JPH0463303B2 - - Google Patents

Info

Publication number
JPH0463303B2
JPH0463303B2 JP21623686A JP21623686A JPH0463303B2 JP H0463303 B2 JPH0463303 B2 JP H0463303B2 JP 21623686 A JP21623686 A JP 21623686A JP 21623686 A JP21623686 A JP 21623686A JP H0463303 B2 JPH0463303 B2 JP H0463303B2
Authority
JP
Japan
Prior art keywords
compressor
oil recovery
recovery operation
oil
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21623686A
Other languages
Japanese (ja)
Other versions
JPS6373052A (en
Inventor
Takashi Matsuzaki
Yukio Shigenaga
Akio Higuchi
Norifumi Maruyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP21623686A priority Critical patent/JPS6373052A/en
Publication of JPS6373052A publication Critical patent/JPS6373052A/en
Publication of JPH0463303B2 publication Critical patent/JPH0463303B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、冷凍サイクルを備えた冷凍装置に関
わり、冷媒回路中の油を圧縮機に回収する油回収
運転を行うものの改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a refrigeration system equipped with a refrigeration cycle, and relates to an improvement in a system that performs an oil recovery operation for recovering oil in a refrigerant circuit to a compressor.

(従来の技術) 従来より、冷凍装置の油回収運転制御装置とし
て、例えば実公昭57−41416号公報に開示されて
いるように、圧縮機の運転容量を低能力側と高能
力側とに切換える切換スイツチと、該切換スイツ
チの切換時間を設定するタイマとを備えて、ある
設定時間圧縮機の低能力運転を行つた時には、切
換スイツチを高能力側に切換えて圧縮機の運転容
量を大きくして、所定時間冷凍装置の油回収運転
を行い、冷媒流量を多くして冷凍回路中に滞溜す
る油の回収を行おうとするものが知られている。
(Prior Art) Conventionally, as an oil recovery operation control device for a refrigeration system, for example, as disclosed in Japanese Utility Model Publication No. 57-41416, the operating capacity of a compressor is switched between a low capacity side and a high capacity side. Equipped with a changeover switch and a timer for setting the switching time of the changeover switch, when the compressor is operated at low capacity for a certain set time, the changeover switch is switched to the high capacity side to increase the operating capacity of the compressor. There is a known system in which the oil recovery operation of the refrigeration system is performed for a predetermined period of time to increase the flow rate of the refrigerant to recover oil accumulated in the refrigeration circuit.

(発明が解決しようとする問題点) ところで、上記油回収運転を行う周期を定める
設定時間は、通常、冷凍装置の一日の実稼働時間
程度に長い。即ち、油回収運転は速かに冷媒回路
中の油を回収するための運転であつて、通常の制
御条件を無視した特殊条件で行うものであるか
ら、その運転周期は例えば圧縮機の運転時間が8
時間毎というようにできるだけ長いほど好まし
い。
(Problems to be Solved by the Invention) Incidentally, the set time that determines the cycle of performing the oil recovery operation is usually as long as the actual operating time of the refrigeration system in one day. In other words, the oil recovery operation is an operation to quickly recover oil in the refrigerant circuit, and is performed under special conditions that ignore normal control conditions, so the operation cycle is, for example, the operating time of the compressor. is 8
The longer the time is, the better, such as every hour.

しかしながら、このように長い設定時間をタイ
マで積算する場合、電子式タイマを用いると、第
8図にそのタイムチヤートにて示すように電源が
切れるとリセツトされるので、通常1日に8時間
程度しか使用しない室内であると、圧縮機の運転
時間が8時間もなくて油回収運転が行われない日
が何日も続く可能性がある。これを防止するに
は、主電源停止時に電子式タイマの積算値を保持
するバツクアツプ電源を備えるか、あるいは、機
械式タイマを使用することが考えられるが、いず
れもコストが高くつくという欠点がある。
However, when using a timer to integrate such a long set time, if an electronic timer is used, it will be reset when the power is turned off, as shown in the time chart in Figure 8, so it will normally last about 8 hours a day. If the room is only used indoors, there is a possibility that the compressor is not operated for 8 hours and oil recovery operation is not performed for many days. To prevent this, it is possible to install a backup power supply that retains the integrated value of the electronic timer when the main power is stopped, or to use a mechanical timer, but both have the disadvantage of being expensive. .

本発明は斯かる点に鑑みてなされたものであ
り、その目的は、主電源の投入時には、タイマの
積算を開始する初期値をタイマの設定時間寸前に
初期化しておくことによつて、冷凍装置が安定す
るに必要最小の時間だけ待つたのち速かに油回収
運転を行つて、電子式タイマの使用による安価な
構造でもつて毎日確実に一回は油回収運転を行う
ようにすることにある。
The present invention has been made in view of the above, and its purpose is to initialize the initial value for starting timer integration to just before the set time of the timer when the main power is turned on. After waiting the minimum amount of time necessary for the equipment to stabilize, the oil recovery operation is immediately performed, and even with an inexpensive structure using an electronic timer, the oil recovery operation can be performed reliably once every day. be.

(発明が解決しようとする問題点) 上記目的を達成するため、本発明の解決手段
は、第1図に示すように、運転容量を可変に調節
される圧縮機1、凝縮機12、減圧機構13およ
び蒸発器6を順次接続してなる冷凍サイクルを備
えた冷凍装置を対象とする。そして、冷凍装置の
油回収運転制御装置として、上記圧縮機1の運転
時間を積算すると共に冷凍装置の主電源の停止時
に積算値が零にリセツトされる運転時間積算手段
63と、該運転時間積算手段63の積算値が設定
値になつたとき冷媒中の油を圧縮機1に回収する
油回収運転を行う油回収運転制御手段65とを備
えるとともに、冷凍装置の主電源の投入時を検出
する投入時検出手段62と、該投入時検出手段6
2の信号を受けて、主電源投入時には上記運転時
間積算手段63の積算を開始する初期値を上記設
定値の近傍の値に初期化する初期化手段66とを
設ける構成としたものである。
(Problems to be Solved by the Invention) In order to achieve the above object, as shown in FIG. 13 and an evaporator 6 are sequentially connected to each other in a refrigeration cycle. As an oil recovery operation control device for the refrigeration system, there is provided an operation time integration means 63 that integrates the operating time of the compressor 1 and resets the integrated value to zero when the main power source of the refrigeration system is stopped; An oil recovery operation control means 65 is provided which performs an oil recovery operation to recover oil in the refrigerant to the compressor 1 when the integrated value of the means 63 reaches a set value, and detects when the main power of the refrigeration system is turned on. Closing time detection means 62 and said closing time detection means 6
Initialization means 66 is provided which receives the signal No. 2 and initializes the initial value for starting the integration of the operation time integration means 63 to a value close to the set value when the main power is turned on.

(作用) 以上の構成により、本発明では、冷凍装置の運
転が停止すると、運転時間積算手段63の積算値
がリセツトされて零となつしまうが、翌日の運転
開始時主電源が投入されると、この投入時が投入
時検出手段62で検出されて、初期化手段66に
より上記運転時間積算手段63の初期値が設定値
近傍の値に初期化される。したがつて、運転開始
後、すぐに上記運転時間積算手段63の積算値が
設定値に達し、油回収運転制御手段65により冷
凍装置の油回収運転が行われるので、簡素な構成
により、毎日確実に冷媒回路中の油が回収され、
圧縮機1の油不足による焼付等の事故が有効に防
止される。
(Function) With the above configuration, in the present invention, when the operation of the refrigeration equipment is stopped, the integrated value of the operating time integrating means 63 is reset to zero, but when the main power is turned on at the start of operation the next day. This turning-on time is detected by the turning-on detecting means 62, and the initializing means 66 initializes the initial value of the operating time integrating means 63 to a value close to the set value. Therefore, after the start of operation, the accumulated value of the operating time accumulating means 63 reaches the set value immediately, and the oil recovery operation control means 65 starts the oil recovery operation of the refrigeration system. The oil in the refrigerant circuit is recovered,
Accidents such as seizure due to lack of oil in the compressor 1 are effectively prevented.

(実施例) 以下、本発明の実施例を第2図以下の図面に基
づき説明する。
(Example) Hereinafter, an example of the present invention will be described based on the drawings from FIG. 2 onwards.

第2図は本発明を適用したマルチ型空気調和装
置の冷媒配管系統を示し、Aは室外ユニツト、B
〜Fは該室外ユニツトAに並列に接続された室内
ユニツトである。上記室外ユニツトAの内部に
は、出力周波数を30〜70Hzの範囲で10Hz毎に可変
に切換えられるインバータ2aにより容量が調整
される第1圧縮機1aと、パイロツト圧の高低で
差動するアンローダ2bにより容量がフルロード
(10%)およびアンロード(50%)状態の2段階
に調整される第2圧縮機1bとを逆止弁1eを介
して並列に接続して構成される圧縮機1と、該圧
縮機1から吐出されるガス中の油を分離する油分
離器4と、暖房運転時には図中実線の如く切換わ
り冷房運転時には図中破線の如く切換わる四路切
換弁5と、冷房運転時に凝縮器、暖房運転時に蒸
発器となる室外熱交換器6およびそのフアン6a
と、過冷却コイル7と、冷房運転時には冷媒流量
を調節し、暖房運転時には冷媒の絞り作用を行う
室外電動膨張弁8と、液化した冷媒を貯蔵するレ
シーバ9と、アキユムレータ10とが主要機器と
して内蔵されていて、該各機器1〜10は各々冷
媒の連絡配管11で冷媒の流通可能に接続されて
いる。また上記室内ユニツトB〜Fは同一構成で
あり、各々、冷房運転時には蒸発器、暖房運転時
には凝縮器となる室内熱交換器12…およびその
フアン12a…を備え、かつ該室内熱交換器12
…の液冷媒分岐管11a…には、暖房運転時に冷
媒流量を調節し、冷房運転時に冷媒の絞り作用を
行う室内電動膨張弁13…がそれぞれ介設され、
合流後手動閉鎖弁17を介し連絡配管11bによ
つて室外ユニツトAとの間を接続されている。ま
た、TH1…は各室内温度を検出する室温サーモ
スタツト、TH2…およびTH3…は各々室内熱
交換器12…の液側およびガス側配管における冷
媒の温度を検出する温度センサ、TH4は圧縮機
1の吐出管における冷媒の温度を検出する温度セ
ンサ、TH5は暖房運転時に室外熱交換器6(蒸
発器)における蒸発温度を検出する温度センサ
ー、TH6は圧縮機1に吸入される吸入ガスの温
度を検出する温度センサ、P1は暖房運転時には
吐出ガスの圧力と、冷房運転時には吸入ガスの圧
力を検知する圧力センサである。
Figure 2 shows the refrigerant piping system of a multi-type air conditioner to which the present invention is applied, where A is the outdoor unit and B is the outdoor unit.
-F are indoor units connected in parallel to the outdoor unit A. Inside the outdoor unit A, there is a first compressor 1a whose capacity is adjusted by an inverter 2a whose output frequency is variably switched in 10Hz increments in the range of 30 to 70Hz, and an unloader 2b which operates differentially depending on the pilot pressure. The compressor 1 is configured by connecting in parallel via a check valve 1e a second compressor 1b whose capacity is adjusted in two stages: full load (10%) and unload (50%). , an oil separator 4 that separates oil from the gas discharged from the compressor 1; a four-way switching valve 5 that switches as shown by the solid line in the figure during heating operation and as shown by the broken line in the figure during cooling operation; The outdoor heat exchanger 6 and its fan 6a serve as a condenser during operation and an evaporator during heating operation.
The main equipment includes a subcooling coil 7, an outdoor electric expansion valve 8 that adjusts the refrigerant flow rate during cooling operation and throttles the refrigerant during heating operation, a receiver 9 that stores liquefied refrigerant, and an accumulator 10. Each of the devices 1 to 10 is connected through a refrigerant communication pipe 11 so that refrigerant can flow therein. In addition, the indoor units B to F have the same configuration, and are each equipped with an indoor heat exchanger 12 that serves as an evaporator during cooling operation and a condenser during heating operation, and its fans 12a...
The liquid refrigerant branch pipes 11a of... are each provided with indoor electric expansion valves 13... that adjust the refrigerant flow rate during heating operation and perform a throttling action on the refrigerant during cooling operation,
After merging, it is connected to the outdoor unit A via a manual closing valve 17 and a connecting pipe 11b. Further, TH1... is a room temperature thermostat that detects each indoor temperature, TH2... and TH3... are temperature sensors that detect the refrigerant temperature in the liquid side and gas side piping of the indoor heat exchanger 12..., respectively, and TH4 is a temperature sensor that detects the temperature of the refrigerant in the liquid side and gas side piping of the indoor heat exchanger 12..., respectively. TH5 is a temperature sensor that detects the evaporation temperature in the outdoor heat exchanger 6 (evaporator) during heating operation, and TH6 is a temperature sensor that detects the temperature of the suction gas sucked into the compressor 1. The temperature sensor P1 is a pressure sensor that detects the pressure of discharged gas during heating operation and the pressure of intake gas during cooling operation.

なお、第2図において上記各主要機器以外に補
助用の諸機器が設けられている。1fは第2圧縮
機1bのバイパス回路11cに介設されて、第2
圧縮機1bの停止時およびアンロード状態時に
「開」となり、フルロード状態で「閉」となるア
ンローダ用電磁弁、1gはキヤピラリーチユー
ブ、1hおよび1iは油分離器4から油戻し配管
11uを経て第1圧縮機1aおよび第2圧縮機1
bに潤滑油を戻す分岐管11vおよび11wに介
設されて返油量をコントロールするキヤピラリー
チユーブ、21は吐出管と吸入管とを接続する均
圧ホツトガスバイパス回路11dに介設されて、
冷房運転時室内熱交換器12(蒸発器)が低負荷
状態のときおよびデフロスト時等に開作動するホ
ツトガス用電磁弁である。また、11eは暖房過
負荷制御用バイパス回路であつて、該バイパス回
路11eには、補助コンデンサ22、第1逆止弁
23、暖房運転時室内熱交換器12(凝縮器)が
低負荷時のとき開作動する高圧制御弁24および
第2逆止弁25が順次直列に接続されており、そ
の一部には運転停止時に液封を防止するための液
封防止バイパス回路11fが第3逆止弁27およ
びキヤピラリーチユーブCP3を介して設けられ
ている。さらに、11gは上記暖房過負荷バイパ
ス回路11eの液冷媒側配管と主配管の吸入ガス
管との間を接続し、冷暖房運転時に吸入ガスの過
熱度を調節するためのリキツドインジエクシヨン
バイパス回路であつて、該リキツドインジエクシ
ヨンバイパス回路11gには圧縮機1のオン・オ
フと連動して開閉するインジエクシヨン用電磁弁
29と、感温筒TP1により検出される吸入ガス
の過熱度に応じて開度を調節される自動膨張弁3
0とが介設されている。
In addition, in FIG. 2, various auxiliary devices are provided in addition to the above-mentioned main devices. 1f is interposed in the bypass circuit 11c of the second compressor 1b, and the second
An unloader solenoid valve that opens when the compressor 1b is stopped and unloaded and closes when fully loaded; 1g is a capillary reach tube; 1h and 1i are oil return pipes 11u from the oil separator 4; The first compressor 1a and the second compressor 1
A capillary reach tube 21 is installed in the branch pipes 11v and 11w that return lubricating oil to control the amount of oil returned;
This is a hot gas electromagnetic valve that opens when the indoor heat exchanger 12 (evaporator) is in a low load state during cooling operation and during defrosting. Further, 11e is a heating overload control bypass circuit, and the bypass circuit 11e includes an auxiliary condenser 22, a first check valve 23, and an indoor heat exchanger 12 (condenser) during heating operation when the load is low. A high-pressure control valve 24 and a second check valve 25, which open when the operation is stopped, are connected in series, and part of them includes a liquid seal prevention bypass circuit 11f for preventing liquid seal when the operation is stopped. It is provided via a valve 27 and a capillary reach tube CP3. Furthermore, 11g is a liquid injector bypass circuit that connects between the liquid refrigerant side pipe of the heating overload bypass circuit 11e and the suction gas pipe of the main pipe, and adjusts the degree of superheat of the suction gas during heating and cooling operation. The liquid injection bypass circuit 11g includes an injection extraction solenoid valve 29 that opens and closes in conjunction with the on/off of the compressor 1, and a solenoid valve 29 that opens and closes in conjunction with the on/off of the compressor 1, and a solenoid valve 29 that responds to the degree of superheat of the intake gas detected by the temperature sensing cylinder TP1. Automatic expansion valve 3 whose opening degree is adjusted by
0 is interposed.

また、第2図中、F1〜F6は冷媒回路あるい
は油戻し管中に介設された液浄化用フイルタ、
HPSは圧縮機保護用の高圧圧力開閉器、SPはサ
ービスポートである。
In addition, in FIG. 2, F1 to F6 are liquid purification filters installed in the refrigerant circuit or oil return pipe,
HPS is a high pressure switch for compressor protection, and SP is a service port.

そして、上記各電磁弁およびセンサ類は各主要
機器と共に後述の室外制御ユニツト15に信号線
で接続され、該室外制御ユニツト15は各室内制
御ユニツト16…に連絡配線によつて信号の授受
可能に接続されている。
The above-mentioned solenoid valves and sensors are connected to an outdoor control unit 15 (described later) by signal lines along with each main equipment, and the outdoor control unit 15 can send and receive signals to each indoor control unit 16 by connecting wiring. It is connected.

第3図は室内制御ユニツト16の内部および接
続される各機器の主な配線を示す電気回路図であ
る。第3図でMFは室内フアン12aのモータ
で、単相交流電源を受けて各リレー端子RY11
RY13によつて風量の大きい順に強風と弱風とに
切換え、暖房運転時室温サーモスタツトTH1の
信号による停止時のみ微風にするようになされて
いる。そして、室内制御ユニツト15のプリント
基板の端子CNには室内電動膨張弁13の開度を
調節するパルスモータEVが接続される一方、室
温サーモスタツトTH1および温度センサTH2,
TH3の信号が入力されている。また、各室内制
御ユニツト16は室外制御ユニツト15に信号線
を介して信号の授受可能に接続されるとともに、
リモートコントロールスイツチRCSから入力可
能に接続されている。そして、室内制御ユニツト
16には破線で示される室内制御装置16aが内
蔵され、該室内制御装置16aによつて、各セン
サ類あるいは室外制御ユニツト15からの信号に
応じて室内電動膨張弁13あるいは室内フアン1
2aの動作が制御される。
FIG. 3 is an electrical circuit diagram showing the interior of the indoor control unit 16 and the main wiring of each connected device. In Fig. 3, MF is the motor of the indoor fan 12a, which receives single-phase AC power and connects each relay terminal RY 11 to
RY 13 switches between strong and weak winds in descending order of air volume, and only when the heating operation is stopped by a signal from the room temperature thermostat TH1, a light breeze is applied. A pulse motor EV for adjusting the opening degree of the indoor electric expansion valve 13 is connected to the terminal CN of the printed circuit board of the indoor control unit 15, while a room temperature thermostat TH1, a temperature sensor TH2,
TH3 signal is input. Further, each indoor control unit 16 is connected to the outdoor control unit 15 via a signal line so that signals can be sent and received.
Connected to enable input from remote control switch RCS. The indoor control unit 16 has a built-in indoor control device 16a shown by a broken line, and the indoor electric expansion valve 13 or the indoor fan 1
The operation of 2a is controlled.

次に、第4図は上記室外ユニツトA側に配置さ
れる室外制御ユニツト15の内部および接続され
る各機器の配線関係を示す電気回路図である。図
中、MC1はインバーター2の周波数変換回路
INVに接続された第1圧縮機1aのモータ、MC
2は第2圧縮機1bのモータ、MFは室外フアン
6aのモータ、52F、52C1および52C2
は各々フアンモータMF、周波数変換回路INVお
よびモータMC2を作動させる電磁接触器で、上
記各機器はヒユーズボツクスFS、漏電ブレーカ
BR1を介して三相交流電源に接続されるととも
に、室外制御ユニツト15とは単相交流電源で接
続されている。次に、室外制御ユニツト15の内
部にあつては、電磁リレーの常開接点RY1〜
RY7)単相交流電流に対して並列に接続され、
これらは順に、四路切換弁5の電磁リレー20
S、周波数変換回路INVの電磁接触器52C1、
第2圧縮機1bの電磁接触器52C2、室外フア
ン用電磁接触器52F、アンローダ用電磁弁1f
の電磁リレーSVL、ホツトガス用電磁弁21の
電磁リレーSVPおよびインジエクシヨン用電磁
弁29の電磁リレーSVTのコイルに直列に接続
され、室外制御ユニツト15に入力される室温サ
ーモスタツトTH1および温度センサTH2〜
TH6の信号に応じて開閉されて、上記各電磁接
触器あるいは電磁リレーの接点を開閉されるもの
である。また、端子CNには、室外電動膨張弁8
の開度を調節するパルスモータEVのコイルが接
続されている。なお、第3図右側の回路におい
て、CH1,CH2はそれぞれ第1圧縮機1a、
第2圧縮機1cのオイルフオーミング防止用ヒー
タで、それぞれ電磁接触器52C1,52C2と
直列に接続され上記各圧縮機1a,1bが停止時
に電流が流れるようになされている。さらに、5
1C2はモータMC2の過電流リレー、49C
1,49C2はそれぞれ第1圧縮機1a、第2圧
縮機1bの温度上昇保護用スイツチ、63H1,
63H2はそれぞれ第1圧縮機1a、第2圧縮機
1bの圧力上昇保護用スイツチ、51Fはフアン
モータMFの過電流リレーであつて、これらは直
列に接続されて投入時には電磁リレー30Fxを
オン状態にし、故障時にはオフ状態にさせる保護
回路を構成している。そして、室外制御ユニツト
15には破線で示される室外制御装置15aが内
蔵され、該室外制御装置15aによつて第3図に
その内部配線を示す各室内制御ユニツト16…あ
るいは各センサ類から入力される信号に応じて各
機器の動作が制御される。その内部構成を第5図
に示す。
Next, FIG. 4 is an electric circuit diagram showing the interior of the outdoor control unit 15 disposed on the outdoor unit A side and the wiring relationship of each connected device. In the diagram, MC1 is the frequency conversion circuit of inverter 2
Motor of the first compressor 1a connected to INV, MC
2 is the motor of the second compressor 1b, MF is the motor of the outdoor fan 6a, 52F, 52C1 and 52C2
are electromagnetic contactors that operate the fan motor MF, frequency conversion circuit INV, and motor MC2, and each of the above devices is a fuse box FS, earth leakage breaker.
It is connected to a three-phase AC power source via the BR1, and is also connected to the outdoor control unit 15 via a single-phase AC power source. Next, inside the outdoor control unit 15, the normally open contacts RY1 to RY1 of the electromagnetic relays are
RY7) Connected in parallel to single-phase alternating current,
These are in turn connected to the electromagnetic relay 20 of the four-way switching valve 5.
S, electromagnetic contactor 52C1 of frequency conversion circuit INV,
Electromagnetic contactor 52C2 of second compressor 1b, electromagnetic contactor 52F for outdoor fan, electromagnetic valve 1f for unloader
The room temperature thermostat TH1 and the temperature sensor TH2 are connected in series to the coils of the solenoid relay SVL of the hot gas solenoid valve 21, the solenoid relay SVP of the hot gas solenoid valve 21, and the solenoid relay SVT of the injection solenoid valve 29, and input to the outdoor control unit 15.
It is opened and closed according to the signal of TH6, and the contacts of each of the above-mentioned electromagnetic contactors or electromagnetic relays are opened and closed. In addition, the outdoor electric expansion valve 8 is connected to the terminal CN.
The coil of the pulse motor EV is connected to adjust the opening degree of the EV. In the circuit on the right side of Figure 3, CH1 and CH2 are the first compressor 1a and CH2, respectively.
These are heaters for preventing oil forming of the second compressor 1c, and are connected in series with the electromagnetic contactors 52C1 and 52C2, respectively, so that current flows when the compressors 1a and 1b are stopped. Furthermore, 5
1C2 is motor MC2 overcurrent relay, 49C
1, 49C2 are temperature rise protection switches for the first compressor 1a and second compressor 1b, 63H1,
63H2 is a pressure rise protection switch for the first compressor 1a and second compressor 1b, respectively, and 51F is an overcurrent relay for the fan motor MF, which are connected in series and turn on the electromagnetic relay 30Fx when turned on. , constitutes a protection circuit that turns off the device in the event of a failure. The outdoor control unit 15 incorporates an outdoor control device 15a shown by a broken line, and the outdoor control device 15a receives input from each indoor control unit 16, whose internal wiring is shown in FIG. 3, or from each sensor. The operation of each device is controlled according to the signals received. Its internal configuration is shown in FIG.

第5図において、60は冷凍装置の運転条件の
設定値を入力する入力装置、61は設定時間を記
憶する記憶回路、62は圧縮機1の運転状態をサ
ンプリングするとともに、主電源の投入を検出す
る投入時検出手段としてのサンプリング装置、6
3は該サンプリング装置62の信号に応じて圧縮
機1の運転時間を積算すると共に主電源の停止時
にはリセツトされる運転時間積算手段としての電
子式積算タイマ、64はCPU、65は冷凍回路
中の各機器の運転を制御する油回収運転制御手段
としての運転制御装置である。上記CPU64に
よつて、入力装置60による入力される設定条
件、即ち、油回収運転を行う周期を定める積算タ
イマ63の設定時間(本実施例では8時間)ある
いは油回収運転を行うための諸条件が予め記憶回
路61に記憶されるように制御される。そして、
上記積算タイマ63の積算値が設定値に達する
と、運転制御装置65により、上記記憶回路61
に予め設定された条件に応じて、暖房運転時は四
路切換弁5が冷房サイクル側に切換えられ、圧縮
機1の運転容量が最大に、室外電動膨張弁8の開
度が全開に、室外送風フアン6aが運転するよう
に、そして室内電動膨張弁13の開度が大きく湿
り側に制御されるようになされている。
In FIG. 5, 60 is an input device for inputting set values of operating conditions of the refrigeration system, 61 is a memory circuit for storing set times, and 62 is for sampling the operating state of the compressor 1 and detecting the turning on of the main power supply. sampling device as means for detecting when inputting; 6
3 is an electronic integration timer as an operation time integration means that integrates the operating time of the compressor 1 in accordance with the signal from the sampling device 62 and is reset when the main power supply is stopped; 64 is a CPU; and 65 is an integrated timer in the refrigeration circuit. This is an operation control device as an oil recovery operation control means that controls the operation of each device. Setting conditions input by the input device 60 by the CPU 64, that is, the setting time of the integration timer 63 (8 hours in this embodiment) that determines the cycle for oil recovery operation, or various conditions for performing oil recovery operation. is controlled so that it is stored in the storage circuit 61 in advance. and,
When the cumulative value of the cumulative timer 63 reaches the set value, the operation control device 65 causes the storage circuit 61 to
During heating operation, the four-way selector valve 5 is switched to the cooling cycle side, the operating capacity of the compressor 1 is maximized, the outdoor electric expansion valve 8 is fully opened, and the outdoor motorized expansion valve 8 is fully opened. The ventilation fan 6a is operated and the opening degree of the indoor electric expansion valve 13 is controlled to a large degree on the wet side.

以上の室内制御装置15aにより行われる油回
収運転の手順を第6図のフローチヤートに基づい
て説明する。
The procedure of the oil recovery operation performed by the above indoor control device 15a will be explained based on the flowchart of FIG. 6.

第6図において、空気調和装置の主電源が投入
されると、ステツプS1において積算タイマ63
の積算を開始する初期値を設定時間8時間より1
時間少ない例えば7時間に初期化して通常運転を
行い、ステツプS2で圧縮機1が運転中である
YESになるのを待つて、積算タイマ63を作動
させる。次いで、ステツプS3に進みデフロスト
運転を行つているか否かを判別して、デフロスト
運転を行つていないNOのときにはステツプS4に
移行する。そして、ステツプS4では上記積算タ
イマ63の積算値が8時間に達したか否かを判別
し、NOのときには上記ステツプS2、S3の手順を
くり返し、積算値が8時間に達して判定がYES
となるとステツプS5に移行する。ステツプS5で
は、油回収運転を行うべく四路切換弁5を冷房側
に切換るとともに、圧縮機1の容量を最大(第1
圧縮機1aが70Hz、第2圧縮機1bがフルロー
ド)にし、室外送風フアン6aを運転させ、かつ
室外電動膨張弁8の開度を全開、室内電動膨張弁
13…の開度を開き側に制御する(なお、インジ
エクシヨン用電磁弁29およびホツトガス用電磁
弁21は閉じておく)。次に、ステツプS6でこの
油回収運転前が暖房運転中であつたか否かを判別
し、暖房運転中の油回収運転であるYESのとき
にはステツプS7で運転中の室内フアン12aを
停止して冷風が室内に吹出されないようにする。
また、冷房運転中のNOのときには室内フアン1
2aを運転した状態でそれぞれステツプS8に移
行し、ステツプS8で油回収運転を3分間行つた
か否かを判別し、3分間経過してYESになれば
油回収運転を終了して、通常運転を行うべくステ
ツプS2に戻る。なお、ステツプS3での判定がデ
フロスト運転を行つているYESであればデフロ
スト運転によりステツプS5〜S8の油回収運転と
同様の油回収効果があるので、ステツプS9で積
算タイマ63をリセツトしてステツプS2に戻る。
In FIG. 6, when the main power of the air conditioner is turned on, the integration timer 63 is activated in step S1.
The initial value for starting the integration is set to 1 from the set time of 8 hours.
Initialize to a short period of time, for example 7 hours, and perform normal operation, and in step S2 compressor 1 is operating.
Wait for YES and activate the integration timer 63. Next, the process proceeds to step S3, where it is determined whether or not defrost operation is being performed, and if NO, indicating that defrost operation is not being performed, the process proceeds to step S4. Then, in step S4, it is determined whether the cumulative value of the cumulative timer 63 has reached 8 hours or not. If NO, the procedures of steps S2 and S3 are repeated, and when the cumulative value has reached 8 hours, the determination is YES.
Then, the process moves to step S5. In step S5, the four-way selector valve 5 is switched to the cooling side to perform oil recovery operation, and the capacity of the compressor 1 is set to the maximum (the first
The compressor 1a is set to 70 Hz, the second compressor 1b is fully loaded), the outdoor blower fan 6a is operated, the outdoor electric expansion valve 8 is fully opened, and the indoor electric expansion valves 13 are set to the open side. (note that the injection solenoid valve 29 and the hot gas solenoid valve 21 are closed). Next, in step S6, it is determined whether or not the heating operation was in progress before this oil recovery operation, and if YES indicates that the oil recovery operation was in the heating operation, the indoor fan 12a that is in operation is stopped in step S7 to blow cold air. prevent it from being blown into the room.
Also, if NO during cooling operation, the indoor fan 1
With 2a running, the process moves to step S8, and in step S8 it is determined whether or not the oil recovery operation has been performed for 3 minutes.If the answer is YES after 3 minutes, the oil recovery operation is ended and normal operation begins. Return to step S2 to perform the following steps. If the determination in step S3 is YES that the defrost operation is being performed, the defrost operation has the same oil recovery effect as the oil recovery operation in steps S5 to S8, so the integration timer 63 is reset in step S9 and the process continues. Return to S2.

以上のフローにおいて、ステツプS1により、
主電源の投入時に積算タイマ63の積算を開始す
初期値を設定近傍の値に初期化する初期化手段6
6が構成されている。
In the above flow, step S1
Initialization means 6 that initializes the initial value for starting integration of the integration timer 63 to a value close to the setting when the main power is turned on.
6 are configured.

したがつて、空気調和装置の1日の運転が終了
して停止している間、積算タイマ63の積算値は
停止前の値如何に拘らずリセツトされて0になる
が、本実施例では第7図にそのタイムチヤートに
て示すように主電源投入後すぐに積算タイマ63
の初期値が7時間に初期化されるので、主電源投
入後圧縮機1の総運転時間が1時間に達して運転
状態が安定したときに、ステツプS5により油回
収運転が行われる。即ち、第8図に示される従来
のタイマ単独によるものとは異なり、1日に1回
は確実に油回収運転が行われ、使用者の条件によ
り長時間連続して運転されるときには、以後圧縮
機1の総運転時間8時間毎に油回収運転が行われ
るので、冷媒と共に圧縮機1から吐出されて冷媒
配管11中あるいは室内熱交換器12…や室外熱
交換器6等の冷媒回路中に滞溜している潤滑油を
確実に圧縮機1に回収して、油不足による圧縮機
1の焼付等の事故を有効に防止することができ
る。
Therefore, while the air conditioner is stopped after one day's operation, the integrated value of the integrated timer 63 is reset to 0 regardless of the value before the stop. As shown in the time chart in Figure 7, the integration timer 63 starts immediately after the main power is turned on.
Since the initial value of is initialized to 7 hours, when the total operating time of the compressor 1 reaches 1 hour after the main power is turned on and the operating condition becomes stable, the oil recovery operation is performed in step S5. That is, unlike the conventional method using only a timer as shown in Fig. 8, oil recovery operation is performed reliably once a day, and if the oil recovery operation is continued for a long time depending on the user's conditions, the compression Since the oil recovery operation is performed every 8 hours of the total operating time of the machine 1, the oil is discharged from the compressor 1 along with the refrigerant into the refrigerant pipe 11 or into the refrigerant circuit of the indoor heat exchanger 12... or the outdoor heat exchanger 6, etc. Accumulated lubricating oil can be reliably collected into the compressor 1, and accidents such as seizure of the compressor 1 due to oil shortage can be effectively prevented.

また、積算タイマとして電子式積算タイマを使
用すればよく、機械式積算計に比べ安価であり、
大きさもコンパクトであつて制御装置の構成が簡
素はものですむ。また、バツクアツプ電源が不要
であり、電子式積算タイマにバツクアツプ電源を
備える方式に比べて安価にすむ。
In addition, an electronic integration timer can be used as the integration timer, which is cheaper than a mechanical integration timer.
The size is compact and the configuration of the control device is simple. Further, a backup power supply is not required, and the cost is lower than a method in which an electronic integration timer is provided with a backup power supply.

(発明の効果) 以上説明したように、本発明では、圧縮機の総
運転時間が設定値に達した時に冷媒回路中の油を
圧縮機に回収する油回収運転を行うようにした冷
凍装置において、主電源投入時に、圧縮機の運転
時間を積算する精算手段の初期値を上記設定値近
傍の値に初期化するようにしたので、投入後すぐ
に油回収運転が行われて毎回確実に油回収運転を
行うことができ、圧縮機の油不足による焼付等の
事故を有効に防止することができる。また、その
ためのコストも安価にすむ。
(Effects of the Invention) As explained above, the present invention provides a refrigeration system that performs an oil recovery operation in which oil in the refrigerant circuit is recovered to the compressor when the total operating time of the compressor reaches a set value. When the main power is turned on, the initial value of the adjustment means for accumulating the operating time of the compressor is initialized to a value close to the above set value, so oil recovery operation is performed immediately after turning on the power, ensuring that oil is collected every time. Recovery operation can be performed, and accidents such as seizure due to lack of oil in the compressor can be effectively prevented. Moreover, the cost for this is also low.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成を示すブロツク図であ
る。第2図〜第7図は本発明の実施例を示し、第
2図はその冷媒系統図、第3図は室外制御ユニツ
トの電気回路図、第4図は室内制御ユニツトの電
気回路図、第5図は室内制御装置の内部構成概略
図、第6図は油回収運転制御の手順を示すフロー
チヤート図、第7図は積算タイマのタイムチヤー
ト図、第8図は従来のタイマ単独によるときのタ
イムチヤート図である。 1……圧縮機、6……室外熱交換器(蒸発器)、
12……室内熱交換器(凝縮器)、13……室内
電動膨張弁(減圧機構)、62……サンプリング
装置(投入時検出手段)、63……積算タイマ
(運転時間積算手段)、65……運転制御装置(油
回収運転制御手段)、66……初期化手段。
FIG. 1 is a block diagram showing the configuration of the present invention. Figures 2 to 7 show embodiments of the present invention, with Figure 2 being a refrigerant system diagram, Figure 3 being an electric circuit diagram of the outdoor control unit, Figure 4 being an electric circuit diagram of the indoor control unit, and Figure 4 being an electric circuit diagram of the indoor control unit. Figure 5 is a schematic diagram of the internal configuration of the indoor control device, Figure 6 is a flowchart showing the oil recovery operation control procedure, Figure 7 is a time chart of the integration timer, and Figure 8 is a diagram showing the flowchart when using the conventional timer alone. It is a time chart. 1...Compressor, 6...Outdoor heat exchanger (evaporator),
12... Indoor heat exchanger (condenser), 13... Indoor electric expansion valve (pressure reducing mechanism), 62... Sampling device (detection means when turned on), 63... Integration timer (operation time integration means), 65... ...operation control device (oil recovery operation control means), 66... initialization means.

Claims (1)

【特許請求の範囲】[Claims] 1 運転容量を可変に調節される圧縮機1、凝縮
器12、減圧機構13および蒸発器6を順次接続
してなる冷凍サイクルを備えた冷凍装置におい
て、上記圧縮機1の運転時間を積算すると共に冷
凍装置の主電源の停止時に積算値が零にリセツト
される運転時間積算手段63と、該運転時間積算
手段63の積算値が設定値になつたとき冷媒中の
油を圧縮機1に回収する油回収運転を行う油回収
運転制御手段65とを備えるとともに、冷凍装置
の主電源の投入時を検出する投入時検出手段62
と、該投入時検出手段62の信号を受けて、主電
源投入時には上記運転時間積算手段63の積算開
始の初期値を上記設定値の近傍の値に初期化する
初期化手段66とを備えたことを特徴とする冷凍
装置の油回収運転制御装置。
1. In a refrigeration system equipped with a refrigeration cycle in which a compressor 1 whose operating capacity is variably adjusted, a condenser 12, a pressure reducing mechanism 13, and an evaporator 6 are sequentially connected, the operation time of the compressor 1 is integrated, and An operating time integrating means 63 whose integrated value is reset to zero when the main power supply of the refrigeration equipment is stopped, and when the integrated value of the operating time integrating means 63 reaches a set value, oil in the refrigerant is recovered to the compressor 1. and an oil recovery operation control means 65 that performs an oil recovery operation, and a power-on detection means 62 that detects when the main power of the refrigeration system is turned on.
and initialization means 66 for receiving the signal from the power-on detection means 62 and initializing the initial value for starting the integration of the operation time integration means 63 to a value close to the set value when the main power is turned on. An oil recovery operation control device for a refrigeration system, characterized in that:
JP21623686A 1986-09-13 1986-09-13 Oil recovery operation controller for refrigerator Granted JPS6373052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21623686A JPS6373052A (en) 1986-09-13 1986-09-13 Oil recovery operation controller for refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21623686A JPS6373052A (en) 1986-09-13 1986-09-13 Oil recovery operation controller for refrigerator

Publications (2)

Publication Number Publication Date
JPS6373052A JPS6373052A (en) 1988-04-02
JPH0463303B2 true JPH0463303B2 (en) 1992-10-09

Family

ID=16685407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21623686A Granted JPS6373052A (en) 1986-09-13 1986-09-13 Oil recovery operation controller for refrigerator

Country Status (1)

Country Link
JP (1) JPS6373052A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3767586B2 (en) 2003-08-19 2006-04-19 ダイキン工業株式会社 Refrigeration equipment
JP4876675B2 (en) * 2006-03-30 2012-02-15 三菱電機株式会社 Refrigerated showcase
JP5398159B2 (en) 2008-03-28 2014-01-29 三菱重工業株式会社 Oil return operation method for multi-type air conditioner and multi-type air conditioner
JP5683934B2 (en) * 2010-12-17 2015-03-11 ヤンマー株式会社 Engine-driven air conditioner
JP6459800B2 (en) * 2015-06-26 2019-01-30 株式会社富士通ゼネラル Air conditioner
JP6458666B2 (en) * 2015-06-30 2019-01-30 株式会社富士通ゼネラル Air conditioner
JP6615056B2 (en) * 2016-06-28 2019-12-04 三菱電機株式会社 Air conditioner
JP6945139B2 (en) * 2017-05-26 2021-10-06 パナソニックIpマネジメント株式会社 Refrigeration cycle system, outdoor unit, control unit

Also Published As

Publication number Publication date
JPS6373052A (en) 1988-04-02

Similar Documents

Publication Publication Date Title
JPH0463303B2 (en)
JPH02126044A (en) Operation control device for air conditioning device
JPH07117327B2 (en) Air conditioner
JPH0765792B2 (en) Air conditioner
JPH02230056A (en) Operation control device for freezer
JPH052902B2 (en)
JPH0772654B2 (en) Operation control device for air conditioner
JPH0820140B2 (en) Oil recovery operation control device for air conditioner
JPH0217358A (en) Degree of overheat control device for freezing device
JPH0723816B2 (en) Air conditioner
JPH0735932B2 (en) Operation control device for air conditioner
JPH02272260A (en) Operation-controlling device in air-conditioning apparatus
JPH0381061B2 (en)
JP2598513B2 (en) Operation control device for air conditioner
JPH0448418Y2 (en)
JPH052901B2 (en)
JPH05766Y2 (en)
JPH02230063A (en) Capacity control device for air conditioner
JPS63176949A (en) Air conditioner
JPH02208452A (en) Pressure equalizing control device for refrigerator
JPH02272249A (en) Operation control device for air conditioner
JPH0563694B2 (en)
JPH03129252A (en) Operation control device for freezer
JPS6373044A (en) Dehumidifying operation control device for air conditioner
JPH03195855A (en) Operation control device for air conditioner

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term