JPH05283753A - Temperature controller - Google Patents

Temperature controller

Info

Publication number
JPH05283753A
JPH05283753A JP4082485A JP8248592A JPH05283753A JP H05283753 A JPH05283753 A JP H05283753A JP 4082485 A JP4082485 A JP 4082485A JP 8248592 A JP8248592 A JP 8248592A JP H05283753 A JPH05283753 A JP H05283753A
Authority
JP
Japan
Prior art keywords
heat
temperature controller
resistant porous
type
porous insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4082485A
Other languages
Japanese (ja)
Inventor
Yasunori Tanji
雍典 丹治
Takeshi Masumoto
健 増本
Takejiro Kaneko
武次郎 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP4082485A priority Critical patent/JPH05283753A/en
Publication of JPH05283753A publication Critical patent/JPH05283753A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide a temperature controller comparatively high in mechanical strength and excellent in thermoelectric characteristics. CONSTITUTION:A first heat-resistant porous insulator 2a provided with holes, N-type semiconductor element material chips 1a provided inside the holes bored in the first heat-resistant porous insulator 2a, a second heat-resistant porous insulator 2b possessed of holes confronting the first heat-resistant porous insulator 2a, and P-type semiconductor element material chips 1b provided inside the holes bored in the second heat-resistant porous insulator 2b are provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ペルチェ効果に基づい
て、電気エネルギを熱エネルギに変換する半導体素子チ
ップを有する熱電気変換モジュールに関し、特に、管内
を流れる流体の加熱冷却を行う温度調節器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric conversion module having a semiconductor element chip for converting electric energy into heat energy based on the Peltier effect, and more particularly to a temperature controller for heating and cooling a fluid flowing in a pipe. Regarding

【0002】[0002]

【従来の技術】水道管内を流れる水道水、自動車用ラジ
エーター内を流れる冷却水、オイルクーラー内を流れる
エンジンオイル等、所定の管内を流れる流体の凍結は、
実生活上、大きな支障となり、特に、寒冷地においては
困った問題である。
2. Description of the Related Art Freezing of a fluid flowing in a predetermined pipe, such as tap water flowing in a water pipe, cooling water flowing in an automobile radiator, engine oil flowing in an oil cooler, etc.
In actual life, it becomes a big obstacle, and it is a troublesome problem especially in cold regions.

【0003】従来、冬期の水道水の凍結防止策として、
戸外の水道管にフレキシブルな、帯状ヒータ等を水道管
に螺旋状に巻き付け、電流を流し、ジュール熱を発生さ
せ、その発生熱を、管内の水に供給し、管内の水を凍結
させない様な方策が採られている。また、凍結後の解凍
策としては、熱湯を管の凍結部に直接かけたり、その他
の加熱体より熱を供給する事が一般的である。
Conventionally, as a measure to prevent freezing of tap water in winter,
A flexible strip-shaped heater or the like is spirally wound around the water pipe outside the house, and an electric current is passed to generate Joule heat. Measures are taken. In addition, as a thawing measure after freezing, it is general to apply hot water directly to the freezing part of the tube or supply heat from another heating body.

【0004】他方、ペルチェ効果に基づいてエネルギ変
換を行う半導体素子材チップを有する温度調節器が提案
されている。
On the other hand, a temperature controller having a semiconductor element material chip that performs energy conversion based on the Peltier effect has been proposed.

【0005】この半導体素子材チップに用いる半導体化
合物としては、Bi2Te3系半導体化合物が最も優れた熱
電特性を示すものとして良く知られている。また、上記
半導体化合物単結晶材のC面内に結晶軸を持つ方位の熱
電特性が特に優れていることも知られている。
As a semiconductor compound used for this semiconductor element material chip, a Bi2Te3 type semiconductor compound is well known as one showing the most excellent thermoelectric property. It is also known that the above-mentioned semiconductor compound single crystal material has particularly excellent thermoelectric properties in the orientation having a crystal axis in the C plane.

【0006】しかしながら、この単結晶材は結晶構造
上、C面間の結合力が弱く、C面で剥離し易いという欠
陥を持っており、このために熱歪などによって破壊され
ることが多く、これが熱電特性の劣化を引き起こす原因
となっている。
[0006] However, this single crystal material has a defect that the bonding force between C planes is weak due to its crystal structure and that it is easily peeled off at the C plane, so that it is often destroyed by thermal strain or the like, This causes deterioration of thermoelectric properties.

【0007】また、その製造価格も溶製材および粉末プ
レス燒結材のそれよりも高く、それ故実用材として上記
単結晶材を熱電発電および冷却素子に使用することはこ
れまで非常に難しいと評価されており、現時点では多結
晶材、特に燒結材が最も優れた材料として使用されてい
る。
Further, its manufacturing cost is also higher than that of the ingot material and the powder press-sintered material, and therefore, it has been evaluated that it is very difficult to use the above single crystal material as a practical material for thermoelectric power generation and cooling elements. Therefore, at present, a polycrystalline material, especially a sintered material is used as the most excellent material.

【0008】次に、従来は適当に切り出された小さなP
型とN型の半導体素子材チップを多数個電気的に直列に
また熱的に並列に接合配列したものが熱電気変換モジュ
ールとして従来一般に用いられている。このような熱電
気変換モジュールを製造するに際しては、P型およびN
型の半導体素子材チップを交互に規則正しく配列固定す
る必要がある。また製造中には高熱側電極固定基板近傍
で空気の対流および輻射により多量の熱が発生する。
Next, conventionally, a small P cut out appropriately
Conventionally used as a thermoelectric conversion module is one in which a large number of chips of N-type and N-type semiconductor element material are electrically connected in series and thermally connected in parallel. In manufacturing such a thermoelectric conversion module, a P type and an N type are used.
It is necessary to alternately and regularly fix the semiconductor element material chips of the mold. Further, during manufacturing, a large amount of heat is generated near the high temperature side electrode fixing substrate due to air convection and radiation.

【0009】[0009]

【発明が解決しようとする課題】しかし、従来の帯状ヒ
ータは、比較的大型であり、また、熱歪等による機械的
強度に劣るという問題点がある。さらに、巻回の煩わし
さといった施設作業上の不具合がある。
However, the conventional band-shaped heater has a problem that it is relatively large and has poor mechanical strength due to thermal strain or the like. Furthermore, there is a problem in facility work such as the troublesomeness of winding.

【0010】他方、従来の温度調節器においては、使用
される半導体素子材チップは鋳塊または燒結塊を細かく
チップ状に切断したものであり、すなわち、具体的には
例えば燒結材チップの場合は溶解、凝固、粉砕、プレ
ス、燒結、熱処理、切断などの工程によって製造された
ものである。このため、製造工程が複雑であり、これが
製造コストの低減化を図る上での障害となっている。
On the other hand, in the conventional temperature controller, the semiconductor element material chips used are finely cut ingots or sintered lumps, that is, specifically, in the case of sintered chips, for example. It is manufactured by processes such as melting, coagulation, crushing, pressing, sintering, heat treatment, and cutting. For this reason, the manufacturing process is complicated, which is an obstacle to reducing the manufacturing cost.

【0011】また、従来の温度調節器の場合は、構造
上、高熱源側と低熱源側との温度差を有する。それ故、
半導体素子の両端に大きな熱歪みが掛かり、素子破壊の
原因となる熱電特性の劣化が生ずる。即ち、従来の温度
調節器は、高熱源側と低熱源側との先端間の距離が短く
て、熱供給方向について平板的な構造であり、半導体素
子対の両端での大きな温度差を確保するには本体の数十
倍の大きさの放熱板を低熱源側に取り付ける必要があ
り、温度調節器全体の構造が大型化することを免れな
い。またその製造工程において、P型およびN型の半導
体素子材チップを交互に規則正しく配列固定させる必要
があるため組立作業が複雑となり、自動組立化が困難で
あった。
Further, in the case of the conventional temperature controller, the temperature difference between the high heat source side and the low heat source side is structurally present. Therefore,
Large thermal strain is applied to both ends of the semiconductor element, and the thermoelectric characteristics are degraded, which causes element destruction. That is, the conventional temperature controller has a short distance between the tips of the high heat source side and the low heat source side, has a flat plate structure in the heat supply direction, and secures a large temperature difference between both ends of the semiconductor element pair. It is necessary to attach a radiator plate that is several tens of times the size of the main body to the low heat source side, which inevitably increases the size of the entire temperature controller. Further, in the manufacturing process, it is necessary to alternately and regularly fix and fix the P-type and N-type semiconductor element material chips, so that the assembling work becomes complicated and the automatic assembling is difficult.

【0012】本発明の課題は、従来の温度調節器の欠点
である機械的強度(熱歪みによる素子破壊や半田接合点
での剥離など)の弱さに対する補強を考慮した温度調節
器を提供することである。
An object of the present invention is to provide a temperature controller in consideration of reinforcement against weakness of mechanical strength (element destruction due to thermal strain, peeling at a solder joint, etc.) which is a drawback of the conventional temperature controller. That is.

【0013】本発明の他の課題は、単結晶材に類似した
一方向凝固チップ材であって、チップ切断工程などの省
略が可能で、それ故製造工程の合理化による製造価格の
低減化が可能な半導体素子材チップを用いた温度調節器
を提供することである。
Another object of the present invention is a unidirectionally solidified chip material similar to a single crystal material, in which the chip cutting step and the like can be omitted, and therefore the manufacturing cost can be reduced by rationalizing the manufacturing process. Another object of the present invention is to provide a temperature controller using a semiconductor element material chip.

【0014】本発明のさらに他の課題は、温度調節器の
製造工程において、製品の熱電特性を向上させるととも
に、組立作業性を改良して自動組立を可能とすることで
ある。
Still another object of the present invention is to improve thermoelectric characteristics of a product in a manufacturing process of a temperature controller and improve assembly workability to enable automatic assembly.

【0015】[0015]

【課題を解決するための手段】本発明によれば、複数の
孔部を備える第1の耐熱性多孔絶縁体と、該第1の耐熱
性多孔絶縁体の前記孔部に配設されるN型半導体素子材
チップと、前記第1の耐熱性多孔絶縁体に対向配設さ
れ、複数の孔部を備える第2の耐熱性多孔絶縁体と、該
第2の耐熱性多孔絶縁体の前記孔部に配設されるP型半
導体素子材チップとを有することを特徴とする温度調節
器が得られる。
According to the present invention, there is provided a first heat-resistant porous insulator having a plurality of holes, and N provided in the holes of the first heat-resistant porous insulator. -Type semiconductor element material chip, a second heat-resistant porous insulator provided to face the first heat-resistant porous insulator and provided with a plurality of holes, and the holes of the second heat-resistant porous insulator A temperature controller having a P-type semiconductor element material chip disposed in the section is obtained.

【0016】本発明によればまた、複数の孔部を備える
耐熱性多孔絶縁体と、前記孔部に交互に配設されるN型
およびP型半導体素子材チップとを有し、該N型および
該P型半導体素子材チップは互いに電気的に直列に接続
されていることを特徴とする温度調節器が得られる。
According to the present invention, there is also provided a heat-resistant porous insulator having a plurality of holes and N-type and P-type semiconductor element material chips alternately arranged in the holes, the N-type A temperature controller is obtained in which the P-type semiconductor element material chips are electrically connected to each other in series.

【0017】本発明によればさらに、前記N型および前
記P型半導体素子材チップは、一方向凝固されたもので
ある前記温度調節器が得られる。
Further, according to the present invention, the temperature controller in which the N-type and P-type semiconductor element material chips are unidirectionally solidified can be obtained.

【0018】[0018]

【作用】本発明によれば、従来のような複雑な工程を経
ることなく、優れた熱電特性を持った一方向凝固材チッ
プからなる半導体素子材チップを有する温度調節器を得
ることができる。
According to the present invention, it is possible to obtain a temperature controller having a semiconductor element material chip made of a unidirectionally solidified material chip having excellent thermoelectric characteristics without going through a complicated process as in the prior art.

【0019】また、前述のような耐熱性絶縁体の複数の
孔部にN、P、N、Pの順に半導体化合物を配設するな
どして作製した温度調節器によれば、各孔部の中に形成
される半導体化合物がこれらの孔部壁によって夫々保護
された状態となるため素子材の機械的強度に対する補強
が行える。
Further, according to the temperature controller manufactured by, for example, disposing the semiconductor compound in the order of N, P, N, P in the plurality of holes of the heat resistant insulator as described above, Since the semiconductor compound formed therein is protected by the walls of these holes, the mechanical strength of the element material can be reinforced.

【0020】[0020]

【実施例】以下、本発明の実施例による温度調節器を図
面を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A temperature controller according to an embodiment of the present invention will be described below with reference to the drawings.

【0021】実施例1 図1は、実施例1による温度調節器を示す図である。図
1において、温度調節器10は、非導電材から成る水道
管9に、結合管8および導電材から成る導電性筒3を介
して取付けられている。また、温度調節器10は、導電
性筒3の径方向に対向するように取付けられたN型温度
調節モジュール10aおよびP型温度調節モジュール1
0bとを有する。
First Embodiment FIG. 1 is a diagram showing a temperature controller according to the first embodiment. In FIG. 1, the temperature controller 10 is attached to a water pipe 9 made of a non-conductive material via a coupling pipe 8 and a conductive tube 3 made of a conductive material. Further, the temperature controller 10 includes an N-type temperature adjusting module 10 a and a P-type temperature adjusting module 1 which are attached so as to face each other in the radial direction of the conductive tube 3.
With 0b.

【0022】図2(a)および(b)は、N型温度調節
モジュール10aおよびP型温度調節モジュール10b
を示す。図2(a)において、N型温度調節モジュール
10aは、耐熱性多孔絶縁体2aと、耐熱性多孔絶縁体
2aの各孔部に固定されたN型半導体素子材チップ1a
と、耐熱性多孔絶縁体2aに形成されたニッケルメッキ
膜5aとを有する。また、図2(b)において、P型温
度調節モジュール10bは、耐熱性多孔絶縁体2bと、
耐熱性多孔絶縁体2bの各孔部に固定されたP型半導体
素子材チップ1bと、耐熱性多孔絶縁体2bに形成され
たニッケルメッキ膜5bとを有する。
2A and 2B show an N-type temperature control module 10a and a P-type temperature control module 10b.
Indicates. In FIG. 2A, the N-type temperature control module 10a includes a heat-resistant porous insulator 2a and an N-type semiconductor element material chip 1a fixed in each hole of the heat-resistant porous insulator 2a.
And a nickel-plated film 5a formed on the heat-resistant porous insulator 2a. In addition, in FIG. 2B, the P-type temperature control module 10b includes a heat-resistant porous insulator 2b,
It has a P-type semiconductor element material chip 1b fixed to each hole of the heat resistant porous insulator 2b and a nickel plating film 5b formed on the heat resistant porous insulator 2b.

【0023】N型温度調節モジュール10aおよびP型
温度調節モジュール10bは、以下のようにして製造さ
れた。
The N-type temperature control module 10a and the P-type temperature control module 10b were manufactured as follows.

【0024】Bi2 Te3 系化合物、即ち、N型温度
調節モジュール10a用としてN型半導体化合物(Bi
2 Te2.7 Se0.3 +0.2wt%S)、また、P型温度
調節モジュール10bとしてP型半導体化合物(Bi
0.5 Sb1.5 Te3 +0.05wt%Pb)を原料とし
て、それぞれ1kg秤量し、石英管中に真空封入し、高周
波炉で、溶解、凝固させてそれぞれ鋳塊を製造する。
Bi 2 Te 3 based compound, that is, N type semiconductor compound (Bi 2 Te 3 compound for N type temperature control module 10a)
2 Te 2.7 Se 0.3 +0.2 wt% S), and a P-type semiconductor compound (Bi
0.5 Sb 1.5 Te 3 +0.05 wt% Pb) is used as a raw material, 1 kg of each is weighed, vacuum-sealed in a quartz tube, and melted and solidified in a high frequency furnace to produce ingots.

【0025】得られた鋳塊をそれぞれ、耐熱性多孔絶
縁体2と共に石英坩堝の中に、挿入し、該鋳塊を溶解
し、孔部の深さの方向に温度勾配を持たせて、ゆっくり
凝固させる。
Each of the obtained ingots was inserted into a quartz crucible together with the heat-resistant porous insulator 2, the ingots were melted, and a temperature gradient was given in the direction of the depth of the hole to slowly Solidify.

【0026】真空中において、凝固点直下で、48時
間処理する。
The treatment is carried out in vacuum just below the freezing point for 48 hours.

【0027】N型(P型)半導体素子材チップ1a(1
b)の形状は、耐熱性多孔絶縁体2の孔部形によって決
定され、本実施例においては、1×1×8(mm)であ
る。又、これらのチップ材は、長手方向に、結晶C面
が、ほぼ平光に成長している単結晶又は、柱状晶である
事をX線解析により確めた。
N-type (P-type) semiconductor element material chip 1a (1
The shape of b) is determined by the hole shape of the heat resistant porous insulator 2, and is 1 × 1 × 8 (mm) in this embodiment. In addition, it was confirmed by X-ray analysis that these chip materials were single crystals or columnar crystals in which the crystal C-plane was grown almost uniformly in the longitudinal direction.

【0028】N型温度調節モジュール10aおよびP
型温度調節モジュール10bの両面を滑らかに研磨し、
その表面にニッケルメッキ膜5を施す。
N-type temperature control module 10a and P
Smoothly polish both sides of the mold temperature control module 10b,
A nickel plating film 5 is applied on the surface.

【0029】以上のようにして、N型温度調節モジュー
ル10aおよびP型温度調節モジュール10bが製造さ
れた。
As described above, the N-type temperature control module 10a and the P-type temperature control module 10b were manufactured.

【0030】次に、本温度調節器は、両モジュール間に
電圧を印加してN型温度調節モジュール10aからP型
温度調節モジュール10bの方向へ直流電流を流すこと
により動作する。即ち、ペルチェ効果に基づいて導電性
筒3を加熱する。これにより、筒内および管内の氷は氷
解される。
Next, the present temperature controller operates by applying a voltage between both modules and causing a direct current to flow from the N-type temperature adjustment module 10a to the P-type temperature adjustment module 10b. That is, the conductive tube 3 is heated based on the Peltier effect. As a result, the ice in the cylinder and the pipe is thawed.

【0031】実施例2 図3は、実施例2による温度調節器を示す図である。図
3において、温度調節器11は、非導電材から成る水道
管9に結合管8および高熱伝導率材から成る熱伝達筒4
を介して取付けられている。
Second Embodiment FIG. 3 is a diagram showing a temperature controller according to a second embodiment. In FIG. 3, the temperature controller 11 includes a water pipe 9 made of a non-conductive material, a coupling pipe 8 and a heat transfer tube 4 made of a material having high thermal conductivity.
Is installed through.

【0032】図4は、実施例2による温度調節器11の
詳細を示す図である。図4において、温度調節器11
は、耐熱性多孔絶縁体2と、耐熱性多孔絶縁体2の各孔
部に交互に固定されたN型およびP型半導体素子材チッ
プ1a(1b)と、半田接合され、隣り合う半導体素子
材チップを電気的に接続する金属セグメント7と、金属
セグメント7にメタライズ接合された絶縁板6とを有す
る。
FIG. 4 is a diagram showing details of the temperature controller 11 according to the second embodiment. In FIG. 4, the temperature controller 11
Are solder-bonded to the heat-resistant porous insulator 2 and the N-type and P-type semiconductor element material chips 1a (1b) that are alternately fixed to the respective holes of the heat-resistant porous insulator 2 and are adjacent to each other. It has a metal segment 7 that electrically connects the chips, and an insulating plate 6 that is metalized and joined to the metal segment 7.

【0033】次に、本温度調節器は、直列接続されたN
型およびP型半導体素子材チップ間に電圧を印加するこ
とにより、実施例1と同様に動作する。ただし、ペルチ
ェ効果に基づいて温度調節器自体が発熱し、この発生熱
により熱伝達筒4筒内および管内の氷を氷解するもので
ある。
Next, the temperature controller has N connected in series.
By applying a voltage between the P-type and P-type semiconductor element material chips, the same operation as in Example 1 is performed. However, the temperature controller itself generates heat based on the Peltier effect, and the generated heat melts the ice inside the heat transfer cylinder 4 and inside the pipe.

【0034】尚、実施例1および2において、印加する
電圧の極性を逆にすることにより、ペルチェ効果に基づ
いて管内の流体を冷却することができる。
In the first and second embodiments, the fluid in the tube can be cooled based on the Peltier effect by reversing the polarity of the applied voltage.

【0035】[0035]

【発明の効果】本発明による温度調節器は、N型および
P型半導体素子材チップがそれぞれ、耐熱性多孔絶縁体
に備えられた複数の孔部に配設されているため、比較的
機械強度が強く、熱歪みによる素子破壊や半田接合点で
の剥離などがない。
In the temperature controller according to the present invention, since the N-type and P-type semiconductor element material chips are arranged in the plurality of holes provided in the heat-resistant porous insulator, the temperature controller has a relatively high mechanical strength. Is strong, and there is no element destruction due to thermal strain or peeling at the solder joint.

【0036】また、従来のものに比べ、コンパクト、か
つ、施設作業が容易である。
Further, as compared with the conventional one, it is compact and the facility work is easy.

【0037】さらに、チップ切断工程などの省略が可能
で、それ故製造工程の合理化および自動組立を実現で
き、製造価格の低減化が可能である。
Furthermore, it is possible to omit the chip cutting process and the like, and therefore, the manufacturing process can be rationalized and automatic assembly can be realized, and the manufacturing cost can be reduced.

【0038】また、N型およびP型半導体素子材チップ
を、単結晶材に類似した一方向凝固されたものとすれ
ば、熱電特性を向上できる。
If the N-type and P-type semiconductor element material chips are unidirectionally solidified like a single crystal material, thermoelectric characteristics can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1による温度調節器を示す図で
ある。
FIG. 1 is a diagram showing a temperature controller according to a first embodiment of the present invention.

【図2】図1に示す温度調節器の詳細図である。FIG. 2 is a detailed view of the temperature controller shown in FIG.

【図3】本発明の実施例2による温度調節器を示す図で
ある。
FIG. 3 is a diagram showing a temperature controller according to a second embodiment of the present invention.

【図4】図3に示す温度調節器の詳細図である。FIG. 4 is a detailed view of the temperature controller shown in FIG.

【符号の説明】[Explanation of symbols]

1a N型半導体素子材チップ 1b P型半導体素子材チップ 2a、2b 耐熱性多孔絶縁体 3 導電性筒 4 熱伝達筒 5a、5b ニッケルメッキ膜 6 絶縁板 7 金属セグメント 8 結合管 9 水道管 10 温度調節器 10a N型温度調節モジュール 10b P型温度調節モジュール 11 温度調節器 1a N-type semiconductor element material chip 1b P-type semiconductor element material chip 2a, 2b Heat-resistant porous insulator 3 Conductive tube 4 Heat transfer tube 5a, 5b Nickel plating film 6 Insulation plate 7 Metal segment 8 Coupling pipe 9 Water pipe 10 Temperature Controller 10a N-type temperature control module 10b P-type temperature control module 11 Temperature controller

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複数の孔部を備える第1の耐熱性多孔絶
縁体と、該第1の耐熱性多孔絶縁体の前記孔部に配設さ
れるN型半導体素子材チップと、前記第1の耐熱性多孔
絶縁体に対向配設され、複数の孔部を備える第2の耐熱
性多孔絶縁体と、該第2の耐熱性多孔絶縁体の前記孔部
に配設されるP型半導体素子材チップとを有することを
特徴とする温度調節器。
1. A first heat-resistant porous insulator having a plurality of holes, an N-type semiconductor element material chip arranged in the holes of the first heat-resistant porous insulator, and the first heat-resistant porous insulator. Second heat-resistant porous insulator provided opposite to the heat-resistant porous insulator and having a plurality of holes, and a P-type semiconductor element provided in the hole of the second heat-resistant porous insulator A temperature controller having a material chip.
【請求項2】 複数の孔部を備える耐熱性多孔絶縁体
と、前記孔部に交互に配設されるN型およびP型半導体
素子材チップとを有し、該N型および該P型半導体素子
材チップは互いに電気的に直列に接続されていることを
特徴とする温度調節器。
2. A heat-resistant porous insulator having a plurality of holes, and N-type and P-type semiconductor element material chips alternately arranged in the holes, wherein the N-type and P-type semiconductors are provided. A temperature controller, wherein the element material chips are electrically connected in series to each other.
【請求項3】 前記N型および前記P型半導体素子材チ
ップは、一方向凝固されたものである請求請1または2
記載の温度調節器。
3. The contract 1 or 2 wherein the N-type and P-type semiconductor element material chips are unidirectionally solidified.
The temperature controller described.
JP4082485A 1992-04-03 1992-04-03 Temperature controller Withdrawn JPH05283753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4082485A JPH05283753A (en) 1992-04-03 1992-04-03 Temperature controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4082485A JPH05283753A (en) 1992-04-03 1992-04-03 Temperature controller

Publications (1)

Publication Number Publication Date
JPH05283753A true JPH05283753A (en) 1993-10-29

Family

ID=13775818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4082485A Withdrawn JPH05283753A (en) 1992-04-03 1992-04-03 Temperature controller

Country Status (1)

Country Link
JP (1) JPH05283753A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5705434A (en) * 1995-11-13 1998-01-06 Ngk Insulators, Ltd. Method of manufacturing thermoelectric conversion module
US5952728A (en) * 1995-11-13 1999-09-14 Ngk Insulators, Ltd. Thermoelectric conversion module having channels filled with semiconducting material and insulating fillers
JP2014500618A (en) * 2010-11-03 2014-01-09 エミテック ゲゼルシヤフト フユア エミツシオンステクノロギー ミツト ベシユレンクテル ハフツング Thermoelectric module for vehicle thermoelectric generator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5705434A (en) * 1995-11-13 1998-01-06 Ngk Insulators, Ltd. Method of manufacturing thermoelectric conversion module
US5952728A (en) * 1995-11-13 1999-09-14 Ngk Insulators, Ltd. Thermoelectric conversion module having channels filled with semiconducting material and insulating fillers
DE19646905C2 (en) * 1995-11-13 2003-01-30 Ngk Insulators Ltd Method of manufacturing a thermoelectric conversion module
DE19646915C2 (en) * 1995-11-13 2003-05-28 Nissan Motor Thermoelectric conversion module and method of manufacturing the same
JP2014500618A (en) * 2010-11-03 2014-01-09 エミテック ゲゼルシヤフト フユア エミツシオンステクノロギー ミツト ベシユレンクテル ハフツング Thermoelectric module for vehicle thermoelectric generator
US9318683B2 (en) 2010-11-03 2016-04-19 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Thermoelectric module for a thermoelectric generator of a vehicle and vehicle having thermoelectric modules

Similar Documents

Publication Publication Date Title
EP0712537B1 (en) High performance thermoelectric materials and methods of preparation
US6942728B2 (en) High performance p-type thermoelectric materials and methods of preparation
US6374616B2 (en) Heat exchanger
US20020046762A1 (en) Thermoelectric generators
US8841540B2 (en) High temperature thermoelectrics
US8933317B2 (en) Thermoelectric remote power source
JP2007505028A (en) Thermoelectric composition containing silver
JP3245793B2 (en) Manufacturing method of thermoelectric conversion element
JPH05283753A (en) Temperature controller
JP2007013000A (en) Thermoelectric conversion material
KR101968581B1 (en) Method for manufacturing semiconductor of thermoelectric module, semiconductor of thermoelectric module and thermoelectric modulef using the same
JPH07106641A (en) Integral ring type thermoelectric conversion element and device employing same
JPH05167104A (en) Thermoelectric generator with heat accumulating material
JPH05152616A (en) Manufacture of chip of semiconductor element forming material and its thermoelectric conversion module
RU2402111C2 (en) Crystal plate, rectangular bar, component for making thermoelectric modules and method of making crystal plate
JPH07221352A (en) Layered thermoelectric conversion device, subunit for thermoelectric power generation, and power generating unit
WO2008020480A1 (en) High-performance thermoelectric conversion material and thermoelectric conversion module for power generation
RU2282280C2 (en) Device for fastening parts by freezing method
JP3278140B2 (en) Thermoelectric semiconductor material and method of manufacturing the same
JPH05315656A (en) Thermoelectric converter
JP3007904U (en) Thermal battery
JPH07147434A (en) Thermoelectric conversion device and thermoelectric cooling device
CN1135059C (en) Amorphous metallic alloy electrical heater system
RU2800055C1 (en) Thermoelectric element
WO2002021608A1 (en) Thermoelement

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990608