uを経て第1圧縮機1aおよび第2圧縮機1
bに潤滑油を戻す分岐管11vおよび11wに介
設されて返油量をコントロールするキヤピラリー
チユーブ、21は吐出管と吸入管とを接続する均
圧ホツトガスバイパス回路11dに介設されて、
冷房運転室内熱交換器12(蒸発器)が低負荷状
態のときおよびデフロスト時等に開作動するホツ
トガス用電磁弁である。また、11eは暖房過負
荷制御用バイパス回路であつて、該バイパス回路
11eには、補助コンデンサ22、第1逆止弁2
3、暖房運転時室内熱交換器12(凝縮器)が低
負荷時のとき開作動する高圧制御弁24および第
2逆止弁25が順次直列に接続されており、その
一部には運転停止時に液封を防止するための液封
防止バイパス回路11fが第3逆止弁27および
キヤピラリーチユーブCP3を介して設けられて
いる。さらに、11gは上記暖房過負荷バイパス
回路11eの液冷媒側配管と主配管の吸入ガス管
との間を接続し、冷暖房運転時に吸入ガスの過熱
度を調節するためのリキツドインジエクシヨンバ
イパス回路であつて、該リキツドインジエクシヨ
ンバイパス回路11gには圧縮機1のオン・オフ
と連動して開閉するインジエクシヨン用電磁弁2
9と、感温筒TP1により検出される吸入ガスの
過熱度に応じて開度を調節される自動膨張弁30
とが介設されている。 また、第2図中、F1〜F6は冷媒回路あるいは
油戻し管中に介設された液浄化用フイルタ、
HPSは圧縮機保護用の高圧圧力開閉器、SPはサ
ービスポートである。 そして、上記各電磁弁およびセンサ類は各主要
機器と共に後述の室外制御ユニツト15に信号線
で接続され、該室外制御ユニツト15は各室内制
御ユニツト16…に連絡配線によつて信号の授受
可能に接続されている。 第3図は上記室外ユニツトA側に配置される室
外制御ユニツト15の内部および接続される各機
器の配線関係を示す電気回路図である。図中、
MC1はインバータ2aの周波数変換回路INVに
接続された第1圧縮機1aのモータ、MC2は第
2圧縮機1bのモータMFは室外フアン6aのモー
タ、52F,52C1および52C2は各々フア
ンモータMF、周波数変換回路INVおよびモータ
MC2を作動させる電磁接触器で、上記各機器は
ヒユーズボツクスFS、漏電ブレーカBR1を介し
て三相交流電源に接続されるとともに、室外制御
ユニツト15とは単相交流電源で接続されてい
る。次に、室外制御ユニツト15の内部にあつて
は、電磁リレーの常開接点RY1〜RY7が単相
交流電流に対して並列に接続され、これらは順
に、四路切換弁5の電磁リレー20S、周波数変
換回路INVの電磁接触器52C1、第2圧縮機
1bの電磁接触器52C2、室外フアン用電磁接
触器52F、アンローダ用電磁弁1fの電磁リレ
ーSVL、ホツトガス用電磁弁21の電磁リレー
SVPおよびインジエクシヨン用電磁弁29の電
磁リレーSVTのコイルに直列に接続され、室外
制御ユニツト15に入力される室温サーモスタツ
トTH1および温度センサTH2〜TH6の信号
に応じて開閉されて、上記各電磁接触器あるいは
電磁リレーの接点を開閉させるものである。ま
た、端子CNには、室外電動膨張弁8の開度を調
節するパルスモータEVのコイルが接続されてい
る。なお、第3図右側の回路において、CH1,
CH2はそれぞれ第1圧縮機1a、第2圧縮機1
cのオイルフオーミング防止用ヒータで、それぞ
れ電磁接触器52C1,52C2と直列に接続さ
れ上記各圧縮機1a,1bが停止時に電流が流れ
るようになされている。さらに、51C2はモー
タMC2の過電流リレー、49C1,49C2は
それぞれ第1圧縮機1a、第2圧縮機1bの温度
上昇保護用スイツチ、63H1,63H2はそれ
ぞれ第1圧縮機1a、第2圧縮機1bの圧力上昇
保護用スイツチ、51FはフアンモータMFの過
電流リレーであつて、これらは直列に接続されて
起動時には電磁リレー30Fxをオン状態にし、
故障にはオフ状態にさせる保護回路を構成してい
る。そして、室外制御ユニツト15には破線で示
される室外制御装置15aが内蔵され、該室外制
御装置15aは圧縮機1の容量とそれに対応する
室外電動膨張弁8の開度との関係(詳細は後述す
る)を予め設定されている記憶手段としての記憶
装置31を備えるとともに、該室外制御装置15
aによつて各室内制御ユニツト16…あるいは各
センサ類から入力される信号に応じて各機器の動
作が制御される。 次に、第4図は室内制御ユニツト16の内部お
よび接続される各機器の主な配線を示す電気回路
図である。第4図でMFは室内フアン12aのモ
ータで、単相交流電源を受けて各リレー端子RY
1〜RY3によつて風量を強風と弱風とに切換
え、暖房運転時室温サーモスタツトTH1の信号
による停止時のみ微風にするようになされてい
る。そして、室内制御ユニツト15のプリント基
板の端子CNには室内電動膨張弁13の開度を調
節するパルスモータEVが接続される一方、室温
サーモスタツトTH1および温度センサーTH2,
TH3の信号が入力されている。また、各室内制
御ユニツト16は室外制御ユニツト15に信号線
を介して信号の授受可能に接続されるとともに、
リモートコントロールスイツチRCSからは入力
可能に接続されている。そして、室内制御ユニツ
ト16には破線で示される室内制御装置16aが
内蔵され、該室内制御装置16aによつて、各セ
ンサ類あるいは室外制御ユニツト15からの信号
に応じて室内電動膨張弁13あるいは室内フアン
12aの動作が制御される。 第2図において、空気調和装置の暖房運転時、
冷媒はガス状態で圧縮機1により圧縮され、四路
切換弁5を経て各室内ユニツトB〜Fに分岐して
送られる。各室内ユニツトB〜Fでは、各室内熱
交換器12…で熱交換を受けて凝縮された後合流
し、室外ユニツトAで、レシーバ9に液貯蔵さ
れ、液状態で室外電装膨張弁8によつて絞り作用
を受けて室外熱交換器6で蒸発し、ガス状態とな
つて圧縮機1に戻る。 以上の冷媒の流れの暖房運転時において、室内
ユニツトB〜Fではその室内の空調負荷に応じて
調整される各室内電動膨張弁13…開度が制御さ
れ、全体の冷媒流量の各室内ユニツトB〜Fへの
分配流量が下記手順により決定される。 第5図は、室温サーモスタツトTH1の設定値
(Ts)と吸込空気温度(Ta)との偏差(Ts−
Ta)と室内電動膨張弁13の目標開度との関係
を示すグラフであつて、ここに(Amax)は最大
開度、(Amin)は閉じる場合の最小制御開度、
(Ao)は全閉を示す。 そして、室内制御ユニツト16は室温サーモス
タツトTH1の信号を受けて、所定のサンプリン
グ時間ごとに目標開度ARを演算して現在の開度
Aと比較し、室内電動膨張弁13の開度をAR<
Aのときには所定パルスずつ閉じ、AR>Aのと
きには所定パルスずつ開く開度変更信号を出力
し、室内電動膨張弁16の開度Aが変更されて各
開度に応じて冷媒流量が分配される。 次に、室外ユニツトAでは、各室内熱交換器1
2…(凝縮器)における冷媒の凝縮温度の平均値
Tcを一定に保持するために圧縮機1の容量制御
が行われる。 尚、凝縮温度Tcの制御目標値Tcsは室外制御
ユニツト15内部のスイツチにより、H,M,L
(H:Tcs=48℃、M:Tcs=46℃,L:Tcs=44
℃)の3通りに切換可能にしている。 すなわち、圧縮機1の容量制御は以下の手順で
行われる。まず、圧力センサP1により凝縮温度
の平均値Tcが検知されると、制御目標値Tcsと
の差に応じて下式により圧縮機1の運転周波数
(容量)の変更量ΔFkを求める。 ΔFk=Kc[{e(t)−e(t−Δt)} +(Δt/2Ti){e(t) +e(t−Δt)}] …(1) ここで、Kcはゲイン、e(t)は時刻tにおけ
る実側凝縮温度Tcと制御目標値Tcsとの偏差値
すなわち、Te(t)−Tcs(t)、e(t−Δt)は同
様にサンプリング開始前の偏差値、Δtはサンプ
リング時間、Tiは積分時間である。 そして、以上のように算出されたΔFkの値と
変更前の運転周波数Fkとの和に応じて、例えば
10Hzきざみで圧縮機1の運転容量が変更される。 ここで、第2圧縮機1bの運転容量は、フルロ
ード時で60Hz、アンロード時で30Hzとなるので、
第1圧縮機1aのインバータ2aの10Hzきざみの
容量変化と組み合わせることにより、合計0〜
130Hzの範囲で10Hzきざみに調節され得るもので
ある。 以上の手順により圧縮機1の運転周波数(容
量)が定められると、その運転容量に応じて記憶
装置31の記憶内容に基づき室外電動膨張弁8の
開度が変更される。以下に、記憶装置31に予め
設定されている圧縮機1の運転容量と電動膨張弁
8の関係について説明する。 まず、第6図に示す圧縮機1が全容量運転時の
温度センサTH5で検出される冷媒の蒸発温度
Teと圧縮機1の冷媒循環量の関係特性線に基づ
いて、その時の圧縮機1の冷媒循環量が求めら
れ、次に、第7図にその例を示す冷媒流量と室外
電動膨張弁8の開度との関係特性線(このグラフ
は電動膨張弁の前後差圧が一定のとき)に基づき
上記冷媒流量から室外電動膨張弁8の開度が求め
られる。その例を下記第1表に示す。
(Industrial Application Field) The present invention relates to an improvement in a refrigeration system equipped with a compressor whose operating capacity is variable, in which the degree of superheating of a refrigerant is constantly controlled by the opening degree of an electric expansion valve. (Prior art) Conventionally, in refrigeration systems using variable capacity compressors such as inverters, refrigerant is circulated by changing the capacity of the compressor according to the system load and adjusting the opening degree of the electric expansion valve. Methods of controlling the amount and physical state characteristics in the evaporator are commonly practiced;
In particular, there is a method that measures the degree of superheat in the evaporator and attempts to control the opening degree of the electric expansion valve by PI to keep the value constant. However, when the opening degree of the electric expansion valve is controlled by PI, hunting is likely to occur because there is a time delay between the change in the opening degree and the resulting change in the degree of superheating. In order to prevent this hunting, there is a method of increasing the integration time to stabilize it, but this increases the response delay and, in a state where the capacitance is changing, there is a problem that hunting actually increases. . In order to deal with the above problems, for example,
As disclosed in Publication No. 178254, PID control is performed by adding a differential element to the above PI control, and the degree of superheating in the evaporator, the discharge gas temperature of the compressor, the suction gas temperature, or the temperature in the condenser and evaporator are controlled. Detects the intake air temperature, etc., and based on these refrigerant cycle operating conditions, changes and calculates the constants of the relational expression that PID controls the opening of the electric expansion valve using pre-stored data each time, and determines the opening. There is something to try. (Problem to be Solved by the Invention) However, in the above example, it is necessary to determine PID control constants for all modes, which makes the control complicated. There are situations in which the compressor capacity changes significantly even if the change is gradual, causing a large change in the system.In such cases, PID control is used because of problems such as the integration time mentioned above. This is difficult and the control becomes unstable. The present invention has been made in view of the above, and its purpose is to correct and control the opening degree of the electric expansion valve to a value determined from the capacity of the compressor before and after the change when the capacity of the compressor changes. This aims to prevent hunting and control delays and improve the controllability of superheat degree control with a simple configuration. (Means for Solving the Problems) In order to achieve the above object, the solving means of the present invention includes a variable capacity compressor 1, as shown in FIG.
The object is a refrigeration system equipped with a refrigerant circulation circuit formed by sequentially connecting a condenser 12, an electric expansion valve 8 that performs a refrigerant throttling action, and an evaporator 6. The storage means 31 stores the opening degree of the electric expansion valve 8 according to the capacity of the compressor 1, the determining means 51 determines when the capacity of the compressor 1 changes, and the output of the determining means 51 receives the output of the determining means 51. , when the capacity of the compressor 1 changes, the opening change amount ΔP of the electric expansion valve 8 is set as the current opening value P, and the opening value Po corresponding to the capacity of the compressor 1 before the change stored in the storage means 31. and an arithmetic means 52 which calculates based on the following formula ΔP=P(P1/Po)-P from the opening value P1 corresponding to the changed capacity, and an electric expansion valve 8 based on the output of the arithmetic means 52. The present invention is provided with a control means 53 for controlling the opening degree of the opening. (Function) With the above configuration, in the present invention, if the capacity of the compressor 1 changes while the capacity control of the compressor 1 is being performed,
This is determined by the determining means 51. In response to the output of the determination means 51, the calculation means 52 calculates the following equation from the opening degree Po, P1 corresponding to the capacity before and after the change of the compressor 1 stored in the storage means 31 in advance and the current opening value P. =P(P1/Po)-P, the opening degree change amount ΔP of the electric expansion valve 8 is calculated. Then, the control means 53 changes the opening degree of the electric expansion valve 8 by the opening degree change amount ΔP calculated by the calculation means 52 almost simultaneously with the change in the capacity of the compressor 1. This makes it possible to quickly follow changes in the operating capacity of the compressor 1 without causing large control delays, effectively preventing hunting and improving the controllability of superheat degree control with a simple configuration. obtain. (Example) Hereinafter, an example of the present invention will be described based on the drawings from FIG. 2 onwards. Figure 2 shows the refrigerant piping system of a multi-type air conditioner to which the present invention is applied, where A is the outdoor unit and B is the outdoor unit.
-F are indoor units connected in parallel to the outdoor unit A. Inside the outdoor unit A, there is a first compressor 1a whose capacity is adjusted by an inverter 2a whose output frequency is variably switched in 10Hz increments in the range of 30 to 70Hz, and an unloader 2b which operates differentially depending on the pilot pressure. A compressor 1 configured by connecting in parallel via a check valve 1e a second compressor 1b whose capacity is adjusted to two stages of full load (100%) and unload (50%) states; An oil separator 4 that separates oil from the gas discharged from the compressor 1, a four-way switching valve 5 that switches as shown in the solid line in the figure during heating operation and as shown in the broken line in the figure during cooling operation, and Outdoor heat exchanger 6 and its fan 6, which sometimes functions as a condenser and as an evaporator during heating operation
a, a supercooling coil 7, an outdoor electric expansion valve 8 that adjusts the refrigerant flow rate during cooling operation and throttles the refrigerant during heating operation, a receiver 9 that stores liquefied refrigerant, and an accumulator 10. Each of the devices 1 to 10 is connected with a refrigerant communication pipe 11 so that the refrigerant can flow therein. In addition, the indoor units B to F have the same configuration, and are each equipped with an indoor heat exchanger 12 that serves as an evaporator during cooling operation and as a condenser during heating operation, and its fan 12a... The liquid refrigerant branch pipes 11a are each provided with an indoor electric expansion valve 13 that adjusts the refrigerant flow rate during heating operation and throttles the refrigerant during cooling operation. 11
It is connected to the outdoor unit A via b. In addition, TH1... is a room temperature thermostat that detects each indoor temperature, TH2... and TH3... are temperature sensors that detect the refrigerant temperature in the liquid side and gas side pipes of the indoor heat exchanger 12, respectively, and TH4 is a compressor TH5 is a temperature sensor that detects the evaporation temperature in outdoor heat exchanger 6 (evaporator) during heating operation, TH6 is the temperature of suction gas taken into compressor 1 P1 is a pressure sensor that detects the pressure of discharge gas during heating operation and the pressure of intake gas during cooling operation. In addition, in FIG. 2, various auxiliary devices are provided in addition to the above-mentioned main devices. 1f is interposed in the bypass circuit 11c of the second compressor 1b, and the second
An unloader solenoid valve that opens when the compressor 1b is stopped and unloaded and closes when fully loaded; 1g is a capillary reach tube; 1h and 1i are oil return pipes 11u from the oil separator 4; The first compressor 1a and the second compressor 1
A capillary tube 21 is installed in the branch pipes 11v and 11w that return lubricating oil to control the amount of oil returned;
This is a hot gas electromagnetic valve that opens when the cooling operation indoor heat exchanger 12 (evaporator) is in a low load state and during defrosting. Moreover, 11e is a heating overload control bypass circuit, and the bypass circuit 11e includes an auxiliary capacitor 22, a first check valve 2
3. A high-pressure control valve 24 and a second check valve 25, which open when the indoor heat exchanger 12 (condenser) is under low load during heating operation, are connected in series, and some of them open when the indoor heat exchanger 12 (condenser) is under low load. A liquid seal prevention bypass circuit 11f for preventing liquid seal at times is provided via the third check valve 27 and the capillary reach tube CP3. Furthermore, 11g is a liquid injector bypass circuit that connects between the liquid refrigerant side pipe of the heating overload bypass circuit 11e and the suction gas pipe of the main pipe, and adjusts the degree of superheat of the suction gas during heating and cooling operation. The liquid injection bypass circuit 11g is provided with an injection solenoid valve 2 that opens and closes in conjunction with the on/off of the compressor 1.
9, and an automatic expansion valve 30 whose opening degree is adjusted according to the degree of superheating of the intake gas detected by the temperature sensing cylinder TP1.
is interposed. In addition, in Fig. 2, F1 to F6 are liquid purification filters installed in the refrigerant circuit or oil return pipe,
HPS is a high pressure switch for compressor protection, and SP is a service port. The above-mentioned solenoid valves and sensors are connected to an outdoor control unit 15 (described later) by signal lines along with each main equipment, and the outdoor control unit 15 can send and receive signals to each indoor control unit 16 by connecting wiring. It is connected. FIG. 3 is an electrical circuit diagram showing the interior of the outdoor control unit 15 disposed on the outdoor unit A side and the wiring relationship of each connected device. In the figure,
MC1 is the motor of the first compressor 1a connected to the frequency conversion circuit INV of the inverter 2a, MC2 is the motor of the second compressor 1b, MF is the motor of the outdoor fan 6a, 52F, 52C1 and 52C2 are the fan motor MF, frequency Conversion circuit INV and motor
The electromagnetic contactor operates the MC2, and each of the above devices is connected to a three-phase AC power source via a fuse box FS and an earth leakage breaker BR1, and is also connected to the outdoor control unit 15 by a single-phase AC power source. Next, inside the outdoor control unit 15, the normally open contacts RY1 to RY7 of the electromagnetic relays are connected in parallel to the single-phase alternating current, and these are sequentially connected to the electromagnetic relay 20S of the four-way switching valve 5, Electromagnetic contactor 52C1 of frequency conversion circuit INV, electromagnetic contactor 52C2 of second compressor 1b, electromagnetic contactor 52F for outdoor fan, electromagnetic relay SVL of electromagnetic valve 1f for unloader, electromagnetic relay of electromagnetic valve 21 for hot gas.
The electromagnetic contacts mentioned above are connected in series to the coil of the electromagnetic relay SVT of the SVP and injection solenoid valve 29, and are opened and closed in response to signals from the room temperature thermostat TH1 and temperature sensors TH2 to TH6 input to the outdoor control unit 15. It opens and closes the contacts of a device or an electromagnetic relay. Further, a coil of a pulse motor EV that adjusts the opening degree of the outdoor electric expansion valve 8 is connected to the terminal CN. In addition, in the circuit on the right side of Figure 3, CH1,
CH2 is the first compressor 1a and the second compressor 1, respectively.
The oil forming prevention heater c is connected in series with the electromagnetic contactors 52C1 and 52C2, respectively, so that current flows when the compressors 1a and 1b are stopped. Furthermore, 51C2 is an overcurrent relay for motor MC2, 49C1 and 49C2 are temperature rise protection switches for first compressor 1a and second compressor 1b, respectively, and 63H1 and 63H2 are for first compressor 1a and second compressor 1b, respectively. The pressure rise protection switch 51F is the overcurrent relay for the fan motor MF, and these are connected in series and turn on the electromagnetic relay 30Fx at startup.
It has a protection circuit that turns it off in the event of a failure. The outdoor control unit 15 has a built-in outdoor control device 15a indicated by a broken line, and the outdoor control device 15a has a relationship between the capacity of the compressor 1 and the opening degree of the outdoor electric expansion valve 8 (details will be described later). The outdoor control device 15 is provided with a storage device 31 as a storage means in which the following information is stored in advance.
a controls the operation of each device in accordance with signals input from each indoor control unit 16 or each sensor. Next, FIG. 4 is an electrical circuit diagram showing the interior of the indoor control unit 16 and the main wiring of each connected device. In Fig. 4, MF is the motor of the indoor fan 12a, which receives single-phase AC power and connects each relay terminal RY.
1 to RY3, the air flow is switched between strong wind and weak wind, and the breeze is set to light only when the heating operation is stopped by a signal from the room temperature thermostat TH1. A pulse motor EV for adjusting the opening degree of the indoor electric expansion valve 13 is connected to the terminal CN of the printed circuit board of the indoor control unit 15, while a room temperature thermostat TH1, a temperature sensor TH2,
The TH3 signal is being input. Further, each indoor control unit 16 is connected to the outdoor control unit 15 via a signal line so that signals can be sent and received.
It is connected for input from the remote control switch RCS. The indoor control unit 16 has a built-in indoor control device 16a shown by a broken line, and the indoor electric expansion valve 13 or the indoor The operation of the fan 12a is controlled. In Figure 2, during heating operation of the air conditioner,
The refrigerant is compressed in a gas state by a compressor 1, and is branched and sent to each of the indoor units B to F via a four-way switching valve 5. In each of the indoor units B to F, the water undergoes heat exchange in each of the indoor heat exchangers 12 and is condensed, and then merges. In the outdoor unit A, the liquid is stored in the receiver 9, and in a liquid state is passed through the outdoor electrical equipment expansion valve 8. It is then evaporated in the outdoor heat exchanger 6 under the throttling action and returned to the compressor 1 in a gas state. During the heating operation of the above refrigerant flow, the opening degree of each indoor electric expansion valve 13 is controlled according to the indoor air conditioning load in indoor units B to F, and the opening degree of each indoor electric expansion valve 13 is controlled depending on the overall refrigerant flow rate. The distribution flow rate to ~F is determined by the following procedure. Figure 5 shows the deviation (Ts-
This is a graph showing the relationship between Ta) and the target opening degree of the indoor electric expansion valve 13, where (Amax) is the maximum opening degree, (Amin) is the minimum control opening degree when closing,
(Ao) indicates fully closed. Then, the indoor control unit 16 receives the signal from the room temperature thermostat TH1, calculates the target opening degree AR at every predetermined sampling time, compares it with the current opening degree A, and adjusts the opening degree of the indoor electric expansion valve 13 to AR. <
When AR>A, it closes by a predetermined pulse, and when AR>A, it outputs an opening change signal that opens by a predetermined pulse, and the opening A of the indoor electric expansion valve 16 is changed, and the refrigerant flow rate is distributed according to each opening. . Next, in outdoor unit A, each indoor heat exchanger 1
2. Average value of refrigerant condensation temperature in (condenser)
Capacity control of the compressor 1 is performed to keep Tc constant. The control target value Tcs of the condensing temperature Tc is set to H, M, L by a switch inside the outdoor control unit 15.
(H: Tcs=48℃, M: Tcs=46℃, L: Tcs=44
It can be switched in three ways (°C). That is, the capacity control of the compressor 1 is performed in the following procedure. First, when the average value Tc of the condensing temperature is detected by the pressure sensor P1, the change amount ΔFk in the operating frequency (capacity) of the compressor 1 is determined by the following formula according to the difference from the control target value Tcs. ΔFk=Kc [{e(t)−e(t−Δt)} +(Δt/2Ti){e(t) +e(t−Δt)}] …(1) Here, Kc is the gain, e(t ) is the deviation value between the actual condensing temperature Tc and the control target value Tcs at time t, that is, Te (t) - Tcs (t), e (t - Δt) is the deviation value before the start of sampling, and Δt is the sampling Time, Ti is the integration time. Then, depending on the sum of the value of ΔFk calculated as above and the operating frequency Fk before change, for example,
The operating capacity of compressor 1 is changed in 10Hz steps. Here, the operating capacity of the second compressor 1b is 60Hz when fully loaded and 30Hz when unloaded, so
By combining the capacity change in 10Hz steps of the inverter 2a of the first compressor 1a, the total
It can be adjusted in 10Hz increments within a range of 130Hz. Once the operating frequency (capacity) of the compressor 1 is determined by the above procedure, the opening degree of the outdoor electric expansion valve 8 is changed based on the contents stored in the storage device 31 in accordance with the operating capacity. The relationship between the operating capacity of the compressor 1 and the electric expansion valve 8, which is preset in the storage device 31, will be explained below. First, the evaporation temperature of the refrigerant detected by the temperature sensor TH5 when the compressor 1 shown in FIG. 6 is operating at full capacity.
Based on the relationship characteristic line between Te and the refrigerant circulation amount of the compressor 1, the refrigerant circulation amount of the compressor 1 at that time is determined, and then the refrigerant flow rate and the outdoor electric expansion valve 8, an example of which is shown in FIG. The opening degree of the outdoor electric expansion valve 8 is determined from the refrigerant flow rate based on the relationship characteristic line with the opening degree (this graph is shown when the differential pressure across the electric expansion valve is constant). Examples are shown in Table 1 below.

【表】 ただし、上記第1表は蒸発温度Te=0℃、凝
縮温度Te=50℃のときの設定値である。また、
開度は電動膨張弁8を駆動するパルスモータEV)
のパルス値Pにて表わし、500パルスが全開に相
当している。 そして、暖房運転時、暖房負荷の変動等により
凝縮温度Tcが変化して、それに応じ圧縮機1の
運転周波数Fkが変化すると、その変化に応じて
室外制御ユニツト15により室外熱交換器6(蒸
発器)における冷媒の過熱度SHを適正範囲に保
持するように電動膨張弁8の開度制御が行われ
る。以下、第8図のフローチヤートに基づきその
手順を説明する。 第8図のフローチヤートにおいて、ステツプ
S1で圧縮機1が起動から停止に変つたか否かを
判定し、以前から停止したままあるいは稼働中の
NOであればステツプS2に移行して圧縮機1が停
止から起動したか否かを判定する。ステツプS2
での判定の結果、停止中あるいは稼働中のNOで
あればステツプS3に進み圧縮機1の運転状態を
サンプリングして、圧縮機1の容量が変化したか
否かを判定する。ステツプS3での判定の結果、
圧縮機1の容量が変化したYESであればステツ
プS4に進み、現在開度のパルス値Pと共に、変
化前の圧縮機1の容量に対応する開度のパルス値
Poおよび変化後の圧縮機1の容量に対応する開
度のパルス値P1をそれぞれ記憶装置31から読
取る。そして、ステツプS5で開度を変化するた
めのパルス値の変化量ΔPを、関係式ΔP=P×
(P1/Po)−Pにより求める。例えば、現在圧縮
機1の運転周波数Fkは40Hzで、室外電動膨張弁
8のパルス値が100パルスとなつているとき、運
転周波数Fkが50Hzに変化すると、それに対応す
る新パルス値は第1表の関係から100×151/129
=117(パルス)と演算される。 また、ステツプS5での判定の結果、圧縮機1
が停止中あるいは稼働中でも容量が変化していな
いNOのときには、ステツプS6に進み、所定のサ
ンプリング時間が経過したか否かを判定し、まだ
経過していないNOのときにはステツプS1に戻る
が、経過したYESのときにはステツプS7におい
て過熱度を一定とするPI制御のための開度の増
減分演算を下記手順で行う。 まず、室外熱交換器6(蒸発器)の入口および
出口側にそれぞれ配置された温度センサTH5お
よびTH6の温度差に基づいて過熱度SHを求め
る。次に下式によりパルスの変化量ΔPを求める。 ΔP=K[{E(t)−E(t−Δt)} +(Δt/2Ti){E(t) +E(t−Δt)}] …(2) ここで、E(t)は時刻tにおける実側過熱度
SHと目標過熱度SHsとの偏差値、E(t−Δt)
は同様にサンプリング開始時の偏差値、Kはゲイ
ン、Δtはサンプリング時間、Tiは積分時間であ
る。 なお、ステツプS1での判定で、圧縮機1が稼
働中から停止したYESのときにはステツプS8に
進みパルス変化量ΔP=0−Pとして室外電動膨
張弁8を全閉にする。また、ステツプS2での判
定で、圧縮機1が停止中から稼働したYESのと
きにはステツプS9でステツプS4におけるものと
同様の演算により変化したときの圧縮機1の容量
に応じた開度P1を演算し、ステツプS10におい
て、ΔP=P1としてパルス変化量ΔPを求める。 最後に、ステツプS11で、上記各ステツプS5,
S7,S8およびS10で求められたパルス変化量ΔP
に応じて、室外電動膨張弁8の開度を変更する。 上記フローにおいて、ステツプS3によって、
圧縮機1の容量が変化したときを判別する判別手
段51が構成され、ステツプS5により、上記判
別手段51の判別による圧縮機1の容量変化時、
圧縮機1の変化前後の容量に応じて記憶装置31
で設定される開度の変化量に基づき、室外電動膨
張弁8の開度変化量を演算する演算手段52が構
成されている。そして、ステツプS11により、上
記演算手段52による演算結果に応じて室外電動
膨張弁の開度を制御する制御手段53が構成され
ている。 以上の構成により、本実施例では、圧縮機1の
容量変化時には圧縮機1の容量から求められる冷
媒流量に基づいて室外電動膨張弁8の開度がフイ
ードフオワード制御されるので、過熱度によつて
PI制御あるいはPID制御するときに生ずるような
制御遅れによるハンチングは生ぜず、パルス状の
早い応答で圧縮機の変化に追随する。その後、
PI制御により開度が目標開度に制御される。こ
のとき、(2)式の積分時間Tiはパルス変化値ΔPが
十分安定した信頼性の高い値となるように設定す
る。従来のPI制御あるいはPID制御によつてのみ
室外電動膨張弁8の開度を制御する場合にはTi
が長すぎるとその間に過熱度が変化するので制御
遅れによりかえつてハンチングが生ずるが、以上
のようなフイードフオワード制御を含む方法によ
ると過熱度の大きな変化はない。 また、PI制御時に圧縮機1の容量が変化して
フイードフオワード制御を行うときには、電動膨
張弁8の開度が現在の開度を基準に圧縮機1の容
量変化に即応して変化されるので、以前の制御状
態を無視した急激な変化が生じず、安定した制御
を行うことができる。 以上のように、本実施例では各室内ユニツトB
〜Fの負荷の変動に応じて室内電動膨張弁13の
開度がそれぞれ制御されて各室内ユニツトB〜F
への冷媒循環量を適切に分配する。また、室外ユ
ニツトAでは圧縮機1の容量を制御して室内熱交
換器12における凝縮温度を適正範囲に保持する
とともに、室外電動膨張弁8の開度を制御して室
外熱交換器6における過熱度を一定に保持し、制
御遅れのないしかもハンチングを生ぜずに安定し
た制御で室内ユニツトB〜Fにおける空調能力を
十分発揮することができる。しかもPI制御ある
いはPID制御のみで開度制御する場合に必要な各
種多くの定数の変更手順等が不要で制御のための
構成も簡素化されている。 また、圧縮機1の最低容量(30Hz)に対しても
なお室内ユニツトB〜Fの合計負荷が小さい場合
には、高圧制御弁24の作動により暖房過負荷制
御用バイパス11eを通じて補助コンデンサ22
により熱交換の補助を行つて調整することがで
き、室外電動弁8を全開してもなお過熱度SHが
目標値SHsより大きいときには感温筒TP1によ
り自動膨張弁30が作動して冷媒のリキツドイン
ジエクシヨンを行つて過熱度SHの過上昇を防止
している。 以上、暖房運転時について説明したが、室内ユ
ニツトと室外ユニツトが各1基ずつ備えられた冷
凍装置の冷房運転時についても同様に適用され
る。その場合、冷房運転時には室内電動膨張弁1
3の開度制御に本発明が適用され、過熱度は室内
熱交換器12の出入口にそれぞれ配置される温度
センサTH2およびTH3を用いて上記と同様に
求められる。このとき、圧縮機1は圧力センサ
P1からの信号に基づいて、蒸発温度Teを一定に
保持するように容量制御される。 また、上記構成にデフロストバイパス回路を適
用して、正サイクルデフロスト回路を構成するこ
とができる。第9図はその例を示すもので、11h
は吐出管と室外熱交換器6の冷媒入口との間を接
続するデフロストバイパス回路で、該回路11h
の途中にデフロスト電磁弁35が介設されている
(他の構成は全て第2図と共通であるので説明を
省略する)。暖房運転中、室外熱交換器6の着霜
により除霜指令が出されるとデフロスト電磁弁3
5が開き、吐出ガスを直接室外熱交換器6に通し
てデフロスト運転を行い、圧力センサP1におけ
る吐出ガス圧力の上昇により除霜の完了を検知し
てデフロスト電磁弁35を閉じデフロスト運転を
終了する。このように、暖房時における吐出ガス
の圧力センサP1を利用して除霜の完了を検知す
るので、誤検知が防止でき、信頼性の高い正サイ
クルデフロスト運転を行うことができる。 (発明の効果) 以上説明したように、本発明の冷凍装置によれ
ば、冷媒の減圧を行う電動膨張弁の開度制御時、
圧縮機の容量が変化している状態では、その変化
に応じて、圧縮機の容量変化に対応する開度比に
現在開度を乗じた開度に変更させるようにしたの
で、制御遅れとハンチングのない安定した電動膨
張弁の開度制御を行うことができ、冷凍能力を十
分発揮することができる。また、制御のための構
成も簡素化される利点がある。
[Table] However, Table 1 above shows the set values when the evaporation temperature Te=0°C and the condensation temperature Te=50°C. Also,
The opening is determined by the pulse motor EV that drives the electric expansion valve 8)
It is expressed by the pulse value P, and 500 pulses corresponds to full opening. During heating operation, when the condensing temperature Tc changes due to fluctuations in the heating load, etc., and the operating frequency Fk of the compressor 1 changes accordingly, the outdoor control unit 15 controls the outdoor heat exchanger 6 (evaporation The opening degree of the electric expansion valve 8 is controlled so as to maintain the superheat degree SH of the refrigerant in the refrigerant (vehicle) within an appropriate range. The procedure will be explained below based on the flowchart shown in FIG. In the flowchart of Figure 8, the steps
In S1, it is determined whether compressor 1 has changed from starting to stopping.
If NO, the process moves to step S2 and it is determined whether the compressor 1 has been started from a stopped state. Step S2
If the result of the determination is NO, indicating that the compressor 1 is stopped or running, the process proceeds to step S3, where the operating state of the compressor 1 is sampled, and it is determined whether the capacity of the compressor 1 has changed. As a result of the judgment in step S3,
If YES, indicating that the capacity of the compressor 1 has changed, the process proceeds to step S4, where the current pulse value P of the opening and the pulse value of the opening corresponding to the capacity of the compressor 1 before the change are calculated.
Po and the opening pulse value P1 corresponding to the changed capacity of the compressor 1 are read from the storage device 31, respectively. Then, in step S5, the amount of change ΔP in the pulse value for changing the opening degree is calculated using the relational expression ΔP=P×
Calculate by (P1/Po)-P. For example, when the current operating frequency Fk of the compressor 1 is 40Hz and the pulse value of the outdoor electric expansion valve 8 is 100 pulses, if the operating frequency Fk changes to 50Hz, the corresponding new pulse value will be shown in Table 1. 100×151/129 from the relationship
It is calculated as = 117 (pulse). Also, as a result of the determination in step S5, the compressor 1
If NO, the capacity has not changed even when the sampling time is stopped or running, the process proceeds to step S6, and it is determined whether or not the predetermined sampling time has elapsed.If NO, the predetermined sampling time has not elapsed yet, the process returns to step S1. When the result is YES, in step S7, the increment/decrement of the opening degree for PI control to keep the degree of superheat constant is calculated according to the following procedure. First, the degree of superheating SH is determined based on the temperature difference between temperature sensors TH5 and TH6 arranged at the inlet and outlet sides of the outdoor heat exchanger 6 (evaporator), respectively. Next, find the pulse change amount ΔP using the formula below. ΔP=K[{E(t)-E(t-Δt)} +(Δt/2Ti){E(t) +E(t-Δt)}] …(2) Here, E(t) is time t Real side superheat degree at
Deviation value between SH and target superheat degree SHs, E (t-Δt)
Similarly, K is the deviation value at the start of sampling, K is the gain, Δt is the sampling time, and Ti is the integration time. If the determination in step S1 is YES, indicating that the compressor 1 has stopped from being in operation, the process proceeds to step S8, where the pulse change amount ΔP=0-P, and the outdoor electric expansion valve 8 is fully closed. In addition, if the determination in step S2 is YES that the compressor 1 has started from a stopped state, then in step S9 the opening degree P1 is calculated according to the capacity of the compressor 1 at the time of change using the same calculation as that in step S4. Then, in step S10, the pulse change amount ΔP is determined by setting ΔP=P1. Finally, in step S11, each of the above steps S5,
Pulse change amount ΔP found at S7, S8 and S10
The opening degree of the outdoor electric expansion valve 8 is changed accordingly. In the above flow, by step S3,
A determining means 51 is configured to determine when the capacity of the compressor 1 changes, and in step S5, when the capacity of the compressor 1 changes as determined by the determining means 51,
Storage device 31 according to the capacity before and after the change of compressor 1
A calculation means 52 is configured to calculate the amount of change in the opening degree of the outdoor electric expansion valve 8 based on the amount of change in the opening degree set in . Then, in step S11, a control means 53 is configured to control the opening degree of the outdoor electric expansion valve according to the calculation result by the calculation means 52. With the above configuration, in this embodiment, when the capacity of the compressor 1 changes, the opening degree of the outdoor electric expansion valve 8 is controlled in a feedforward manner based on the refrigerant flow rate determined from the capacity of the compressor 1. by
Hunting due to control delay that occurs with PI control or PID control does not occur, and it follows changes in the compressor with a quick pulse-like response. after that,
The opening degree is controlled to the target opening degree by PI control. At this time, the integration time Ti in equation (2) is set so that the pulse change value ΔP is a sufficiently stable and reliable value. When controlling the opening degree of the outdoor electric expansion valve 8 only by conventional PI control or PID control, Ti
If the time is too long, the degree of superheat will change during that time, which will cause hunting due to the control delay, but with the above method including feedforward control, there will be no large change in the degree of superheat. Furthermore, when the capacity of the compressor 1 changes during PI control and feedforward control is performed, the opening degree of the electric expansion valve 8 is changed immediately in response to the change in the capacity of the compressor 1 based on the current opening degree. Therefore, stable control can be performed without sudden changes that ignore the previous control state. As described above, in this embodiment, each indoor unit B
The opening degree of the indoor electric expansion valve 13 is controlled according to the fluctuation of the load of each indoor unit B to F.
Appropriately distribute the amount of refrigerant circulated to the In addition, in the outdoor unit A, the capacity of the compressor 1 is controlled to maintain the condensing temperature in the indoor heat exchanger 12 within an appropriate range, and the opening degree of the outdoor electric expansion valve 8 is controlled to prevent overheating in the outdoor heat exchanger 6. The air conditioning capacity of the indoor units B to F can be fully exerted through stable control without control delay and without hunting. Furthermore, the configuration for control is simplified, since there is no need for procedures for changing various constants, etc., which are required when controlling the opening using only PI control or PID control. In addition, if the total load of indoor units B to F is still small even with respect to the minimum capacity (30Hz) of the compressor 1, the high pressure control valve 24 is activated to connect the auxiliary capacitor 22 to the heating overload control bypass 11e.
When the degree of superheating SH is still larger than the target value SHs even if the outdoor motorized valve 8 is fully opened, the automatic expansion valve 30 is operated by the temperature sensing tube TP1 and the refrigerant is refilled. Excessive rise in superheat degree SH is prevented by performing an in-line injection. Although the explanation has been given above regarding the heating operation, the same applies to the cooling operation of a refrigeration system equipped with one indoor unit and one outdoor unit. In that case, during cooling operation, the indoor electric expansion valve 1
The present invention is applied to the opening degree control of No. 3, and the degree of superheating is determined in the same manner as above using temperature sensors TH2 and TH3 arranged at the entrance and exit of the indoor heat exchanger 12, respectively. At this time, the compressor 1 has a pressure sensor
Based on the signal from P1, the capacity is controlled to keep the evaporation temperature Te constant. Further, by applying a defrost bypass circuit to the above configuration, a positive cycle defrost circuit can be configured. Figure 9 shows an example of this.
11h is a defrost bypass circuit connecting the discharge pipe and the refrigerant inlet of the outdoor heat exchanger 6;
A defrost solenoid valve 35 is interposed in the middle (all other configurations are the same as in FIG. 2, so explanations are omitted). During heating operation, when a defrost command is issued due to frost formation on the outdoor heat exchanger 6, the defrost solenoid valve 3
5 opens, the discharged gas is directly passed through the outdoor heat exchanger 6 to perform a defrost operation, and the completion of defrosting is detected by the increase in the discharged gas pressure at the pressure sensor P1, and the defrost solenoid valve 35 is closed to end the defrost operation. . In this way, since the completion of defrosting is detected using the pressure sensor P1 of the discharged gas during heating, false detection can be prevented and highly reliable positive cycle defrost operation can be performed. (Effects of the Invention) As explained above, according to the refrigeration system of the present invention, when controlling the opening degree of the electric expansion valve that reduces the pressure of the refrigerant,
When the capacity of the compressor is changing, the opening is changed to the current opening multiplied by the opening ratio corresponding to the change in compressor capacity, which reduces control delays and hunting. It is possible to perform stable opening control of the electric expansion valve without any lag, and to fully utilize the refrigerating capacity. Further, there is an advantage that the configuration for control is also simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成を示す冷媒系統図であ
る。第2図〜第9図は本発明の実施例を示し、第
2図はその冷媒系統図、第3図は室外制御ユニツ
トの電気回路図、第4図は室内制御ユニツトの電
気回路図、第5図は室温サーモスタツトの設定値
と吸込空気温度との偏差と室内電動膨張弁の開度
との関係を示すグラフ、第6図は蒸発温度と冷媒
流量との関係を示す圧縮機の特性線図、第7図は
室外電動膨張弁の開度と冷媒流量との関係を示す
特性線図、第8図は室外電動膨張弁の開度制御手
順を示すフローチヤート図、第9図は正サイクル
デフロスト運転を付加した変形例を示す冷媒系統
図である。 1……圧縮機、6……室外熱交換器(蒸発器)、
8……室外電動膨張弁、12……室内熱交換器
(凝縮器)、31……記憶装置(記憶手段)、51
……判別手段、52……演算手段、53……制御
手段。
FIG. 1 is a refrigerant system diagram showing the configuration of the present invention. 2 to 9 show embodiments of the present invention, FIG. 2 is a refrigerant system diagram, FIG. 3 is an electric circuit diagram of the outdoor control unit, FIG. 4 is an electric circuit diagram of the indoor control unit, and FIG. Figure 5 is a graph showing the relationship between the deviation between the room temperature thermostat set value and intake air temperature and the opening degree of the indoor electric expansion valve, and Figure 6 is a compressor characteristic line showing the relationship between evaporation temperature and refrigerant flow rate. Figure 7 is a characteristic diagram showing the relationship between the opening degree of the outdoor electric expansion valve and the refrigerant flow rate, Figure 8 is a flowchart diagram showing the opening degree control procedure of the outdoor electric expansion valve, and Figure 9 is a positive cycle diagram. It is a refrigerant system diagram showing a modified example in which defrost operation is added. 1...Compressor, 6...Outdoor heat exchanger (evaporator),
8...Outdoor electric expansion valve, 12...Indoor heat exchanger (condenser), 31...Storage device (storage means), 51
...discrimination means, 52 ... calculation means, 53 ... control means.

Claims (1)

【特許請求の範囲】 1 容量可変型圧縮機1、凝縮器12、冷媒の絞
り作用を行う電動膨張弁8、および蒸発器6を順
次接続してなる冷媒循環回路を備えた冷凍装置に
おいて、圧縮機1の容量に応じた電動膨張弁8の
開度を記憶する記憶手段31と、圧縮機1の容量
が変化した時を判別する判別手段51と、該判別
手段51の出力を受け、圧縮機1の容量変化時、
電動膨張弁8の開度変化量ΔPを、現在開度値P、
上記記憶手段31で記憶される圧縮機1の変化前
の容量に応じた開度値Po及び変化後の容量に応
じた開度値P1から、下記式 ΔP=P(P1/Po)−P に基づいて演算する演算手段52と、該演算手段
52の出力を受けて、電動膨張弁8の開度を制御
する制御手段53とを備えたことを特徴とする冷
凍装置。
[Scope of Claims] 1. A refrigeration system equipped with a refrigerant circulation circuit formed by sequentially connecting a variable capacity compressor 1, a condenser 12, an electric expansion valve 8 that throttles the refrigerant, and an evaporator 6. A storage means 31 for storing the opening degree of the electric expansion valve 8 according to the capacity of the compressor 1; a determination means 51 for determining when the capacity of the compressor 1 has changed; When the capacitance changes by 1,
The opening change amount ΔP of the electric expansion valve 8 is the current opening value P,
From the opening value Po corresponding to the capacity of the compressor 1 before the change and the opening value P1 corresponding to the capacity after the change, which are stored in the storage means 31, the following formula ΔP=P(P1/Po)-P is obtained. 1. A refrigeration system comprising: a calculation means 52 for calculating based on the calculation means 52; and a control means 53 for controlling the opening degree of the electric expansion valve 8 in response to the output of the calculation means 52.
JP21623186A 1986-09-13 1986-09-13 Refrigerator Granted JPS6373058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21623186A JPS6373058A (en) 1986-09-13 1986-09-13 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21623186A JPS6373058A (en) 1986-09-13 1986-09-13 Refrigerator

Publications (2)

Publication Number Publication Date
JPS6373058A JPS6373058A (en) 1988-04-02
JPH052901B2 true JPH052901B2 (en) 1993-01-13

Family

ID=16685330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21623186A Granted JPS6373058A (en) 1986-09-13 1986-09-13 Refrigerator

Country Status (1)

Country Link
JP (1) JPS6373058A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2735188B2 (en) * 1987-03-20 1998-04-02 株式会社日立製作所 Air conditioner
JP2011127805A (en) * 2009-12-16 2011-06-30 Mitsubishi Electric Corp Air conditioning device

Also Published As

Publication number Publication date
JPS6373058A (en) 1988-04-02

Similar Documents

Publication Publication Date Title
JPH02126044A (en) Operation control device for air conditioning device
JPH02208469A (en) Air conditioner
JPH052902B2 (en)
JPH0765792B2 (en) Air conditioner
JPH0463303B2 (en)
JPH052901B2 (en)
JPH0217358A (en) Degree of overheat control device for freezing device
JPH02230056A (en) Operation control device for freezer
JPH0784956B2 (en) Operation control device for air conditioner
JPH0221165A (en) Operation controller for air conditioner
JPH06100395B2 (en) Refrigeration system operation controller
JPH02272260A (en) Operation-controlling device in air-conditioning apparatus
JPH02195145A (en) Device for controlling oil-recovery operation in air-conditioning apparatus
JPH01155146A (en) Controller for refrigerator
JPH03122460A (en) Operating controller for refrigerating machine
JPH01155147A (en) Controller for refrigerator
JPH0381061B2 (en)
JPH0527019B2 (en)
JPS63187070A (en) Air conditioner
JPH02208452A (en) Pressure equalizing control device for refrigerator
JPH02230063A (en) Capacity control device for air conditioner
JPS63176949A (en) Air conditioner
JPS63180050A (en) Electric expansion valve controller for air conditioner
JPS6373044A (en) Dehumidifying operation control device for air conditioner
JPH01147270A (en) Emergency controller for air conditioner

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term