JPH05315656A - Thermoelectric converter - Google Patents
Thermoelectric converterInfo
- Publication number
- JPH05315656A JPH05315656A JP3290133A JP29013391A JPH05315656A JP H05315656 A JPH05315656 A JP H05315656A JP 3290133 A JP3290133 A JP 3290133A JP 29013391 A JP29013391 A JP 29013391A JP H05315656 A JPH05315656 A JP H05315656A
- Authority
- JP
- Japan
- Prior art keywords
- type
- heat flow
- temperature heat
- thermoelectric conversion
- type semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000004065 semiconductor Substances 0.000 claims abstract description 68
- 239000000463 material Substances 0.000 claims abstract description 50
- 239000013078 crystal Substances 0.000 claims abstract description 21
- 238000006243 chemical reaction Methods 0.000 claims description 49
- 150000001875 compounds Chemical class 0.000 claims description 9
- 238000002844 melting Methods 0.000 claims description 2
- 230000008018 melting Effects 0.000 claims description 2
- 239000011810 insulating material Substances 0.000 abstract description 15
- 230000008878 coupling Effects 0.000 abstract description 3
- 238000010168 coupling process Methods 0.000 abstract description 3
- 238000005859 coupling reaction Methods 0.000 abstract description 3
- 239000012212 insulator Substances 0.000 description 8
- 230000006378 damage Effects 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 229910002665 PbTe Inorganic materials 0.000 description 2
- 230000005678 Seebeck effect Effects 0.000 description 2
- 229910008310 Si—Ge Inorganic materials 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000002828 fuel tank Substances 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- OCGWQDWYSQAFTO-UHFFFAOYSA-N tellanylidenelead Chemical compound [Pb]=[Te] OCGWQDWYSQAFTO-UHFFFAOYSA-N 0.000 description 2
- 239000002918 waste heat Substances 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
Landscapes
- Measuring Temperature Or Quantity Of Heat (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は,ゼーベック効果に基づ
いて,熱エネルギーを電気エネルギーに変換する素子を
使用する熱電気変換装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric conversion device using an element for converting thermal energy into electric energy based on the Seebeck effect.
【0002】[0002]
【従来の技術】現在,地球上の化石エネルギーは,次第
に枯渇する方向に向かっている。実際に,この事態が生
ずるとき,世界の経済機構は根本的な変革が起こるであ
ろう事は十分に予測され得る。今後,このエネルギー問
題を解決するためには,新しいエネルギー源の開発と,
それを効率的に利用する技術とを開発することが必要に
なってくる。2. Description of the Related Art At present, fossil energy on the earth is gradually depleted. In fact, when this happens, it can be well predicted that the world's economic institutions will undergo radical change. In the future, in order to solve this energy problem, the development of new energy sources and
It will be necessary to develop technologies and techniques to use it efficiently.
【0003】一方,自動車や発電所で使用される燃料エ
ネルギーの2/3以上は,仕事以外の廃熱として環境に
放出されている。これらの熱汚染に起因する異常気象へ
の兆候が,既に,地球規模において現れつつある。On the other hand, more than 2/3 of the fuel energy used in automobiles and power plants is released to the environment as waste heat other than work. Signs of abnormal weather caused by these heat pollution are already appearing on a global scale.
【0004】その意味から,最近地球環境に対してクリ
ーンな電力源としてのゼーベック効果に基づく熱電気変
換方式による発電は,特に,局地発電源として注目され
るようになってきている。From this point of view, power generation by the thermoelectric conversion system based on the Seebeck effect as a clean power source for the global environment has recently been particularly attracting attention as a local power source.
【0005】従来の熱電気変換方式に用いられる熱電気
変換装置の中に配設されているモジュールは,主として
高温熱流れの供給方向と低温熱流の熱放散方向とは,同
一方向にある。そして,この熱電気変換モジュールの低
熱源側には,熱放散のために,表面積の大きいフィン
が,一般に取り付けられている。この様な構造を熱電気
変換装置が持つとき,高熱源側の熱流は,熱電気変換モ
ジュール以外の部分から,伝導,対流そして輻射を通し
て低熱源側へ流れ易い。そして,それによる熱効率の低
下は無視できない。ところで,良く知られている熱電材
料として,Bi2−Te3 ,PbTe,Si−Ge及び
Si−Te系半導体化合物等の溶成材,及び粉末焼結材
料が挙げられる。Bi2 Te3 系材料は,−10〜+1
50℃の領域で使用するのに適しており,性能指数Zの
最良値は,30℃近傍で得られる。PbTe系材料は,
300℃から500℃の領域で,又はSi−Ge及びS
i−Te系材料は,600〜1000℃の領域で夫々使
用に適している。特に,Bi2 Te3 系材料は,低温廃
熱の温度領域での利用材として注目されている。この半
導体化合物単結晶材のc面内に結晶軸を持つ方向の熱電
特性は,溶製材及び粉末焼結材のそれに比して,より優
れている。In the module arranged in the thermoelectric conversion device used in the conventional thermoelectric conversion system, the supply direction of the high temperature heat flow and the heat dissipation direction of the low temperature heat flow are mainly in the same direction. A fin having a large surface area is generally attached to the low heat source side of the thermoelectric conversion module for heat dissipation. When the thermoelectric conversion device has such a structure, the heat flow on the high heat source side easily flows from the part other than the thermoelectric conversion module to the low heat source side through conduction, convection, and radiation. And the decrease in thermal efficiency due to it cannot be ignored. Meanwhile, the thermoelectric material is well known, Bi 2 -Te 3, PbTe, Si-Ge and Si-Te-based semiconductor compounds extractable component materials, and include powder sintering material. Bi 2 Te 3 based material is -10 to +1
It is suitable for use in the region of 50 ° C, and the best value of the figure of merit Z is obtained in the vicinity of 30 ° C. PbTe-based materials are
In the range of 300 ° C to 500 ° C, or Si-Ge and S
The i-Te-based materials are suitable for use in the range of 600 to 1000 ° C, respectively. In particular, Bi 2 Te 3 based materials have been attracting attention as materials used in the temperature range of low temperature waste heat. The thermoelectric characteristics of the semiconductor compound single crystal material in the direction having the crystal axis in the c-plane are more excellent than those of the ingot material and the powder sintered material.
【0006】[0006]
【発明が解決しようとする課題】しかしながら,この単
結晶材は,結晶構造上c面間の結合力が弱く,機械的衝
撃,熱的歪み等によって,c面で剥離しやすいという欠
陥をもっている。そのために,この単結晶材を使用して
熱電気変換素子を構成した場合に,この熱電気変換素子
間の接合面での破壊が生じ易く,熱電特性の劣化を引き
起こし易いという欠点を有している。これらの理由か
ら,前記単結晶材は,優れた熱電特性を有しながらも,
実用材としての利用は敬遠されてきた。勿論,従来から
使用されている前記溶成材及び粉末焼結材の場合にも,
相対的な問題ではあるが,前記接合面での熱歪みによる
破壊に対するモジュール構造上の優れた防御策は,未だ
完成されていない。小さなN型及びP型半導体化合物素
子材チップを電気的に平面内に配列し,固定した従来の
モジュールをもって,熱歪みによる熱電素子の破壊に対
する防御策をたてることは,構造上難しいかもしれな
い。However, this single crystal material has a defect that the bonding force between the c-planes is weak due to the crystal structure, and the c-plane is likely to be peeled off due to mechanical shock, thermal strain, or the like. Therefore, when a thermoelectric conversion element is constructed using this single crystal material, it has a drawback that the joint surface between the thermoelectric conversion elements is easily broken and the thermoelectric characteristics are easily deteriorated. There is. For these reasons, the single crystal material has excellent thermoelectric properties,
Its use as a practical material has been shunned. Of course, even in the case of the above-mentioned fused material and powder sintered material that have been used conventionally,
Although it is a relative problem, an excellent module structural protection measure against damage due to thermal strain at the joint surface has not been completed yet. It may be structurally difficult to take a protective measure against destruction of a thermoelectric element due to thermal strain with a conventional module in which small N-type and P-type semiconductor compound element material chips are electrically arranged in a plane and fixed. ..
【0007】そこで,本発明の技術的課題は,一方向凝
固(単結晶ライク)チップ材の優れた特性を生かし,し
かも,その欠点の一つである素子材料の機械的強度の弱
さ(熱歪みによる,素子破壊,半田接合点での剥離等)
に対する補強構造を持つ,モジュールを使用し,更に,
その熱電変換システム上においても熱歪みに対する防御
策を考慮した構造を持つ熱電気変換装置を提供すること
にある。Therefore, the technical problem of the present invention is to make use of the excellent characteristics of the unidirectionally solidified (single crystal like) chip material, and one of the drawbacks is the weak mechanical strength of the element material (heat Destruction due to distortion, peeling at solder joints, etc.)
Using a module with a reinforcement structure for
Another object of the present invention is to provide a thermoelectric conversion device having a structure that takes into consideration protection measures against thermal distortion even on the thermoelectric conversion system.
【0008】[0008]
【課題を解決するための手段】本発明者らは,特願平3
−185318号(以下,参考文献1と呼ぶ)によっ
て,作製される単結晶材又は一方向凝固材モジュール
と,これとは別に高温熱流供給管,低温熱流放散管及び
連結帯とを基本ユニットとする熱電気変換装置を構築
し,これによって,従来のモジュールの最大の弱点であ
る機械的強度の弱さに対して補強はもとより,従来,実
用材として実現し得なかった単結晶材モジュールを使用
した熱電気変換システムを初めて実現可能ならしめた。[Means for Solving the Problems]
No. 185318 (hereinafter referred to as Reference 1), a single crystal material or a unidirectionally solidified material module produced, and a high temperature heat flow supply pipe, a low temperature heat flow dissipating pipe, and a connecting zone are used as basic units. By constructing a thermoelectric conversion device, we used a single crystal material module that could not be realized as a practical material in the past, in addition to reinforcing the weakness of mechanical strength, which is the greatest weakness of the conventional module. For the first time, a thermoelectric conversion system could be realized.
【0009】本発明においては,耐熱絶縁材の孔の中
で,夫々成長させたN型及びP型半導体単結晶材及び一
方向性凝固材素子を持つ熱電気変換モジュールと,高温
の熱流を供給する高温熱流管,低温熱流を放散する低温
熱流放散管及び前記熱電気変換モジュールとともに前記
低温熱流放散管を覆うシステム連結帯からなり,それを
一定の圧力で保持し,夫々面内の電気的接触を安定化さ
せる。この構造を基本ユニットとし,更に連続的に結合
させ,熱電気変換の総合システムとしての熱電気変換装
置を実現した。In the present invention, a thermoelectric conversion module having an N-type and P-type semiconductor single crystal material and a unidirectionally solidified material element grown respectively in a hole of a heat-resistant insulating material and a high-temperature heat flow are supplied. A high temperature heat flow tube, a low temperature heat flow tube that dissipates the low temperature heat flow, and a system connection zone that covers the low temperature heat flow dissipation tube together with the thermoelectric conversion module. Stabilize. By using this structure as a basic unit and connecting it continuously, we have realized a thermoelectric conversion device as a total system for thermoelectric conversion.
【0010】これによって,従来のモジュールの最大の
弱点であった機械的強度の弱さに対して,補強はもとよ
り,従来,実用材として,実現し得なかった単結晶材モ
ジュールを始めて実現可能ならしめた。更に,システム
構造的に該高温熱流の供給方向と低温熱流れの放散方向
とが同一方向でない様にして,熱の拡散を防ぎ,システ
ムとしての変換効率を向上させた。ここで,蝋燭の炎か
らも明らかなように,炎はその先端が最も高温である。
従って,その先端温度を利用することが,最も効率的で
ある。その意味から,燃料を燃焼させて,高熱源を供給
する場合,上記の構造は,熱の供給に対して,非常に自
然であり,高温熱流を比較的無理なく熱電気変換モジュ
ールに供給することができる。上記のように,高温熱流
供給管,熱電気変換モジュール,及び低熱流放散管を弾
力のあるシステム連結帯でもって結合し,これらを一定
の圧力でもって固定し,夫々の面間接触圧を一定に保つ
ようにする。これを基本ユニットとして,連続的に直列
に結合して行く。素子材チップの形状をもってその内部
抵抗を調整し,出力電圧を変えることができる。システ
ム連結帯に弾力性のある断熱材を用いることによって,
発生する剪断応力を吸収する。上記モジュールの変わり
に,従来から使用されているモジュールを用いて,それ
らを電気的に直列に結合して熱電気変換装置の中に組み
込んで使用することも可能である。As a result, the weakness of mechanical strength, which is the greatest weakness of the conventional module, can be realized for the first time, not only for reinforcement but also for a single crystal material module which has not been realized as a practical material in the past. I tightened it up. Further, in terms of system structure, the supply direction of the high-temperature heat flow and the diffusion direction of the low-temperature heat flow are not the same direction, so that heat diffusion is prevented and the conversion efficiency of the system is improved. Here, as is clear from the flame of the candle, the flame has the highest temperature at its tip.
Therefore, it is most efficient to utilize the tip temperature. In that sense, when burning a fuel and supplying a high heat source, the above structure is very natural for heat supply, and a high temperature heat flow can be supplied to the thermoelectric conversion module relatively reasonably. You can As described above, the high temperature heat flow supply pipe, the thermoelectric conversion module, and the low heat flow dissipation pipe are connected by the elastic system connection zone, and these are fixed at a constant pressure so that the respective face-to-face contact pressures are constant. Try to keep Using this as a basic unit, they are continuously connected in series. The output voltage can be changed by adjusting the internal resistance of the element material according to the shape of the chip. By using elastic insulation for the system connection band,
Absorbs the shear stress that occurs. Instead of the above modules, it is also possible to use conventionally used modules, electrically couple them in series, and incorporate them into a thermoelectric conversion device for use.
【0011】即ち,本発明によれば,耐熱絶縁板に設け
られた複数の孔の中に,N型及びP型半導体化合物を溶
解,凝固させて形成したN型及びP型半導体素子チップ
からなる半導体モジュール一対と,前記一対の半導体モ
ジュール間に設けられた低温熱流管と,高温熱流管と,
少なくとも前記一対の半導体モジュールを覆うシステム
連結帯とからなる基本ユニットから構成され,前記高温
熱流管に供給される高温熱流の移動方向と,低熱流管か
ら放散される低熱流の移動方向とが互いに異なることを
特徴とする熱電気変換装置が得られる。That is, according to the present invention, the N-type and P-type semiconductor element chips are formed by melting and solidifying the N-type and P-type semiconductor compounds in a plurality of holes provided in the heat-resistant insulating plate. A pair of semiconductor modules, a low temperature heat flow tube provided between the pair of semiconductor modules, and a high temperature heat flow tube;
The moving direction of the high-temperature heat flow supplied to the high-temperature heat flow pipe and the moving direction of the low-heat flow radiated from the low-heat flow pipe are formed of a basic unit including at least the system coupling band covering the pair of semiconductor modules. A thermoelectric conversion device is obtained which is characterized by being different.
【0012】本発明によれば,N型及びP型の半導体素
子チップから夫々なるN型及びP型半導体モジュールか
らなる一対の熱電対と,前記一対の熱電対を複数交互に
規則的にN型,P型,N型…の順に配列し,前記交互に
配列されたN型及びP型半導体モジュール間に設けられ
た高温熱流管及び低温熱流管とを備え,夫々の熱流の流
れる方向が互いに異なるように構成されていることを特
徴とする熱電気変換装置が得られる。According to the present invention, a pair of thermocouples composed of N-type and P-type semiconductor modules respectively composed of N-type and P-type semiconductor element chips, and a plurality of the pair of thermocouples are alternately and regularly N-type. , P-type, N-type ... Are arranged in this order, and a high-temperature heat flow pipe and a low-temperature heat flow pipe are provided between the alternately arranged N-type and P-type semiconductor modules, and the heat flows in different directions. A thermoelectric conversion device characterized by being configured as described above is obtained.
【0013】本発明によれば,N型及びP型半導体素子
チップをN型,P型,N型,P型…と交互に配置し,電
気的に直列に,熱的に並列に配列し,固定した熱電気変
換モジュールを備え,前記熱電気変換モジュールに供給
される高温熱流と低温熱流とが互いに異なる方向である
ことを特徴とする熱電気変換装置が得られる。According to the present invention, the N-type and P-type semiconductor element chips are alternately arranged with N-type, P-type, N-type, P-type, and arranged electrically in series and thermally in parallel. A thermoelectric conversion device comprising a fixed thermoelectric conversion module, characterized in that the high-temperature heat flow and the low-temperature heat flow supplied to the thermoelectric conversion module are in mutually different directions.
【0014】本発明によれば,前記熱電気変換装置にお
いて,前記N型及びP型半導体素子材チップは,耐熱絶
縁板の複数の貫通孔の中に設けられていることを特徴と
する熱電気変換装置が得られる。According to the present invention, in the thermoelectric converter, the N-type and P-type semiconductor element material chips are provided in a plurality of through holes of a heat-resistant insulating plate. A conversion device is obtained.
【0015】本発明によれば,前記したいずれかの熱電
気変換装置において,前記N型及びP型半導体素子チッ
プは,単結晶材又は一方向凝固材からなることを特徴と
する熱電気変換装置が得られる。According to the present invention, in any one of the thermoelectric conversion devices described above, the N-type and P-type semiconductor element chips are made of a single crystal material or a unidirectionally solidified material. Is obtained.
【0016】[0016]
【実施例】以下に本発明の実施例について,図面を参照
して説明する。Embodiments of the present invention will be described below with reference to the drawings.
【0017】図1(a),(b),(c)は本発明の実
施例に係る熱電子冷却装置を示す正面図,平面図,及び
側面半断面図である。図1(a)は説明を簡単にするた
めに,本体上蓋22とシステム連結帯5の手前側を取り
除いて示されている。N型半導体モジュール2とP型半
導体モジュール2´及びこのモジュール2,2´間に配
置された低温熱流管3及び半導体モジュール2,2´の
両端に配置された高温熱流管1,1,及びシステム連結
帯5からなる基本ユニットを3つ直列に連結して一列の
熱電気変換部とし,この熱電気変換部を左右方向に4行
に並べて構成されている。これらの四行の熱電気変換部
は上下に一対のシステム結合用の金属板13,15及び
16,17,18を介して,加圧用の留め金具19,2
0が,各段に対応して設けられた加圧用留め金捩子1
4,14,…によって固定されている。また,加熱用留
め金板19,20は,互いに上下に対向する4対の角部
を加圧用留め金棒12によって連絡されている。図1
(a)の上側においては,システム結合用金属板17,
18及び16が,左から1列,右から2列及び3列,右
から1列目を押圧するように,図2(a)の左側におい
ては,システム結合用金属板13及び15が1行及び2
行目,上から3段及び下から1段目をそれぞれ押圧する
ように,上下でちぐはぐな構成となっている。各段両側
に設けられた加圧用留め金捩子14,14,…捩子で締
めることで,各段の基本ユニットの各部間及び基本ユニ
ット間が圧接される。1 (a), 1 (b) and 1 (c) are a front view, a plan view and a side half sectional view showing a thermoelectric cooling device according to an embodiment of the present invention. In FIG. 1A, the main body top cover 22 and the front side of the system connecting band 5 are removed for the sake of simplicity. N-type semiconductor module 2 and P-type semiconductor module 2 ', low-temperature heat flow tube 3 arranged between the modules 2 and 2', and high-temperature heat flow tubes 1, 1 and system arranged at both ends of the semiconductor modules 2 and 2 ' Three basic units including the connecting band 5 are connected in series to form a thermoelectric conversion section in one line, and the thermoelectric conversion sections are arranged in four rows in the left-right direction. These four rows of thermoelectric conversion parts are vertically connected via a pair of metal plates 13, 15 and 16, 17, 18 for system connection to press fittings 19, 2 for pressurization.
0 is a presser clasp screw 1 provided corresponding to each step
It is fixed by 4, 14, .... Further, the heating clasp plates 19 and 20 are connected to each other by pressing clasp bars 12 at four pairs of corner portions which vertically face each other. Figure 1
On the upper side of (a), the metal plate 17 for system connection,
On the left side of FIG. 2 (a), the system connecting metal plates 13 and 15 are arranged in one row so that 18 and 16 press the first column from the left, the second and third columns from the right, and the first column from the right. And 2
The upper and lower parts are structured so as to press the row, the third step from the top, and the first step from the bottom, respectively. By tightening the presser clasp screws 14, 14, ... Provided on both sides of each step, the parts of the basic unit of each step and the basic units are pressed together.
【0018】図1(b)及び(b)において,この熱電
気変換装置は,本体ケース7内に収容される。本体ケー
ス7は,正面にコ字状の蓋22と,背面側に設けられる
底部23とを備えた中空の箱体からなり,右端にブロア
用フィン11を有するブロア用モータ10が備えられて
いる。本体ケース7の底部23には,L字状の中空断熱
材9からなるダクト24が設けられている。このダクト
24内には,前述の低温熱流管の突出端3bが断熱壁を
貫通して突出している。このダクトに連続して,燃焼室
25,燃料タンク26が設けられ,低温熱流管を加熱す
るような構造となっている。尚,符号27はタンク26
の蓋である。上記のように,高温熱流管3,熱電気変換
モジュール2及び2´,及び低温熱流管3を弾力性のあ
る断熱材システム連結帯5をもって結合し,これらを一
定の圧力でもって押さえ付け,その面内接触を一定接触
圧に保つようにしている。これを基本システムとして,
それらを連続的に直列に結合し,素子材チップ形状をも
って,その内部抵抗を調整し,出力電圧を変えることが
できる。また,システム連結帯5に弾力性のある断熱材
料を用いることによって,外的な衝撃圧,熱膨張による
熱歪み等の機械的剪断応力を吸収させることができる。In FIGS. 1B and 1B, the thermoelectric conversion device is housed in the main body case 7. The main body case 7 is a hollow box body having a U-shaped lid 22 on the front surface and a bottom portion 23 provided on the back surface side, and is provided with a blower motor 10 having a blower fin 11 on the right end. .. At the bottom 23 of the main body case 7, a duct 24 made of an L-shaped hollow heat insulating material 9 is provided. In the duct 24, the above-mentioned protruding end 3b of the low temperature heat flow tube penetrates the heat insulating wall and projects. A combustion chamber 25 and a fuel tank 26 are provided in succession to this duct to heat the low temperature heat flow tube. Incidentally, reference numeral 27 is a tank 26.
Is the lid. As described above, the high temperature heat flow tube 3, the thermoelectric conversion modules 2 and 2 ', and the low temperature heat flow tube 3 are connected by the elastic heat insulating material system connecting band 5, and these are pressed down with a constant pressure. The in-plane contact is kept at a constant contact pressure. With this as a basic system,
By continuously connecting them in series and adjusting the internal resistance of the element material chip shape, the output voltage can be changed. Further, by using an elastic heat insulating material for the system connecting band 5, it is possible to absorb mechanical shear stress such as external impact pressure and thermal strain due to thermal expansion.
【0019】図2は本発明の実施例に係る熱電気変換装
置の基本ユニットの構成を示す部分断面図である。図2
に示すように,熱電気変換装置の基本ユニットは,N型
半導体モジュール2及びP型半導体モジュール2´とか
らなる熱電気変換モジールと,この半導体モジュール
2,2´の両側に設けられた高温熱流管1,1と,この
N型及びP型半導体モジュール2,2´の間に配置され
た低温熱流管3とを備えている。N型及びP型半導体モ
ジュール2,2´は,耐熱絶縁材の夫々の孔の中でそれ
ぞれ成長させたN型及びP型半導体の単結晶又は一方向
凝固素子を備えている。高温熱流管1は図では手前及び
後方を開口した導電性材料からなる。また,低温熱流管
3は,導電性材料からなる。これらの高温熱流管1及び
低温熱流管3によって,N型及びP型半導体モジュール
との電気的接触がなされる。低温熱流管3とその両側の
N型及びP型半導体モジュール2,2´と,この半導体
モジュール2,2´の両側に接する高温熱流管3の各々
の一端部とは,弾力性のある断熱材システム連結帯5に
よって覆われている。各半導体モジュール2,2´は,
断熱材6を介してシステム連結帯5によって覆われる構
成となっている。尚,図面では,低温熱流管3,3の他
端側に他の基本ユニットを構成するために,前記基本ユ
ニットと同様に断熱材システム連結帯5によって覆われ
ている。低温熱流管3の一端3a(図では下方)は,延
在して断熱材システム連結帯5より突出し,中空の断熱
材9からなるダクトの壁部を貫通して内部の空洞に繋が
っている。この突出部は,図示しない燃焼室に連続して
いる。また,基本ユニットは,本体ケース7に当接され
ている。高温熱流管3とケース7との間には,断熱材
8,8が充填されている。FIG. 2 is a partial cross-sectional view showing the structure of the basic unit of the thermoelectric converter according to the embodiment of the present invention. Figure 2
As shown in Fig. 1, the basic unit of the thermoelectric conversion device is a thermoelectric conversion module composed of an N-type semiconductor module 2 and a P-type semiconductor module 2 ', and a high-temperature heat flow provided on both sides of the semiconductor module 2, 2'. It comprises tubes 1, 1 and a low temperature heat flow tube 3 arranged between the N-type and P-type semiconductor modules 2, 2 '. The N-type and P-type semiconductor modules 2, 2'include single crystal or unidirectionally solidified elements of N-type and P-type semiconductors respectively grown in the respective holes of the heat-resistant insulating material. The high-temperature heat flow tube 1 is made of a conductive material having front and rear openings in the figure. The low temperature heat flow tube 3 is made of a conductive material. The high-temperature heat flow pipe 1 and the low-temperature heat flow pipe 3 make electrical contact with the N-type and P-type semiconductor modules. The low-temperature heat flow tube 3 and the N-type and P-type semiconductor modules 2 and 2'on both sides of the low-temperature heat-flow tube 3 and one end of each of the high-temperature heat-flow tubes 3 contacting both sides of the semiconductor module 2 and 2'are elastic heat insulating materials. It is covered by the system connecting strip 5. Each semiconductor module 2, 2'is
It is configured to be covered by the system connecting band 5 via the heat insulating material 6. In the drawing, in order to configure another basic unit on the other end side of the low-temperature heat flow pipes 3, 3, the low-temperature heat flow pipes 3 and 3 are covered with a heat insulating material system connecting band 5 as in the case of the basic unit. One end 3a (lower side in the figure) of the low-temperature heat flow pipe 3 extends and projects from the heat insulating material system connection band 5, penetrates the wall portion of the duct made of the hollow heat insulating material 9, and is connected to the internal cavity. This protruding portion is continuous with a combustion chamber (not shown). The basic unit is in contact with the body case 7. Insulating materials 8 and 8 are filled between the high-temperature heat flow tube 3 and the case 7.
【0020】図3(a)及び(b)は,本発明の実施例
に係る熱電気変換モジュールを示す図で,(a)はN型
半導体モジュール,(b)はP型半導体モジュールを夫
々示している。図3(a)において,N型半導体モジュ
ール2は,耐熱絶縁体31と,N型半導体チップ32
と,金メッキ膜33とから形成されている。耐熱絶縁体
31は,図3(c)に示すように,複数の貫通孔31a
が設けられている。3A and 3B are views showing a thermoelectric conversion module according to an embodiment of the present invention, wherein FIG. 3A shows an N-type semiconductor module and FIG. 3B shows a P-type semiconductor module. ing. In FIG. 3A, the N-type semiconductor module 2 includes a heat resistant insulator 31 and an N-type semiconductor chip 32.
And a gold plating film 33. As shown in FIG. 3C, the heat-resistant insulator 31 has a plurality of through holes 31a.
Is provided.
【0021】図3(a)に戻って,この貫通孔内にN型
化合物からなる半導体素子材が挿入され,凝固熱処理さ
れて両端が露出したN型半導体チップ32が形成されて
いる。このN型半導体チップ32の露出面を覆うよう
に,耐熱絶縁体31の両面に金メッキ膜33が形成され
て,半導体モジュールが完成する。Returning to FIG. 3A, a semiconductor element material made of an N-type compound is inserted into the through hole and is solidified and heat-treated to form an N-type semiconductor chip 32 with both ends exposed. Gold plating films 33 are formed on both surfaces of the heat resistant insulator 31 so as to cover the exposed surface of the N-type semiconductor chip 32, and the semiconductor module is completed.
【0022】図3(b)において,P型半導体モジュー
ル21は,半導体化合物がP型である他は,N型半導体
モジュールと同様に,耐熱絶縁体36と,P型半導体チ
ップ37と,金メッキ膜38とからなり,前述のN型モ
ジュールと同様に作製される。In FIG. 3B, the P-type semiconductor module 21 is the same as the N-type semiconductor module except that the semiconductor compound is P-type, and the heat-resistant insulator 36, the P-type semiconductor chip 37, and the gold plating film. 38 and is manufactured in the same manner as the N-type module described above.
【0023】次に本発明の実施例に係る熱電気変換装置
の製造の具体例について説明する。P型及びN型半導体
素子材の製造は,参考文献1に記載された製法に従っ
た。即ち,表1で示すような,良く知られているBi2
Te3 系化合物を原料として,夫々1kg秤量して,石
英管中に真空封入し,高周波炉中で溶解,凝固させた鋳
塊を,石英管ルツボ中に第1多孔性耐熱絶縁材とともに
挿入し,この鋳塊を溶解し,孔の深さの方向に温度勾配
を持たせてゆっくり凝固させた。その後,凝固点直下
で,そして真空中で,48時間熱処理することによっ
て,上記化合物を生成させた。この素材チップの形状
は,第1多孔性耐熱絶縁体の孔形によって決定される。
得られたチップ材の形状は,1×1×8(mm)であ
る。又,これらの素子材チップは,長手方向に結晶c面
がほぼ平行に成長している単結晶又は柱状晶であること
をX線的に確かめた。図3(a),(b)に夫々示すよ
うに,それらのP型及びN型半導体素子材チップを別々
の第2,第3の耐熱絶縁体3, 3´の孔32の中で夫
々凝固させて,一方凝固したP型及びN型半導体素子チ
ップ32,37を形成し,N型及びP型半導体モジュー
ル2,2´とした。図3(a),(b)に示すN型及び
P型半導体モジュール2,2´を高温熱流管1,1及び
低温熱流管3間に挟み,システム連結帯5で結合したも
のを基本システムとして,電気的に直列に結合させた。
この基本システムを更に,直列的に,そして連続的に1
2対結合し,それらのシステムが一定の接触圧力で保持
されるように固定した。素子材チップの測定結果は次に
表2の通りである。Next, a specific example of manufacturing the thermoelectric conversion device according to the embodiment of the present invention will be described. The P-type and N-type semiconductor element materials were manufactured according to the manufacturing method described in Reference 1. That is, as shown in Table 1, well-known Bi 2
Using Te 3 compounds as raw materials, 1 kg each was weighed, vacuum-sealed in a quartz tube, and the ingot melted and solidified in a high-frequency furnace was inserted into a quartz tube crucible together with the first porous heat-resistant insulating material. , The ingot was melted and slowly solidified with a temperature gradient in the depth direction of the hole. Then, the above compound was produced by heat treatment just below the freezing point and in vacuum for 48 hours. The shape of the material chip is determined by the hole shape of the first porous heat resistant insulator.
The shape of the obtained chip material is 1 × 1 × 8 (mm). In addition, it was confirmed by X-ray that these element material chips were single crystals or columnar crystals in which the crystal c-plane was grown substantially parallel to the longitudinal direction. As shown in FIGS. 3A and 3B, the P-type and N-type semiconductor element material chips are respectively solidified in the holes 32 of the second, third heat-resistant insulators 3 and 3 '. Then, the solidified P-type and N-type semiconductor element chips 32 and 37 were formed to obtain N-type and P-type semiconductor modules 2 and 2 '. As a basic system, the N-type and P-type semiconductor modules 2 and 2'shown in FIGS. , Electrically coupled in series.
This basic system is further serially and continuously 1
Two pairs were coupled and fixed so that the systems were held at constant contact pressure. The measurement results of the element material chip are shown in Table 2 below.
【0024】[0024]
【表1】 [Table 1]
【0025】[0025]
【表2】 [Table 2]
【0026】上記一対のN型及びP型半導体モジュール
からなる熱電気変換モジュールによる熱電気変換装置は
極めて良好に作動した。35Wの電力が得られた。The thermoelectric conversion device using the thermoelectric conversion module composed of a pair of the N-type and P-type semiconductor modules worked extremely well. A power of 35 W was obtained.
【0027】[0027]
【発明の効果】以上,説明したように,本発明によれ
ば,耐熱絶縁体の複数の孔の中で,単結晶材又は一方向
性凝固材を成長させることによって,長所としてその優
れた単結晶としての熱電特性を生かし,更に,弾力性の
あるシステム連結帯を用いることによって,機械的衝
撃,熱的歪みによる素子材チップの破壊を防ぐことが可
能になった。As described above, according to the present invention, by growing the single crystal material or the unidirectionally solidified material in the plurality of holes of the heat-resistant insulator, the advantages of the single crystal material or the unidirectionally solidified material are excellent. By utilizing the thermoelectric properties of the crystal and by using the elastic system connecting band, it became possible to prevent the destruction of the element material chip due to mechanical shock and thermal strain.
【0028】また,本発明においては,複数の孔を有す
る耐熱絶縁体を用いることによって,半導体素子チップ
材を用いた場合に必要とされる切断工程を省略すること
が可能になり,該熱電気変換装置の価格を大幅に低減さ
せることが可能になった。Further, in the present invention, by using the heat-resistant insulator having a plurality of holes, it becomes possible to omit the cutting step which is required when the semiconductor element chip material is used. It has become possible to significantly reduce the price of the converter.
【図1】(a),(b),(c)は本発明の実施例に係
る熱電気変換装置を示す正面図,側面図及び平面図であ
る。1 (a), (b) and (c) are a front view, a side view and a plan view showing a thermoelectric conversion device according to an embodiment of the present invention.
【図2】本発明の実施例に係る熱電気変換装置の基本ユ
ニットの構成を示す断面図である。FIG. 2 is a cross-sectional view showing a configuration of a basic unit of the thermoelectric conversion device according to the embodiment of the present invention.
【図3】(a),(b)は,本発明の実施例に係る熱電
気変換モジュールを示す図で,(a)はN型半導体モジ
ュール,(b)はP型半導体モジュールを夫々示してい
る。(c)は(a),(b)に用いられる耐熱絶縁板を
示している。3A and 3B are diagrams showing a thermoelectric conversion module according to an embodiment of the present invention, FIG. 3A showing an N-type semiconductor module, and FIG. 3B showing a P-type semiconductor module. There is. (C) shows the heat resistant insulating plate used in (a) and (b).
1 高温熱流管 2 N型半導体モジュール 2´ P型半導体モジュール 3 低温熱流管 5 システム連結帯 7 本体ケース 8,9 断熱材 10 ブロア用モータ 11 ブロア用フィン 12,14,19,20, 加圧用留め金 13,15,16,17,18 システム結合用金属
板 22 本体上蓋 23 本体底部 24 ダクト 25 燃焼室 26 燃料タンク 27 蓋1 High-temperature heat flow tube 2 N-type semiconductor module 2'P-type semiconductor module 3 Low-temperature heat-flow tube 5 System connection zone 7 Main body case 8,9 Heat insulating material 10 Blower motor 11 Blower fin 12,14,19,20, Pressure clamp Gold 13, 15, 16, 17, 18 Metal plate for system connection 22 Main body top cover 23 Main body bottom 24 Duct 25 Combustion chamber 26 Fuel tank 27 Lid
Claims (5)
に,N型及びP型半導体化合物を溶解,凝固させて形成
したN型及びP型半導体素子チップからなる半導体モジ
ュール一対と,前記一対の半導体モジュール間に設けら
れた低温熱流管と,高温熱流管と,少なくとも前記一対
の半導体モジュールを覆うシステム連結帯とからなる基
本ユニットから構成され,前記高温熱流管に供給される
高温熱流の移動方向と,低熱流管から放散される低熱流
の移動方向とが互いに異なることを特徴とする熱電気変
換装置。1. A pair of semiconductor modules composed of N-type and P-type semiconductor element chips formed by melting and solidifying N-type and P-type semiconductor compounds in a plurality of holes provided in a heat-resistant insulating plate, and A low temperature heat flow tube provided between a pair of semiconductor modules, a high temperature heat flow tube, and a basic unit composed of at least a system connection band covering the pair of semiconductor modules are provided. A thermoelectric conversion device, characterized in that the moving direction and the moving direction of the low heat flow emitted from the low heat flow pipe are different from each other.
々なるN型及びP型半導体モジュールからなる一対の熱
電対と,前記一対の熱電対を複数交互に規則的にN型,
P型,N型…の順に配列し,前記交互に配列されたN型
及びP型半導体モジュール間に設けられた高温熱流管及
び低温熱流管とを備え,夫々の熱流の流れる方向が互い
に異なるように構成されていることを特徴とする熱電気
変換装置。2. A pair of thermocouples composed of N-type and P-type semiconductor modules respectively composed of N-type and P-type semiconductor element chips, and a plurality of the pair of thermocouples which are alternately and regularly N-type.
P-type, N-type ... are arranged in this order, and a high-temperature heat flow pipe and a low-temperature heat flow pipe are provided between the alternately arranged N-type and P-type semiconductor modules, and the heat flows in different directions. A thermoelectric conversion device comprising:
P型,N型,P型…と交互に配置し,電気的に直列に,
熱的に並列に配列し,固定した熱電気変換モジュールを
備え,前記熱電気変換モジュールに供給される高温熱流
と低温熱流とが互いに異なる方向であることを特徴とす
る熱電気変換装置。3. N-type and P-type semiconductor element chips are N-type,
P-type, N-type, P-type, etc. are arranged alternately and electrically connected in series.
A thermoelectric conversion device comprising: a thermoelectric conversion module that is arranged in parallel and fixed thermally, and a high-temperature heat flow and a low-temperature heat flow supplied to the thermoelectric conversion module are in different directions.
て,前記N型及びP型半導体素子材チップは,耐熱絶縁
板の複数の貫通孔の中に設けられていることを特徴とす
る熱電気変換装置。4. The thermoelectric conversion device according to claim 3, wherein the N-type and P-type semiconductor element material chips are provided in a plurality of through holes of a heat resistant insulating plate. Converter.
おいて,前記N型及びP型半導体素子チップは,単結晶
材又は一方向凝固材からなることを特徴とする熱電気変
換装置。5. The thermoelectric conversion device according to claim 1, wherein the N-type and P-type semiconductor element chips are made of a single crystal material or a unidirectionally solidified material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3290133A JPH05315656A (en) | 1991-11-06 | 1991-11-06 | Thermoelectric converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3290133A JPH05315656A (en) | 1991-11-06 | 1991-11-06 | Thermoelectric converter |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05315656A true JPH05315656A (en) | 1993-11-26 |
Family
ID=17752222
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3290133A Withdrawn JPH05315656A (en) | 1991-11-06 | 1991-11-06 | Thermoelectric converter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05315656A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0773592A2 (en) | 1995-11-13 | 1997-05-14 | Ngk Insulators, Ltd. | Thermoelectric conversion module and method of manufacturing the same |
WO2014155591A1 (en) * | 2013-03-27 | 2014-10-02 | 株式会社日立製作所 | High efficiency thermoelectric conversion unit |
-
1991
- 1991-11-06 JP JP3290133A patent/JPH05315656A/en not_active Withdrawn
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5886291A (en) * | 1995-11-03 | 1999-03-23 | Ngk Insulators, Ltd. | Thermoelectric conversion module and method of manufacturing the same |
EP0773592A2 (en) | 1995-11-13 | 1997-05-14 | Ngk Insulators, Ltd. | Thermoelectric conversion module and method of manufacturing the same |
US5994637A (en) * | 1995-11-13 | 1999-11-30 | Ngk Insulators, Ltd. | Thermoelectric conversion module and method of manufacturing the same |
WO2014155591A1 (en) * | 2013-03-27 | 2014-10-02 | 株式会社日立製作所 | High efficiency thermoelectric conversion unit |
CN105051925A (en) * | 2013-03-27 | 2015-11-11 | 株式会社日立制作所 | High efficiency thermoelectric conversion unit |
CN105051925B (en) * | 2013-03-27 | 2018-07-17 | 株式会社日立制作所 | High-efficiency thermal electrical switching device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0712537B1 (en) | High performance thermoelectric materials and methods of preparation | |
JP4888491B2 (en) | Thermoelectric element and thermoelectric module | |
US8933317B2 (en) | Thermoelectric remote power source | |
US3377206A (en) | Thermoelectric device with solderfree pressure contacts | |
JP3245793B2 (en) | Manufacturing method of thermoelectric conversion element | |
KR20140021522A (en) | Thermogenerator and process for producing a thermogenerator | |
JPH05315656A (en) | Thermoelectric converter | |
JP2009081178A (en) | Method of manufacturing thermoelectric conversion module | |
JP4284589B2 (en) | Thermoelectric semiconductor manufacturing method, thermoelectric conversion element manufacturing method, and thermoelectric conversion device manufacturing method | |
CN111670505A (en) | Thermoelectric module for generating electricity and corresponding production method | |
JP2008539600A (en) | Formable Peltier heat transfer element and method for manufacturing the same | |
JPH07221352A (en) | Layered thermoelectric conversion device, subunit for thermoelectric power generation, and power generating unit | |
JPH05152616A (en) | Manufacture of chip of semiconductor element forming material and its thermoelectric conversion module | |
JPH05335630A (en) | Thermoelectric conversion module and thermoelectric conversion device using it | |
JP3469811B2 (en) | Line type thermoelectric conversion module | |
US3814633A (en) | Thermo-electric modular structure and method of making same | |
JPS61201484A (en) | Manufacture of thermoelectric conversion element | |
JP3175038B2 (en) | Thermoelectric conversion module for power generation | |
JP2002076448A (en) | Thermoelectric element | |
US3005861A (en) | Thermoelements and thermoelectric devices embodying the same | |
JPH02198179A (en) | Thermoelectric element and manufacture thereof | |
JPH05283753A (en) | Temperature controller | |
JPH01105582A (en) | Solar light generating element | |
JP2000286468A (en) | Thermoelectric conversion module and thermoelectric conversion module block | |
JPH07147434A (en) | Thermoelectric conversion device and thermoelectric cooling device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19990204 |