JPH01147270A - Emergency controller for air conditioner - Google Patents

Emergency controller for air conditioner

Info

Publication number
JPH01147270A
JPH01147270A JP62307220A JP30722087A JPH01147270A JP H01147270 A JPH01147270 A JP H01147270A JP 62307220 A JP62307220 A JP 62307220A JP 30722087 A JP30722087 A JP 30722087A JP H01147270 A JPH01147270 A JP H01147270A
Authority
JP
Japan
Prior art keywords
capacity
compressor
inverter
refrigerant
emergency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62307220A
Other languages
Japanese (ja)
Other versions
JPH0561549B2 (en
Inventor
Shinji Matsuura
松浦 伸二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP62307220A priority Critical patent/JPH01147270A/en
Publication of JPH01147270A publication Critical patent/JPH01147270A/en
Publication of JPH0561549B2 publication Critical patent/JPH0561549B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/026Compressor control by controlling unloaders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Abstract

PURPOSE: To continue operation while ensuring capacity of a compressor corresponding to connection capacity of an indoor unit by bringing an unloading mechanism into a nonactuation state when capacity control is difficult where a sensor is troubled, and shortcircuitting an input and an output of an inverter therebetween when connection capacity of an indoor unit to an outdoor unit is half power supply frequency. CONSTITUTION: When refrigerant condition detection means 50 is troubled, operation frequency of a compressor 1 is controlled into half power supply frequency in an inverter 2a, and an unloading mechanism 2b is brought into a non-actuation state, so that capacity of the compressor 1 becomes 50% capacity upon maximum capacity. Further, when connection capacity of indoor units B to F, is more than predetermined capacity with respect to the capacity of an outdoor unit A, an input and output of the inverter 2a is shortcircuitted therebetween, so that the operation frequency of the compressor 1 becomes power supply frequency. Thus, the capacity of the compressor 1 becomes 10% capacity whereby continuous operation of an apparatus is ensured while dealing with the connection capacity of the indoor units B to F.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、空気調和装置に備えるセンサが故障した非常
時にも連続運転を適宜可能にした空気調和装置の非常時
制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an emergency control device for an air conditioner that enables continuous operation as appropriate even in an emergency when a sensor provided in the air conditioner malfunctions.

(従来の技術) 本出願人は、空気調和装置として、先に、特願昭62−
180408号明細書及び図面において、アンロード機
構付きの圧縮機に対して、その運転周波数を可変に調整
するインバータを設けるとともに、この圧縮機を有する
室外ユニットに対して複数台の室内ユニットを並列に接
続して、いわゆるマルチ形式で冷媒循環系統を形成し、
さらに、この冷媒循環系統の冷媒の状態(例えば冷房運
転時には蒸発温度、暖房運転時には凝縮温度)を検出□
する冷媒状態検出手段を設け、この冷媒の状態が設定状
態(設定値)になるよう圧縮機の容量を上記インバータ
及びアンロード機構でもって増減制御して、空調能力を
負荷の大きさに良好に対応させて、空調性能の向上を図
ったものを提案している。
(Prior Art) The present applicant previously applied for a patent application in 1982-1 as an air conditioner.
In the specification and drawings of No. 180408, a compressor with an unloading mechanism is provided with an inverter that variably adjusts its operating frequency, and a plurality of indoor units are connected in parallel to an outdoor unit having this compressor. Connect to form a so-called multi-type refrigerant circulation system,
Furthermore, the state of the refrigerant in this refrigerant circulation system (e.g. evaporation temperature during cooling operation, condensation temperature during heating operation) is detected□
A refrigerant state detection means is provided, and the capacity of the compressor is controlled to be increased or decreased by the inverter and unloading mechanism so that the state of the refrigerant reaches a set state (set value), and the air conditioning capacity is adjusted to suit the load size. In response, we are proposing a system that improves air conditioning performance.

(発明が解決しようとする問題点) しかるに、冷媒状態検出手段が故障した非常時には、冷
媒の状態を把握できず、圧縮機の容量制御ができなくな
って、運転不可能な状態になる欠点が生じる。
(Problems to be Solved by the Invention) However, in the event of an emergency when the refrigerant condition detection means is out of order, the condition of the refrigerant cannot be grasped and the capacity of the compressor cannot be controlled, resulting in a disadvantage that the compressor cannot be operated. .

本発明は斯かる点に鑑みてなされたものであり、その目
的は、上記の如き冷媒状態検出手段が故障した非常時に
は、在室者などによる強制的な運転指令でもって連続運
転を可能にすると共に、マルチ形式の空気調和装置であ
る点を考慮し゛C1室外ユニットに対する室内ユニット
の接続容量に応じて圧縮機の容量を適宜設定しつつ、連
続運転を行うことにある。
The present invention has been made in view of the above, and its purpose is to enable continuous operation with a forced operation command from a person in the room in the event of an emergency in which the refrigerant condition detection means as described above breaks down. In addition, considering that this is a multi-type air conditioner, continuous operation is performed while the capacity of the compressor is appropriately set according to the connection capacity of the indoor unit to the C1 outdoor unit.

(問題点を解決するための手段) 以上の目的を達成するため、本発明の解決手段は、第1
図に示す如く、インバータ(2a)により運転周波数が
可変に調整されるアンロード機構(2b)付きの圧縮機
(1)を有する室外ユニット<A)に対して、複数台の
室内ユニット(B)〜(P)を並列に接続して形成した
冷媒循環系統(Z)を備えたマルチ形式の空気調和装置
を対象とする。そして、上記冷媒循環系統(Z)の冷媒
の状態(冷媒の蒸発温度や凝縮温度)を検出する冷媒状
態検出手段(50)と、該冷媒状態検出手段(50)の
出力を受け、冷媒の状態が設定状態になるよう上記圧縮
機(1)の容量をインバータ(2a)及びアンロード機
構(2b)で制御する容量制御手段(51)とを備えた
ものを前提として、さらに、上記冷媒状態検出手段(5
0)の故障時に操作者により操作される非常時操作手段
(52)と、該非常時操作手段(52)の操作時に、上
記圧縮機(1)の運転周波数を電源周波数の半分値にす
るようインバータ(2a)を制御すると共に、アンロー
ド機構(2b)を非作動状態とする非常時制御手段(5
3)と、上記室外ユニット(A)に対する室内ユニット
(B)〜(F)の接続容量が所定容量以上のとき、操作
者により上記インバータ(2a)を短絡するよう接続さ
れる短絡手段(54)とを設ける構成としたものである
(Means for solving the problem) In order to achieve the above object, the solving means of the present invention is as follows.
As shown in the figure, an outdoor unit <A) has a compressor (1) with an unloading mechanism (2b) whose operating frequency is variably adjusted by an inverter (2a), while a plurality of indoor units (B) The target is a multi-type air conditioner equipped with a refrigerant circulation system (Z) formed by connecting ~ (P) in parallel. A refrigerant state detection means (50) detects the state of the refrigerant (evaporation temperature and condensation temperature of the refrigerant) in the refrigerant circulation system (Z), and receives the output of the refrigerant state detection means (50) and detects the state of the refrigerant. A capacity control means (51) for controlling the capacity of the compressor (1) using an inverter (2a) and an unloading mechanism (2b) so that the compressor (1) is in a set state is further provided. Means (5
an emergency operation means (52) operated by an operator in the event of a failure of the compressor (1), and when operating the emergency operation means (52), the operating frequency of the compressor (1) is set to half the power frequency. Emergency control means (5) controls the inverter (2a) and deactivates the unloading mechanism (2b).
3), and a shorting means (54) connected by the operator to short-circuit the inverter (2a) when the connection capacity of the indoor units (B) to (F) to the outdoor unit (A) is equal to or greater than a predetermined capacity. The configuration is such that the following is provided.

(作用) 以上の構成により、本発明では、冷媒状態検出手段(5
0)に故障の無い通常時には、この冷媒状態検出手段(
50)で検出される冷媒循環系統(Z>の冷媒の状態(
冷媒の蒸発温度や凝i温度)を設定状態(設定値)にす
るよう、圧縮機(1)の容量が容量制御手段(51)に
よりインバータ(2a)及びアンロード機構(2b)で
もって増減制御されるので、空調能力が空調負荷の大き
さに良好に対応して、良好な壺調性能が発揮される。
(Function) With the above configuration, in the present invention, the refrigerant state detection means (5
During normal times when there is no failure in 0), this refrigerant state detection means (
The state of the refrigerant (Z>) detected in the refrigerant circulation system (50)
The capacity of the compressor (1) is increased or decreased by the capacity control means (51) using the inverter (2a) and the unloading mechanism (2b) so that the evaporation temperature and condensation temperature of the refrigerant are brought to the set state (set value). Therefore, the air conditioning capacity corresponds well to the size of the air conditioning load, and good pot conditioning performance is exhibited.

一方、冷媒状態検出手段(50)が故障した非常時には
、操作者により非常時操作手段(52)が操作される。
On the other hand, in an emergency when the refrigerant state detection means (50) is out of order, the operator operates the emergency operation means (52).

このことにより、非常時制御手段(53)が作動可能に
なって、圧縮機ωの運転周波数がインバーク(2a)で
電源周波数の半分値に制御されると共に、アンロード機
構(2b)が非作動状態とされるので、圧縮機(1)の
容量は最大容量時(100%)の50%容量値になる。
As a result, the emergency control means (53) becomes operational, the operating frequency of the compressor ω is controlled to half the power supply frequency by the inverter (2a), and the unloading mechanism (2b) is deactivated. Therefore, the capacity of the compressor (1) becomes 50% of the maximum capacity (100%).

また、室内ユニット(’B)〜(P)の接続容量が室外
ユニット(A)の容量に対して所定容量(例えば100
%)以上のときには、操作者により短絡手段(54)が
操作されて、インバータ(2a)の入出力間が短絡接続
されるので、圧縮機(1)の運転周波数は電源周波数に
なる。その結果、室内ユニット(13)〜(P)の接続
容量が室外ユニット(A)の容量に対して所定容量(例
えば100%)未満のときには、圧縮機(1)の容量は
50%容量値になり、室内ユニット(B)〜(F)の接
続容量が所定容量(例えば100%)以上のときには、
圧縮機(1)の容量が100%容量値になって、室内ユ
ニット(B)〜(F)の接続容量に良好に対応しつつ、
装置の連続運転が行われることになる。
In addition, the connection capacity of the indoor units ('B) to (P) is a predetermined capacity (for example, 100%) relative to the capacity of the outdoor unit (A).
%) or more, the operator operates the shorting means (54) to short-circuit the input and output of the inverter (2a), so that the operating frequency of the compressor (1) becomes the power supply frequency. As a result, when the connected capacity of the indoor units (13) to (P) is less than a predetermined capacity (for example, 100%) with respect to the capacity of the outdoor unit (A), the capacity of the compressor (1) becomes 50% of the capacity value. Therefore, when the connection capacity of indoor units (B) to (F) is greater than a predetermined capacity (for example, 100%),
The capacity of the compressor (1) becomes 100% capacity value and corresponds well to the connected capacity of the indoor units (B) to (F),
The device will be operated continuously.

(実施例) 以下、本発明の実施例を第2図以下の図面に基いて説明
する。
(Example) Hereinafter, an example of the present invention will be described based on the drawings from FIG. 2 onwards.

第2図において、(A)は室外ユニット、(B)〜(P
)は該室外ユニット(A)に並列に接続された室内ユニ
ットである。上記室外ユニット(A)には、圧縮機(1
)と、上記圧縮機(1)から吐出されるガス中の油を分
離する油分離器(4)と、暖房運転時には図中実線の如
く切換わり冷房運転時には図中破線の如く切換わる四路
切換弁(5)と、冷房運転時に凝縮器、暖房運転時に蒸
発器となる室外熱交換器(6)およびそのファン(6a
)と、過冷却コイル(7)と、冷房運転時には冷媒流量
を調節し、暖房運転時には冷媒の絞り作用を行う室外電
動膨張弁(8)と、液化した冷媒を貯蔵するレシーバ(
9)と、アキュムレータ(10)とが主要機器として内
蔵されていて、該各機器(1)〜(10)は、各々冷媒
の連絡配管(11)を介して冷媒の流通可能に接続され
ている。
In Figure 2, (A) is an outdoor unit, (B) to (P
) is an indoor unit connected in parallel to the outdoor unit (A). The outdoor unit (A) has a compressor (1
), an oil separator (4) that separates oil from the gas discharged from the compressor (1), and a four-way separator (4) that switches as shown in the solid line in the figure during heating operation and as shown in the broken line in the figure during cooling operation. A switching valve (5), an outdoor heat exchanger (6) that functions as a condenser during cooling operation and an evaporator during heating operation, and its fan (6a).
), a subcooling coil (7), an outdoor electric expansion valve (8) that adjusts the refrigerant flow rate during cooling operation and throttles the refrigerant during heating operation, and a receiver (8) that stores the liquefied refrigerant.
9) and an accumulator (10) are built-in as main equipment, and each of the equipment (1) to (10) is connected to each other via a refrigerant communication pipe (11) so that the refrigerant can flow. .

そして、上記圧縮機(1)には、該圧縮機(1)の運転
周波数を25Hz〜120Hzまで多段階(12段階)
に可変に調整するインバータ(2a)が備えられている
と共に、パイロット圧の高低に応じて圧縮機(1)の容
量を、容量100%のフルロード状態と、容量50%の
アンロード状態との2段階に調節するアンロード機構(
2b)と、該アンロード機構(2b)のパイロット管(
図示せず)へのパイロット圧を圧縮機(1)の吐出管(
lln)側(高圧側)または吸入管(llq)側(低圧
側)に切換える電磁弁(2C)とが付設されており、該
電磁弁(2c)が高圧側に切換えられると、圧縮機(1
)の運転容量が100%のフルロード状態に切換られる
一方、電磁弁(2C)が低圧側に切換えられると、圧縮
機(1〉の運転容量が50%のアンロード状態に切換ら
れるように構成されている。
The compressor (1) has a multi-stage operating frequency (12 stages) from 25 Hz to 120 Hz.
The compressor (1) is equipped with an inverter (2a) that variably adjusts the capacity of the compressor (1) depending on the level of the pilot pressure, and changes the capacity of the compressor (1) between a full load state of 100% capacity and an unload state of 50% capacity. Unloading mechanism that adjusts in two stages (
2b) and the pilot pipe (2b) of the unloading mechanism (2b).
pilot pressure to the compressor (1) discharge pipe (not shown)
A solenoid valve (2C) is attached to switch to the lln) side (high pressure side) or the suction pipe (llq) side (low pressure side).
) is switched to a full load state of 100%, while when the solenoid valve (2C) is switched to the low pressure side, the operating capacity of the compressor (1>) is switched to an unload state of 50%. has been done.

また、上記室内ユニット(B)〜(P)は同一構成であ
り、各々その内部には、冷房運転時には蒸発器、暖房運
転時には凝縮器となる室内熱交換器(■2)・・・及び
その送風ファン(12a)・・・と、液冷媒分岐管(l
la)・・・に介設されて冷媒流量を調節し、冷房運転
時に冷媒の絞り作用を行う室内電動膨張弁(13)・・
・が備えられ、該各機器(12)、 (13)は手動閉
鎖弁(17)を配した連絡配管(llb)を介して室外
二ニット(A)に接続されて、冷媒を室外ユニット(A
)と複数台(5台)の室内ユニット(B)〜(F)に循
環させる冷媒循環系統(Z)が形成されている。
In addition, the above indoor units (B) to (P) have the same configuration, and each includes an indoor heat exchanger (■2) that serves as an evaporator during cooling operation and a condenser during heating operation, and Blower fan (12a)... and liquid refrigerant branch pipe (l
la)... An indoor electric expansion valve (13) that adjusts the refrigerant flow rate and throttles the refrigerant during cooling operation.
Each of the devices (12) and (13) is connected to the outdoor unit (A) via a connecting pipe (llb) equipped with a manual shutoff valve (17) to supply the refrigerant to the outdoor unit (A).
) and a refrigerant circulation system (Z) that circulates among a plurality of (5) indoor units (B) to (F).

また、各室内ユニット(B)〜(P)内において、(T
HI)・・・は各室内温度を検出する室温センサ、(T
I(2)・・・および(TI3)・・・は各々室内熱交
換器(12)・・・の法例およびガス側配管の温度を検
出する温度センサである。また、室外ユニット(A)に
おいて、(TI4)は圧縮機(1)の吐出管の温度を検
出する温度センサ、(TI5)は暖房運転時に室外熱交
換器(6)における蒸発温度を検出する蒸発温度センサ
、(THE)は圧縮機(1)の吸入ガス温度を検出する
吸入ガス温度センサ、(Pl〉は暖房運転時には吐出ガ
スの圧力、冷房運転時には吸入ガスの圧力を検知する圧
力センサである。
Also, in each indoor unit (B) to (P), (T
HI)... is a room temperature sensor that detects each room temperature, (T
I(2)... and (TI3)... are temperature sensors that detect the temperature of the indoor heat exchanger (12) and the gas side piping, respectively. In the outdoor unit (A), (TI4) is a temperature sensor that detects the temperature of the discharge pipe of the compressor (1), and (TI5) is an evaporator sensor that detects the evaporation temperature in the outdoor heat exchanger (6) during heating operation. The temperature sensor (THE) is a suction gas temperature sensor that detects the suction gas temperature of the compressor (1), and (Pl) is a pressure sensor that detects the pressure of discharge gas during heating operation and the pressure of suction gas during cooling operation. .

なお、第2図において上記各主要機器以外に補助用の諸
機器が設けられている。(1h)は油分離器(4)から
圧縮機(1)に潤滑油を戻す油戻し配管(11u)に介
設され、返油量をコントロールするキャピラリーチュー
ブ、(21)は吐出管と吸入管とを接続する均圧ホット
ガスバイパス回路(lid)に介設され、デフロスト時
等に開作動するホットガス用電磁弁である。また、(l
le)は暖房過負荷制御用バイパス回路であって、該バ
イパス回路(He)には、補助コンデンサ(22)、第
1逆止弁(23)、暖房運転時に室内熱交換器(12)
 (凝縮器)が低負荷時のとき開作動する高圧制御弁(
24)および第2逆止弁(25)が順次直列に接続され
ており、その一部には運転停止時に液封を防止するため
の液封防止バイパス回路(llf)が第3逆止弁(27
)およびキャピラリーチューブ(CF2)を介して設け
られている。
In addition, in FIG. 2, various auxiliary devices are provided in addition to the above-mentioned main devices. (1h) is a capillary tube installed in the oil return pipe (11u) that returns lubricating oil from the oil separator (4) to the compressor (1) and controls the amount of oil returned, and (21) is the discharge pipe and suction pipe. This is a hot gas solenoid valve that is installed in the pressure equalized hot gas bypass circuit (lid) that connects the hot gas valve and is opened during defrosting, etc. Also, (l
le) is a bypass circuit for heating overload control, and the bypass circuit (He) includes an auxiliary condenser (22), a first check valve (23), and an indoor heat exchanger (12) during heating operation.
High pressure control valve (condenser) that opens when the load is low (
24) and a second check valve (25) are sequentially connected in series, and a part of them includes a liquid seal prevention bypass circuit (llf) for preventing liquid seal when the operation is stopped. 27
) and a capillary tube (CF2).

さらに、(fig)は上記暖房過負荷バイパス回路(1
1e)の液冷媒側配管と主配管の吸入ガス管との間を接
続し、冷暖房運転時に吸入ガスの過熱度を調節するため
のリキッドインジェクションバイパス回路であって、該
リキッドインジェクションバイパス回路(l1g)には
圧縮機(1)のオン・オフと連動して開閉するインジェ
クション用電磁弁(29)と、感温筒(TPI)により
検出される吸入ガスの過熱度に応じて開度調節される自
動膨張弁(30)とが介設されている。
Furthermore, (fig) shows the above-mentioned heating overload bypass circuit (1
1e) A liquid injection bypass circuit for connecting the liquid refrigerant side piping and the suction gas pipe of the main piping to adjust the degree of superheating of the suction gas during heating and cooling operation, the liquid injection bypass circuit (l1g) There is an injection solenoid valve (29) that opens and closes in conjunction with the on/off of the compressor (1), and an automatic valve that adjusts its opening according to the degree of superheat of the intake gas detected by a temperature-sensitive cylinder (TPI). An expansion valve (30) is provided.

また、第2図中、(Fl)〜(F6)は冷媒回路あるい
は油戻し管中に介設された液浄化用フィルタ、(HPS
)は圧縮機保護用の高圧圧力開閉器、(sp)はサービ
スポートである。
In Fig. 2, (Fl) to (F6) are liquid purification filters (HPS) installed in the refrigerant circuit or oil return pipe.
) is a high-pressure switch for compressor protection, and (sp) is a service port.

そして、上記各電磁弁およびセンサ類は各主要機器と共
に第3図に示す室外制御ユニット(15)に信号線で接
続され、該室外制御ユニット(15)は各室内制御ユニ
ット(16)・・・に連絡配線によって信号の授受可能
に接続されている。
The above-mentioned solenoid valves and sensors are connected to the outdoor control unit (15) shown in FIG. 3 by signal lines along with each main equipment, and the outdoor control unit (15) is connected to each indoor control unit (16)... It is connected to the terminal by contact wiring so that signals can be sent and received.

次に、第3図に示す室外制御ユニット(15)の内部お
よび接続される各機器の配線関係の電気回路図を説明す
る。同図において、(MC)はインバータ(2a)に接
続された圧縮機(1)のモータ、(MP)は室外送風フ
ァン(6a)のモータ、(52F) 、  (52C)
は各々室外送風ファンモータ(MP)及びインバータ(
2a)への給電用の電磁接触器であり、上記各機器はヒ
ユーズボックス(ps)、漏電ブレーカ(BRI)を介
して三相電源に接続されるとともに、その所定の二相に
室外制御ユニット(15)が接続されている。次に、室
外制御ユニット(15)の内部にあっては、電磁リレー
の常開接点(RYI)〜(RYE)か並列に接続され、
これらは順に、四路切換弁(5)の電磁リレー(2O8
) 、インバータ用の電磁接触器(52C)、室外ファ
ン用電磁接触器(52F)、アンロード用電磁弁(2C
)の電磁リレー(SvL)、ホットガス用電磁弁(21
)の電磁リレー(SVP)およびインジェクション用電
磁弁(29)の電磁リレー(SVT)に直列に接続され
ており、これら各電磁リレーの常開接点は上記室外制御
ユニット(15)に入力される室温センサ(T旧)及び
温度センサ(TH2)〜(TH6)の信号に応じて開閉
制御されて、上記各電磁接触器あるいは電磁リレーの接
点を開閉させるものである。また、端子(CN)には、
室外電動膨張弁(8)の開度を調節するパルスモータ(
EV)が接続されている。なお、第3図右側の回路にお
いて、(CHI)は圧縮機(1)のオイルフォーミング
防止用ヒータで、電磁接触器(52C1)と直列に接続
され、圧縮機(1)の停止時に電流が流れるようになさ
れている。さらに、(5Ic)はモータ(MC)の過電
流リレー、(49C)は圧縮機(1)の温度上昇保護用
スイッチ、(6311)は圧縮機(1)の圧力上昇保護
用スイッチ、(51F)はファンモータ(MP)の過電
流リレーであって、これらは直列に接続されて、起動時
には電磁リレー(30FX)をオン状態にし、故障時に
はオフ状態にして、圧縮機(1)および室外送風ファン
(6a)を非常停止させる保護回路を構成している。そ
して、・室外制御ユニット(15)には室外制御装置(
15a)が内蔵されており、該室外制御装置(15a)
により、各室内制御ユニット(16)・・・および上記
各センサ類から入力される信号に応じて室外ユニット(
A)の各機器の動作が制御される。
Next, an electric circuit diagram of the interior of the outdoor control unit (15) shown in FIG. 3 and the wiring of each connected device will be explained. In the figure, (MC) is the motor of the compressor (1) connected to the inverter (2a), (MP) is the motor of the outdoor fan (6a), (52F), (52C)
are the outdoor fan motor (MP) and inverter (
This is a magnetic contactor for power supply to 2a), and each of the above devices is connected to a three-phase power supply via a fuse box (PS) and a ground leakage breaker (BRI), and the outdoor control unit ( 15) is connected. Next, inside the outdoor control unit (15), the normally open contacts (RYI) to (RYE) of the electromagnetic relay are connected in parallel.
These are connected in order to the electromagnetic relay (2O8) of the four-way switching valve (5).
), electromagnetic contactor for inverter (52C), electromagnetic contactor for outdoor fan (52F), solenoid valve for unloading (2C)
) solenoid relay (SvL), hot gas solenoid valve (21
) is connected in series to the solenoid relay (SVP) of the injection solenoid valve (29) and the solenoid relay (SVT) of the injection solenoid valve (29). Opening/closing is controlled according to signals from the sensor (T old) and temperature sensors (TH2) to (TH6) to open and close the contacts of each of the electromagnetic contactors or electromagnetic relays. In addition, the terminal (CN) has
A pulse motor (
EV) is connected. In the circuit on the right side of Figure 3, (CHI) is a heater for preventing oil forming of the compressor (1), which is connected in series with the electromagnetic contactor (52C1), and current flows when the compressor (1) is stopped. It is done like this. Furthermore, (5Ic) is an overcurrent relay for the motor (MC), (49C) is a temperature rise protection switch for the compressor (1), (6311) is a pressure rise protection switch for the compressor (1), (51F) is an overcurrent relay for the fan motor (MP), and these are connected in series to turn on the electromagnetic relay (30FX) at startup, turn it off at failure, and switch off the compressor (1) and outdoor fan. (6a) constitutes a protection circuit that makes an emergency stop. And, the outdoor control unit (15) has an outdoor control device (
15a) is built-in, and the outdoor control device (15a)
Accordingly, the outdoor unit (
The operation of each device in A) is controlled.

次に、上記圧縮機(1)の運転容量の制御を冷房運転時
を例に挙げて説明する。尚、この容量制御は上記室外ユ
ニット(A)に接続した室外制御装置(15a)により
行われる。
Next, control of the operating capacity of the compressor (1) will be explained using the cooling operation as an example. Note that this capacity control is performed by an outdoor control device (15a) connected to the outdoor unit (A).

すなわち、圧力センサ(Pl)により検出した吸入ガス
圧力を相霜飽和温度に換算して得られる冷媒温度Te、
つまり冷媒循環系統(Z)における冷媒の蒸発温度(冷
媒の状態)を検出する冷媒状態検山手段(50)として
機能した後、この蒸発温度Teを目標値Te□に保持す
るよう、圧縮機(1)の運転容量のフィードバック制御
としてPI副制御比例−積分制御)を行うこととし、圧
縮機(1)の目標容量L1を、上記蒸発温度Teとその
目標値Teaとの偏差の、今回と前回の値e (t)、
 e (t−Δt)に基いて、蒸発温度Teがその目標
値Tec)になるよう下記式 %式% LO,現在の運転容量 Kc 、ゲイン(定数) Ti  、積分定数 Δt :サンプリング時間 で演算して、冷媒の蒸発温度Teが目標値Te。
That is, the refrigerant temperature Te obtained by converting the suction gas pressure detected by the pressure sensor (Pl) into the phase frost saturation temperature,
In other words, after functioning as a refrigerant state measuring means (50) that detects the evaporation temperature (refrigerant state) of the refrigerant in the refrigerant circulation system (Z), the compressor ( PI sub-control (proportional-integral control) is performed as feedback control of the operating capacity in step 1), and the target capacity L1 of the compressor (1) is determined based on the difference between the current and previous evaporation temperature Te and its target value Tea. The value of e (t),
e (t - Δt), calculate the evaporation temperature Te to its target value Tec using the following formula % LO, current operating capacity Kc, gain (constant) Ti, integral constant Δt: sampling time. The evaporation temperature Te of the refrigerant is the target value Te.

を越えるときには、圧縮機(1)の容量ステップを高め
る一方、逆に蒸発温度Teが目標値100未満のときに
は、圧縮機(1)の容量ステップを低くすることとする
When the evaporation temperature Te exceeds the target value 100, the capacity step of the compressor (1) is increased, whereas when the evaporation temperature Te is less than the target value 100, the capacity step of the compressor (1) is decreased.

しかる後、予め設定した第4図に示す容量マツプに基い
て上記目標容量L1に対応した圧縮機(I)の運転容量
を把握して、この運転容量になるよう、圧縮機(1)の
実際の運転容量をインバータ(2a)及びアンロード機
構(2b)で制御する。そして、サンプリング時間Δt
の経過を待って以上の動作を繰返す。よって、以上の動
作により、冷媒状態検出手段(50)の出力を受け、冷
媒循環系統(Z)における冷媒の蒸発温度(冷媒の状態
)Teを目標値Tea(設定状態)に保持するよう、上
記圧縮機(1)の容量をインバータ(2a)及びアンロ
ード機構(2b)で制御するようにした容量制御手段(
51)を構成している。
Thereafter, the operating capacity of the compressor (I) corresponding to the target capacity L1 is determined based on the preset capacity map shown in FIG. The operating capacity is controlled by an inverter (2a) and an unloading mechanism (2b). And the sampling time Δt
Wait for the elapsed time and repeat the above operations. Therefore, the above operation receives the output of the refrigerant state detection means (50) and maintains the evaporation temperature (refrigerant state) Te of the refrigerant in the refrigerant circulation system (Z) at the target value Tea (set state). Capacity control means (which controls the capacity of the compressor (1) by an inverter (2a) and an unloading mechanism (2b)
51).

而して、上記室外制御ユニッ) (15)には、第3図
に示す如く、在室者等の操作者により手動操作される非
常時操作手段としての非常スイッチ(52)が、その操
作信号の入力可能に接続されている。
As shown in FIG. 3, the outdoor control unit (15) has an emergency switch (52) as an emergency operation means that is manually operated by an operator such as a person in the room. connected to allow input.

該非常スイッチ(52)は、圧力センサ(Pl)の異常
等に起因する上記冷媒状態検出手段(50)の故障時に
、装置を応急的に連続運転可能とするためのものである
The emergency switch (52) is used to temporarily enable continuous operation of the apparatus in the event of a failure of the refrigerant state detection means (50) due to an abnormality in the pressure sensor (Pl) or the like.

また、同図において、インバータ(2a)近傍には、該
インバータ(2a)の入出力間を短絡するよう在室者等
の操作者により接続される接続配線よりなる短絡手段(
54)が配置されている。この短絡手段(54)は、上
記室外ユニット(A)に対する室内ユニット(B)〜(
P)の接続容量が所定容量(例えば100%)以上のと
きに限って接続されるものである。
In addition, in the same figure, near the inverter (2a), there is a short circuit means (2a) consisting of connection wiring connected by an operator such as a person in the room to short-circuit between the input and output of the inverter (2a).
54) are arranged. This shorting means (54) connects the indoor units (B) to (
The connection is made only when the connection capacity of P) is equal to or greater than a predetermined capacity (for example, 100%).

次に、上記の如く蒸発温度を目標値に保持するための圧
縮機(1)の容量制御が困難になる非常時での応急的な
圧縮機(1)の容量制御を第5図の制御フローに基いて
説明する。
Next, the control flow shown in Fig. 5 is to perform emergency capacity control of the compressor (1) in an emergency when it becomes difficult to control the capacity of the compressor (1) to maintain the evaporation temperature at the target value as described above. I will explain based on.

つまり、ステップS1で非常スイッチ(52)の操作時
(ON時)か否かを判別し、非操作時のときには、ステ
ップS2で上記の如く圧縮機(1)の容量の通常制御を
行う一方、操作時のYESのときには、ステップS3以
降で圧縮機(1)の容量を応急的に制御することとする
That is, in step S1, it is determined whether or not the emergency switch (52) is operated (ON), and when it is not operated, the capacity of the compressor (1) is normally controlled as described above in step S2, while When the answer is YES during operation, the capacity of the compressor (1) is temporarily controlled from step S3 onwards.

即ち、先ずステップS3で全室内ユニット(B)〜(P
)の室内サーモを全てON状態にしたことを条件に、ス
テップS4及びS5で各々、室外熱交換器(6)のデフ
ロスト指令、及び圧縮機(1)への潤滑油の戻し指令が
共に無い通常時を条件に、ステップS6でアンロード機
構(2b)を非作動状態に制御すると共にインバータ(
2a)の周波数指令信号を電源周波数(例えば60Hz
 )の半分値(30Hz )に設定して、圧縮機(1)
の容量を最大容量(100%)の半分値(50%)で運
転し、ステップS3に戻る。
That is, first, in step S3, all indoor units (B) to (P
), on the condition that all of the indoor thermostats of In step S6, the unloading mechanism (2b) is controlled to be inactive and the inverter (
2a) frequency command signal to the power supply frequency (e.g. 60Hz
) and set it to half the value (30Hz) of the compressor (1).
The capacity is operated at half the maximum capacity (100%) (50%), and the process returns to step S3.

一方、上記ステップS4でデフロスト指令信号の有る時
には、室外熱交換器(6)に着霜した霜を短時間で有効
に除霜すべく、ステップS7でアンロード機構(2b)
を非作動状態に制御すると共にインバータ(2a)の周
波数指令信号を70Hzに設定して、圧縮機(1)の容
量を最大容量(100%)以上の容量値で運転し、この
運転状態がステップS8でデフロスト指令信号が無くな
るまで続行して、ステップS3に戻る。
On the other hand, when there is a defrost command signal in step S4, the unloading mechanism (2b) is activated in step S7 in order to effectively defrost the frost that has formed on the outdoor heat exchanger (6) in a short time.
At the same time, the frequency command signal of the inverter (2a) is set to 70Hz, and the capacity of the compressor (1) is operated at a capacity value of the maximum capacity (100%) or more, and this operating state is set to a step The process continues in S8 until the defrost command signal disappears, and then returns to step S3.

同様に、上記ステップS5で油戻し指令信号の有る時に
は、圧縮機(1)への潤滑油の戻しを短時間で有効に行
うべく、ステップS9でアンロード機構(2b)を非作
動状態に制御すると共にインバー=  17 − タ(2a)の周波数指令信号を70Hzに設定して、圧
縮機(1)の容量を最大容量(100%)以上の容量値
で運転し、この運転状態がステップshDで油戻し指令
信号が無くなるまで続行して、ステップS3に戻る。
Similarly, when there is an oil return command signal in step S5, the unloading mechanism (2b) is controlled to be inactive in step S9 in order to effectively return lubricating oil to the compressor (1) in a short time. At the same time, the frequency command signal of the inverter (2a) is set to 70Hz, and the capacity of the compressor (1) is operated at a capacity value greater than or equal to the maximum capacity (100%), and this operating state is set at step shD. The process continues until the oil return command signal is no longer present, and then returns to step S3.

よって、上記第5図の制御フローのステップ81〜S6
により、非常スイッチ(52)の手動操作時に、インバ
ータ(2a)周波数指令信号を30Hzに設定すると共
にアンロード機構(2b)を非作動状態に制御して、圧
縮機(1)の運転周波数を電源周波数(60Hz )の
半分値(30Hz )にするようにした非常時制御手段
(53)を構成している。
Therefore, steps 81 to S6 of the control flow in FIG.
When the emergency switch (52) is manually operated, the inverter (2a) frequency command signal is set to 30Hz, the unload mechanism (2b) is controlled to be inactive, and the operating frequency of the compressor (1) is set to the power supply. The emergency control means (53) is configured to set the frequency to half (30Hz) of the frequency (60Hz).

尚、図示しないが、以上の応急的な運転状態で、何れか
一台の室内ユニットの室内サーモかOFF作動すれば、
全室内ユニット(B)〜(F)の運転を停止するように
なされている。
Although not shown, if the indoor thermometer of any one indoor unit is turned off in the above emergency operating state,
The operation of all indoor units (B) to (F) is stopped.

したがって、上記実施例においては、圧力センサ(Pl
)に異常等の無い通常時には、該圧力センサ(Pl)に
より検出した吸入ガス圧力に基いて冷媒循環系統(Z)
の冷媒の蒸発温度Teが冷媒状態検出手段(50)でも
って検出され、この蒸発温度Teが目標値Teoになる
よう、圧縮機(1)の容量が容量制御手段(51)によ
り第3図の容量マツプに基いてインバータ(2a)及び
アンロード機構(2b)でもって多段階に制御されるの
で、空調能力が空調負荷に良好に対応して、運転中の室
内ユニット(B)〜(P)に対応する各室内が良好に冷
房空調されることになる。
Therefore, in the above embodiment, the pressure sensor (Pl
), when there is no abnormality etc. in the refrigerant circulation system (Z) based on the suction gas pressure detected by the pressure sensor (Pl).
The evaporation temperature Te of the refrigerant is detected by the refrigerant state detection means (50), and the capacity of the compressor (1) is controlled by the capacity control means (51) as shown in FIG. 3 so that the evaporation temperature Te becomes the target value Teo. Since the inverter (2a) and the unloading mechanism (2b) perform multi-stage control based on the capacity map, the air conditioning capacity corresponds well to the air conditioning load and the operating indoor units (B) to (P) Each room corresponding to the above will be properly cooled and air-conditioned.

一方、上記圧力センサ(Pl)が異常を来たしたとき等
の非常時では、冷媒の正確な蒸発温度Teが把握できず
、圧縮機(1)の容量制御は困難な状況となる。
On the other hand, in an emergency such as when the pressure sensor (Pl) malfunctions, the accurate evaporation temperature Te of the refrigerant cannot be determined, making it difficult to control the capacity of the compressor (1).

しかし、その非常時には、在室者等の操作者により非常
スイッチ(52)が手動操作され、このことにより非常
時制御手段(53)が作動して、全室内ユニット(B)
〜(P)の室温サーモを全てON状態にすることを条件
に、インバータ(2a)の周波数設定信号が゛電源周波
数(BOHz )の半分値(30Hz )に設定される
と共に、アンロード機構(2b)が非作動状態になる。
However, in the event of an emergency, the emergency switch (52) is manually operated by an operator such as a person in the room, and this activates the emergency control means (53), and all indoor units (B)
On the condition that all the room temperature thermostats of ~(P) are turned on, the frequency setting signal of the inverter (2a) is set to half the power supply frequency (BOHz) (30Hz), and the unloading mechanism (2b ) becomes inactive.

この時、室外ユニット(A)に対する室内ユニットの接
続容量が所定容量(例えば100%)未満のときには、
短絡手段(54)は操作者により短絡操作されていない
。その結果、圧縮機(1)の運転周波数はインバータ(
2a)でもって電源周波数(60H7)の半分値(30
Hz )に制御されて、その容量値が最大容量(100
%)の半分値(50%〉になり、上記室内ユニットの接
続容量(100%未満)に可及的良好に対応する。しか
も、この非常時に、室外熱交換器(6)のデフロスト指
令や、圧縮機(1)への潤滑油の戻し指令が有る時には
、インバータ(2a)の周波数設定信号が70Hzにな
って、圧縮機(1)の容量が大きくなるので、室外熱交
換器(6)のデフロストや圧縮機(1)への潤滑油の戻
しが短時間で効果的に行われる。
At this time, if the connection capacity of the indoor unit to the outdoor unit (A) is less than a predetermined capacity (for example, 100%),
The short-circuiting means (54) is not operated to short-circuit by the operator. As a result, the operating frequency of the compressor (1) is changed by the inverter (
2a) is the half value (30H7) of the power supply frequency (60H7).
Hz), and the capacitance value is controlled to the maximum capacity (100Hz).
%), which corresponds to the connected capacity of the indoor unit (less than 100%) as well as possible.Moreover, in this emergency, the defrost command of the outdoor heat exchanger (6), When there is a command to return lubricating oil to the compressor (1), the frequency setting signal of the inverter (2a) becomes 70Hz, and the capacity of the compressor (1) increases, so the outdoor heat exchanger (6) Defrosting and returning lubricating oil to the compressor (1) can be performed effectively in a short time.

また、室外ユニット(A)に対する室内ユニット(B)
〜(F)の接続容量が所定容量(例えば100%)以上
のときには、短絡手段(54)が在室者等の操作者によ
り操作されて、インバータ(2a)の入出力間が短絡接
続されるので、インバータ(2a)自体は30H2の周
波数設定信号を出力するものの、圧縮機(1)は電源周
波数(60Hz )で運転されて、その容量値が100
%容量値になり、上記室内ユニッ) (B)〜(F)の
接続容量(100%以上)に良好に対応することになる
In addition, the indoor unit (B) for the outdoor unit (A)
When the connection capacity of ~(F) is a predetermined capacity (for example, 100%) or more, the shorting means (54) is operated by an operator such as a person in the room, and the input and output of the inverter (2a) are short-circuited. Therefore, although the inverter (2a) itself outputs a frequency setting signal of 30H2, the compressor (1) is operated at the power supply frequency (60Hz) and its capacity value is 100H2.
% capacity value, which corresponds well to the connection capacity (100% or more) of the indoor units (B) to (F).

よって、室外ユニット(A)に対する室内ユニット(B
)〜(F)の接続容量に応じて圧縮機(1)の容量を適
宜設定しつつ、装置の運転を良好に続行することができ
る。
Therefore, the indoor unit (B) is different from the outdoor unit (A).
) to (F), the capacity of the compressor (1) can be appropriately set according to the connected capacity, and the operation of the apparatus can be continued satisfactorily.

(発明の効果) 以上説明したように、本発明の空気調和装置の非常時制
御装置によれば、冷媒の状態をセンサで検出しつつ圧縮
機の容量を多段階に制御する場合、そのセンサが故障す
る容量制御の困難な非常時には、アンロード機構を非作
動状態にすると共にインバータでもって圧縮機の容量を
電源周波数の半分値に制御し、さらに室外ユニットに対
する室内ユニットの接続容量が所定値以上のときには、
上記インバータの入出力間を操作者が短絡手段で短絡接
続することとしたので、この非常時にも、室内ユニット
の接続容量に良好に対応した圧縮機の= 21− 容量としつつ、装置の運転を続行させることができる。
(Effects of the Invention) As explained above, according to the emergency control device for an air conditioner of the present invention, when controlling the capacity of the compressor in multiple stages while detecting the state of the refrigerant with the sensor, the sensor In an emergency where it is difficult to control the capacity due to failure, the unloading mechanism is deactivated, the inverter is used to control the compressor capacity to half the power frequency, and the capacity of the indoor unit connected to the outdoor unit is at least a predetermined value. When ,
Since the operator short-circuited the input and output of the above-mentioned inverter using a short-circuiting means, even in this emergency, the equipment can be operated while maintaining the compressor's capacity that corresponds well to the connected capacity of the indoor unit. You can continue.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成を示すブロック図である。 第2図ないし第5図は本発明の実施例を示し、第2図は
冷媒配管系統図、第3図は電気回路図、第4図は容量マ
ツプを示す図、第5図は室外制御装置による非常時の圧
縮機の容量制御を示すフローチャート図である。 (A)・・・室外ユニット、(B)〜(P)・・・室内
ユニット、(1)・・・圧縮機、(2a)・・・インバ
ータ、(2b)・・・アンロード機構、(Pl)・・・
圧力センサ、(Z)・・・冷媒循環系統、(15)・・
・室外制御ユニット、(15a)・・・室外制御装置、
(50)・・・冷媒状態検出手段、(51)・・・容量
制御手段、(52)・・・非常スイッチ、(53)・・
・非常時制御手段、(54)・・・短絡手段。 特許出願人 ダイキン工業 株式会社
FIG. 1 is a block diagram showing the configuration of the present invention. Figures 2 to 5 show embodiments of the present invention, Figure 2 is a refrigerant piping system diagram, Figure 3 is an electric circuit diagram, Figure 4 is a capacity map, and Figure 5 is an outdoor control device. FIG. 2 is a flowchart showing compressor capacity control in an emergency. (A)...Outdoor unit, (B)-(P)...Indoor unit, (1)...Compressor, (2a)...Inverter, (2b)...Unloading mechanism, ( Pl)...
Pressure sensor, (Z)...refrigerant circulation system, (15)...
- Outdoor control unit, (15a)... outdoor control device,
(50)...Refrigerant state detection means, (51)...Capacity control means, (52)...Emergency switch, (53)...
- Emergency control means, (54)...short circuit means. Patent applicant Daikin Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)インバータ(2a)により運転周波数が可変に調
整されるアンロード機構(2b)付きの圧縮機(1)を
有する室外ユニット(A)に対して、複数台の室内ユニ
ット(B)〜(F)を並列に接続して形成した冷媒循環
系統(Z)を備えるとともに、該冷媒循環系統(Z)の
冷媒の状態を検出する冷媒状態検出手段(50)と、該
冷媒状態検出手段(50)の出力を受け、冷媒の状態が
設定状態になるよう上記圧縮機(1)の容量をインバー
タ(2a)及びアンロード機構(2b)で制御する容量
制御手段(51)とを備えたマルチ形式の空気調和装置
において、上記冷媒状態検出手段(50)の故障時に操
作者により操作される非常時操作手段(52)と、上記
非常時操作手段(52)の操作時に、上記圧縮機(1)
の運転周波数を電源周波数の半分値にするようインバー
タ(2a)を制御すると共に、アンロード機構(2b)
を非作動状態とする非常時制御手段(53)と、上記室
外ユニット(A)に対する室内ユニット(B)〜(F)
の接続容量が所定容量以上のとき、操作者により上記イ
ンバータ(2a)の入出力間を短絡するよう接続される
短絡手段(54)とを備えたことを特徴とする空気調和
装置の非常時制御装置。
(1) For an outdoor unit (A) having a compressor (1) with an unloading mechanism (2b) whose operating frequency is variably adjusted by an inverter (2a), a plurality of indoor units (B) to ( A refrigerant state detection means (50) for detecting the state of the refrigerant in the refrigerant circulation system (Z); ) and a capacity control means (51) for controlling the capacity of the compressor (1) using an inverter (2a) and an unloading mechanism (2b) so that the state of the refrigerant becomes a set state. In the air conditioner, an emergency operation means (52) is operated by the operator when the refrigerant state detection means (50) fails, and when the emergency operation means (52) is operated, the compressor (1)
The inverter (2a) is controlled to make the operating frequency half the power supply frequency, and the unloading mechanism (2b)
an emergency control means (53) for inactivating the indoor units (B) to (F) for the outdoor unit (A);
emergency control for an air conditioner, characterized in that it is equipped with a short-circuiting means (54) that is connected by an operator to short-circuit between the input and output of the inverter (2a) when the connected capacity of the inverter (2a) is greater than or equal to a predetermined capacity. Device.
JP62307220A 1987-12-04 1987-12-04 Emergency controller for air conditioner Granted JPH01147270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62307220A JPH01147270A (en) 1987-12-04 1987-12-04 Emergency controller for air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62307220A JPH01147270A (en) 1987-12-04 1987-12-04 Emergency controller for air conditioner

Publications (2)

Publication Number Publication Date
JPH01147270A true JPH01147270A (en) 1989-06-08
JPH0561549B2 JPH0561549B2 (en) 1993-09-06

Family

ID=17966490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62307220A Granted JPH01147270A (en) 1987-12-04 1987-12-04 Emergency controller for air conditioner

Country Status (1)

Country Link
JP (1) JPH01147270A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0849951A (en) * 1994-06-28 1996-02-20 Samsung Electronics Co Ltd Equipment and method of controlling air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0849951A (en) * 1994-06-28 1996-02-20 Samsung Electronics Co Ltd Equipment and method of controlling air conditioner

Also Published As

Publication number Publication date
JPH0561549B2 (en) 1993-09-06

Similar Documents

Publication Publication Date Title
JPH02126044A (en) Operation control device for air conditioning device
JPH02230056A (en) Operation control device for freezer
JPH01147270A (en) Emergency controller for air conditioner
JPS6373052A (en) Oil recovery operation controller for refrigerator
JPH0727453A (en) Air conditioner
JPH052902B2 (en)
JPH0370943A (en) Operation controller for air conditioner
JPH02133760A (en) Operation control device for air conditioner
JPH01147269A (en) Emergency controller for air conditioner
JPH02272260A (en) Operation-controlling device in air-conditioning apparatus
JPH0221165A (en) Operation controller for air conditioner
JPH0217358A (en) Degree of overheat control device for freezing device
JPH03122460A (en) Operating controller for refrigerating machine
JPH06100395B2 (en) Refrigeration system operation controller
JPH02230055A (en) Operation control device for air conditioner
JPH02272249A (en) Operation control device for air conditioner
JPH02195145A (en) Device for controlling oil-recovery operation in air-conditioning apparatus
JP2598513B2 (en) Operation control device for air conditioner
JPH0772653B2 (en) Operation control device for air conditioner
JPH0381061B2 (en)
JPH052901B2 (en)
JPH02263075A (en) Operation controller for air conditioner
JPH02208452A (en) Pressure equalizing control device for refrigerator
JPH01155147A (en) Controller for refrigerator
JPH0563694B2 (en)