JPH05280982A - Position measuring apparatus of tunnel excavator - Google Patents

Position measuring apparatus of tunnel excavator

Info

Publication number
JPH05280982A
JPH05280982A JP7766692A JP7766692A JPH05280982A JP H05280982 A JPH05280982 A JP H05280982A JP 7766692 A JP7766692 A JP 7766692A JP 7766692 A JP7766692 A JP 7766692A JP H05280982 A JPH05280982 A JP H05280982A
Authority
JP
Japan
Prior art keywords
tunnel
measuring
excavator
coordinates
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7766692A
Other languages
Japanese (ja)
Other versions
JP2814829B2 (en
Inventor
Keitarou Hayabuchi
敬太郎 早渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP7766692A priority Critical patent/JP2814829B2/en
Publication of JPH05280982A publication Critical patent/JPH05280982A/en
Application granted granted Critical
Publication of JP2814829B2 publication Critical patent/JP2814829B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

PURPOSE:To measure the position of a tunnel excavator easily and accurately by an automatic surveying operation without blocking a collimation line by a method wherein a truck is utilized. CONSTITUTION:A laser projection-photodetection device 5 is installed in a fixed position on the ceiling face of a tunnel excavation hole; it is faced with a target 6 which is arranged on the back surface of a truck 4a at the last part. A TV camera 7 is installed at the upper part of a truck 4n at the forefront part; it is faced with a target 8 installed at the rear part of a shield excavator 1. In addition, measuring pipes 10 which are connected via flexible joints 9 are arranged respectively at individual trucks 4a, 4b,...4n. Hole-bend measuring instruments 11 which are moved at the inside of the individual measuring pipes 10 are inserted into, and passed through, the measuring pipes. Data on angles and distances from the projection-photodetection device 5, the TV camera 7 and the hole-bend measuring instruments 11 are input to an operation and processing part 12; the data which have been obtained are processed. Thereby, the positional coordinates of the excavator 1 are operated by using the installation of the laser projection-photodetection device 5 as a reference.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、トンネル掘進機の位
置計測装置に関し、特に、トンネルボーリングマシー
ン、シールド掘削機等のトンネル掘進機に後続する台車
を介してトンネル掘進機の位置を測定するトンネル掘進
機の位置計測装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a position measuring device for a tunnel machine, and more particularly to a tunnel for measuring the position of the tunnel machine via a bogie following the tunnel machine such as a tunnel boring machine or a shield machine. The present invention relates to a position measuring device for an excavator.

【0002】[0002]

【従来の技術】例えば、シールド掘削機によるトンネル
掘進作業は、スキンプレートの後部内側に組立てられた
セグメントの端部に推進ジャッキを押し当てその反力を
取りつつ推進するものである。このとき計画路線からの
水平,垂直の偏位量を極少にする掘進制御を行う必要が
ある。
2. Description of the Related Art For example, in tunnel excavation work using a shield excavator, a propelling jack is pressed against the end of a segment assembled inside the rear portion of a skin plate to propel it while taking its reaction force. At this time, it is necessary to control excavation to minimize the amount of horizontal and vertical deviation from the planned route.

【0003】このための測定方法の一つに、シールド掘
削機の後部にターゲットを設けるとともに坑内の既知点
に設けたレーザトランシットからレーザ光をターゲット
に向けて発振し、ターゲットからの反射波を受光してそ
の受光角度からシールド掘削機の位置・姿勢を検出する
方法があり、レーザトランシットはパルスモ―タの駆動
により掘削機の掘進に伴い自動追従する機能を有してい
る。
One of the measuring methods for this purpose is to install a target at the rear part of the shield excavator, oscillate a laser beam toward the target from a laser transit provided at a known point in the mine, and receive a reflected wave from the target. Then, there is a method of detecting the position / orientation of the shield excavator from the light receiving angle thereof, and the laser transit has a function of automatically following the excavator's excavation by driving the pulse motor.

【0004】[0004]

【発明が解決しようとする課題】しかしこの測定方法で
あると、例えば直径5m 以上に達する大口径断面のトン
ネルには有効であるが、小口径のトンネルの場合には、
坑内を往復するズリ搬送用あるいはセグメントなどの機
材搬送用の台車の列にレーザ光が遮られるため、実質的
には使用できなかった。このため従来では人手による測
量に頼らざるを得ず、測量工数の大幅な増加を招来して
いた。また人手による計測方法では基準点から順次尺取
り虫状に計測を行うため、累積誤差も大きかった。
However, this measuring method is effective for a tunnel with a large diameter cross section reaching a diameter of 5 m or more, for example, but in the case of a small diameter tunnel,
Since the laser beam was blocked by the row of carriages for reciprocating transportation in the mine or for transporting equipment such as segments, it was practically unusable. For this reason, conventionally, there was no choice but to rely on manual surveying, resulting in a large increase in the number of surveying steps. Moreover, in the manual measurement method, the cumulative error was large because the measurements were taken from the reference point in a scale-like manner.

【0005】この発明は以上の問題点に鑑みなされたも
のであって、その目的は、トンネル掘進機に後続する台
車を利用することにより、視準線を遮られることなく自
動測量を行え、これによってトンネル掘進機の正確な位
置を容易に測定することのできるトンネル掘進機の位置
計測装置を提供するものである。
The present invention has been made in view of the above problems, and an object thereof is to perform automatic surveying without obstructing the collimation line by utilizing a carriage following a tunnel excavator. The present invention provides a position measuring device for a tunnel machine, which can easily measure the exact position of the tunnel machine.

【0006】[0006]

【課題を解決するための手段】前記目的を達成するた
め、この発明のトンネル掘進機の位置計測装置は、トン
ネル掘削孔の定点位置に配置された第一の撮像装置と、
トンネル掘削孔に敷設された軌条上を走行する複数の連
結台車の後尾台車に配置された前記第一の撮像装置のタ
ーゲットと、前記連結台車の前部台車に配置されてトン
ネル掘削機の定位置を監視する第二の撮像装置と、前記
各連結台車に備えられ、かつ互いにフレキシブルジョイ
ントを介して連結された計測管と、該計測管内に挿通さ
れて計測管の曲がり度合いを検出する孔曲がり測定器
と、前記第一の撮像装置とターゲット間の距離及び角
度,前記孔曲がり測定器により計測された計測管の距離
及び角度、および前記第二の撮像装置とトンネル掘進機
との距離及び角度により各部の座標を演算するととも
に、定点座標に対する各部の座標を加算し、トンネル掘
進機の位置座標を割り出す演算手段を設けたものであ
る。
In order to achieve the above object, a position measuring device for a tunnel excavator according to the present invention comprises a first image pickup device arranged at a fixed position of a tunnel excavation hole,
The target of the first imaging device arranged on the rear bogie of a plurality of connecting carriages traveling on the rail laid in the tunnel excavation hole, and the fixed position of the tunnel excavator arranged on the front carriage of the connecting carriage. A second image pickup device for monitoring the measuring tube, a measuring pipe provided in each of the connecting carriages and connected to each other through a flexible joint, and a hole bending measurement for detecting the bending degree of the measuring pipe inserted into the measuring pipe. And the distance and angle between the first imaging device and the target, the distance and angle of the measuring pipe measured by the hole bend measuring device, and the distance and angle between the second imaging device and the tunnel machine. The calculation means is provided for calculating the coordinates of each part and adding the coordinates of each part to the fixed point coordinates to calculate the position coordinates of the tunnel machine.

【0007】[0007]

【作用】以上の構成によれば、第一の撮像装置と後尾台
車に設けられたターゲットとの角度及び距離により、前
記第一の撮像装置が配置される定点に対する後尾台車の
座標が演算される。また計測管内に挿通された孔曲がり
測定機によって、各台車の座標が後部から順に演算され
る。さらに最前部台車に設けた第二の撮像装置に対する
トンネル掘進機の角度及び距離に応じてトンネル掘進機
の位置座標が演算される。すなわち、演算手段は定点の
座標位置に対する各部の座標を加算することで定点座標
に対する各測定点の正確な位置を演算し、水平方向及び
垂直方向の偏位量に応じたトンネル掘進機の正確な位置
座標を出力する。
According to the above construction, the coordinates of the rear bogie with respect to the fixed point where the first imaging device is arranged are calculated from the angle and distance between the first imaging device and the target provided on the rear bogie. .. Moreover, the coordinates of each trolley are calculated in order from the rear part by the hole bending measuring machine inserted in the measuring pipe. Further, the position coordinates of the tunnel excavator are calculated according to the angle and the distance of the tunnel excavator with respect to the second imaging device provided on the front carriage. That is, the calculating means calculates the accurate position of each measurement point with respect to the fixed point coordinates by adding the coordinates of each part to the coordinate position of the fixed point, and the accurate position of the tunnel excavator according to the deviation amount in the horizontal and vertical directions. Output position coordinates.

【0008】[0008]

【実施例】以下、この発明の一実施例を図面を用いて詳
細に説明する。図1はこの発明に係るトンネル掘進機の
位置計測装置を小口径断面のシールドトンネルに適用し
た場合を示すものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings. FIG. 1 shows a case where the position measuring device for a tunnel machine according to the present invention is applied to a shield tunnel having a small diameter cross section.

【0009】図1において、1は小口径のトンネル掘進
用シールド掘削機、2は掘削機の外形を構成するスキン
プレート後部に順次組立てられてトンネル掘削孔を構成
する多数のセグメントである。このトンネル掘削孔内に
は軌条3が敷設され、この軌条3上にはズリ運搬やセグ
メントなどの機材搬送用の多数の台車4a,4b…4n
を連結した連結台車4が走行し、掘削機1と図外の発進
竪坑との間を往復移動する。
In FIG. 1, 1 is a shield excavator for tunnel excavation having a small diameter, and 2 is a large number of segments which are sequentially assembled at the rear portion of the skin plate constituting the outer shape of the excavator and constitute tunnel excavation holes. A rail 3 is laid in the tunnel excavation hole, and a large number of carriages 4a, 4b ... 4n for transporting scraps or transporting equipment such as segments are mounted on the rail 3.
The connecting trolley 4 connecting the two runs, and reciprocates between the excavator 1 and the starting shaft (not shown).

【0010】このトンネル掘削孔の天井面の定点位置、
すなわち既知点には第一の撮像装置、すなわちレーザ投
受光装置5が据え付けられ、最後尾の連結台車4aの後
部上面に配置されたターゲット6と対向し、この装置5
に対するターゲット6の離間距離及び上下左右の角度を
監視している。このレーザ投受光装置5による測定原理
は従来の項で述べたものと同じである。
A fixed point position on the ceiling surface of the tunnel excavation hole,
That is, a first image pickup device, that is, a laser projecting / receiving device 5 is installed at a known point and faces a target 6 arranged on the rear upper surface of the rearmost connecting carriage 4a.
The distance between the target 6 and the vertical and horizontal angles of the target 6 are monitored. The measurement principle of the laser projecting / receiving device 5 is the same as that described in the conventional section.

【0011】最前部の台車4nの上部には第二の撮像装
置、すなわちテレビカメラ7が据え付けられ、このテレ
ビカメラ7は前記掘削機1の後部内側にの定点位置に設
けられたターゲット8に対向しこのカメラ7に対するタ
ーゲット8の離間距離及び上下左右の角度を監視してい
る。
A second image pickup device, that is, a television camera 7 is installed on the upper part of the front carriage 4n, and the television camera 7 faces a target 8 provided at a fixed point position inside the rear portion of the excavator 1. The distance of the target 8 from the camera 7 and the vertical and horizontal angles are monitored.

【0012】さらに、各台車4a,4b…4nにはそれ
ぞれ、例えばボールバルブ等のフレキシブルジョイント
9を介して計測管10が連設配置され、計測管10には
これの内部をこれに沿って移動する孔曲がり測定器11
が挿通されている。
Further, a measuring pipe 10 is arranged in series on each of the carriages 4a, 4b ... 4n through a flexible joint 9 such as a ball valve, and the measuring pipe 10 is moved along the inside thereof. Hole bending measuring instrument 11
Has been inserted.

【0013】孔曲がり測定器11は、例えば特開昭62
−49210号公報に記載される孔曲がり測定装置と同
様のもので、図2に示すように、計測管10の内部に挿
通される、一対のほぼ同じ長さの中空円筒形の先・後行
筒体20,22の一端同士を、中心に透孔が形成された
ボールジョイント24で回動可能に連結した測定管26
と、先行筒体20の前端近傍に筒軸と直交するするよう
にして設けられた受光器28と、後行筒体22の前端近
傍の筒軸上に設置され、筒軸とほぼ一致した同一光軸上
の前後方向に光(S1,S2)を投射するレーザー発射
装置21とを有している。また、上記筒体20,22の
下方には、これらを計測管10に沿って移動させる複数
の回転ローラ23が装着されており、回転ローラ23は
例えばステッピングモータなどで移動する長さが制御さ
れるとともに、その移動長が検出され、この測定器11
では、計測管10の入口に設けた受光装置25に光を投
射して初期設定をした後に、端部のロ―ラ23間の長さ
(2L)の1/2の長さで、尺取り虫上状に順次移動し
て計測が行われる。
The hole bend measuring device 11 is disclosed in, for example, Japanese Patent Laid-Open No. 62-62.
The same as the hole bending measuring device described in Japanese Patent No. 49210, and as shown in FIG. 2, a pair of hollow cylinder-shaped leading and trailing hollow cylindrical members of substantially the same length that are inserted into the measuring pipe 10. Measuring tube 26 in which one ends of the cylindrical bodies 20 and 22 are rotatably connected by a ball joint 24 having a through hole formed in the center thereof.
And a light receiver 28 provided near the front end of the preceding cylinder 20 so as to be orthogonal to the cylinder axis, and installed on the cylinder axis near the front end of the following cylinder 22 and being substantially the same as the cylinder axis. It has a laser emitting device 21 for projecting light (S1, S2) in the front-back direction on the optical axis. A plurality of rotating rollers 23 for moving them along the measuring tube 10 are mounted below the cylindrical bodies 20 and 22, and the moving length of the rotating rollers 23 is controlled by, for example, a stepping motor. The moving length is detected and the measuring device 11
Then, after projecting light to the light receiving device 25 provided at the entrance of the measuring tube 10 for initial setting, the length of the roller 23 at the end (2 L) is ½ of the length, and The measurement is performed by sequentially moving in a line.

【0014】そして、以上のレーザ投受光装置5,テレ
ビカメラ7,各孔曲がり測定器11の角度及び距離デー
タは演算処理部12に入力され、ここで各装置により得
られたデータを処理することで、レーザ投受光装置5の
据付位置を基準として掘削機1の座標位置及び基準位置
に対する水平,垂直方向の曲がり度合いの演算がなさ
れ、演算結果はディスプレイ14及びプリンタ15に出
力される。
Then, the angle and distance data of the laser projecting / receiving device 5, the television camera 7 and each hole bending measuring device 11 are input to the arithmetic processing unit 12, where the data obtained by each device is processed. Then, the bending position in the horizontal and vertical directions with respect to the coordinate position of the excavator 1 and the reference position is calculated with reference to the installation position of the laser projecting / receiving device 5, and the calculation result is output to the display 14 and the printer 15.

【0015】図3は一例として掘削機1の水平方向の偏
位量の演算方法を模式化して示すもので、トンネル坑の
水平方向をx軸にとり、長さ方向をy軸に取り、定点の
平面座標を(x0 ,y0 )とすると、投受光装置5によ
り計測された角度と離間距離Lにより演算処理部12は
そのx,y成分のLx,Ly を加えてターゲット6の平面
座標(x0 +Lx ,y0 +Ly )を演算する。
FIG. 3 schematically shows, as an example, a method for calculating the horizontal displacement amount of the excavator 1, in which the horizontal direction of the tunnel shaft is taken as the x-axis and the length direction is taken as the y-axis. Assuming that the plane coordinates are (x0, y0), the arithmetic processing unit 12 adds Lx and Ly of the x and y components to the plane coordinates (x0 + Lx) of the target 6 according to the angle measured by the light emitting and receiving device 5 and the distance L. , Y0 + Ly) is calculated.

【0016】また演算処理部12は各台車間4a,4b
…4nに沿って計測された距離及び角度に応じて後ろか
ら順に(x1 ,y1 ),(x2 ,y2 )…(xn ,yn
)を演算する。
Further, the arithmetic processing unit 12 is provided between the carriages 4a and 4b.
... (x1, y1), (x2, y2) ... (xn, yn) in order from the back according to the distance and angle measured along 4n.
) Is calculated.

【0017】さらに演算処理部12では最前列の台車4
nに対するターゲット8の平面座標(Xn +lx ,yn
+ly )をテレビカメラ7により計測された角度と離間
距離lに応じて演算する。
Further, in the arithmetic processing unit 12, the truck 4 in the front row is used.
Plane coordinates (Xn + 1x, yn) of the target 8 with respect to n
+ Ly) is calculated according to the angle measured by the television camera 7 and the separation distance l.

【0018】さらに演算処理部12では以上の座標値か
らx成分及びy成分のそれぞれを順次加算し、定点座標
に対する掘削機1の平面座標を割り出し、定点に対する
掘削機の水平方向の偏位量及び定点からの距離を演算
し、偏位量に応じた孔曲がり度合いとして出力する。な
お、実際には垂直方向の偏位量も同様の方法により垂直
軸であるz軸を加えることにより演算する。
Further, in the arithmetic processing unit 12, the x component and the y component are sequentially added from the above coordinate values to determine the plane coordinates of the excavator 1 with respect to the fixed point coordinates, and the horizontal displacement amount of the excavator with respect to the fixed point and The distance from the fixed point is calculated and output as the degree of hole bending according to the deviation amount. Actually, the deviation amount in the vertical direction is also calculated by adding the z axis which is the vertical axis in the same manner.

【0019】ところで、前記掘削機1の推進方向を決定
するのはスキンプレートの後部内周に配置された図示し
ない複数のシールドジャッキのセグメント2に対する推
進力であることから、以上の偏位量の演算結果に応じて
各シールドジャッキの推進力を水平及び垂直方向で制御
することで、計画路線に応じた修正制御を行うことが出
来る。
By the way, since the propulsion direction of the excavator 1 is determined by the propulsive force of a plurality of shield jacks 2 (not shown) arranged on the inner periphery of the rear portion of the skin plate, the above-mentioned deviation amount is determined. By controlling the propulsive force of each shield jack in the horizontal and vertical directions according to the calculation result, it is possible to perform correction control according to the planned route.

【0020】なお、掘削機1が推進を繰返す結果、最後
尾の台車4aが投受光装置5によって計測できない距
離,角度になったなら、再度投受光装置5を既知の定点
位置に移動し、ここを基準座標として前記と同様の計測
作業を繰り返せば良いが、この移動作業は計画路線が急
な曲がりを含むもので無いかぎり、従来の尺取り虫状の
計測作業に比べてその頻度が極めて少なく、計測工数に
与える影響も極めて小さく、また累積誤差などの影響も
小さい。
As a result of the excavator 1 repeating the propulsion, if the rearmost carriage 4a reaches a distance and angle that cannot be measured by the light projecting / receiving device 5, the light projecting / receiving device 5 is again moved to a known fixed point position. It is sufficient to repeat the same measurement work as the above with reference coordinates as the reference coordinates.However, unless the planned route includes a sharp bend, the frequency of this work is extremely low compared to the conventional scale-like insect measurement work, The effect on man-hours is extremely small, and the effect of accumulated error is also small.

【0021】また実施例ではこの発明を小口径断面のシ
ールド推進工法に適用したが、ボーリングマシン等によ
る掘削孔その他トンネルの先進導孔などの、トンネル掘
削孔であって台車が坑内を走行するトンネルにおけるト
ンネル掘進機の位置計測全般に適用できることは勿論で
ある。
In the embodiment, the present invention is applied to the shield propulsion method with a small diameter cross section. However, the tunnel is an excavation hole such as a boring machine or other advanced guide hole of a tunnel, in which a bogie runs inside the tunnel. Needless to say, it can be applied to general position measurement of tunnel machine in Japan.

【0022】[0022]

【発明の効果】以上実施例によって詳細に説明したよう
に、この発明によるトンネル掘進機の位置計測装置にあ
っては、第一の撮像手段と後尾台車に設けられたターゲ
ットとの角度及び距離により、後尾台車の定点からの座
標が演算され、計測管内の孔曲がり測定器によって、各
台車の座標が演算され、前部台車に設けた第二の撮像手
段に対するトンネル掘進機の角度及び距離に応じてこれ
の座標が演算され、定点の座標に対する各部の座標を加
算することで定点座標に対するトンネル掘進機の座標を
割り出し、水平方向及び垂直方向の偏位量に応じたトン
ネル掘進機の位置座標を出力する構成なので、従来測定
の障害となっていた台車を利用して、視準線を遮られる
ことなく自動測量により、容易且つ正確にトンネル掘進
機の位置を計測することができる。
As described above in detail with reference to the embodiments, in the position measuring device for a tunnel excavator according to the present invention, the angle and distance between the first image pickup means and the target provided on the rear bogie are used. , The coordinates from the fixed point of the rear bogie are calculated, the coordinates of each bogie are calculated by the hole bending measuring instrument in the measuring pipe, and the angle and distance of the tunnel excavator with respect to the second imaging means provided on the front bogie are calculated. The coordinates of this are calculated, and the coordinates of the tunnel excavator with respect to the fixed point coordinates are calculated by adding the coordinates of each part to the coordinates of the fixed point, and the position coordinates of the tunnel excavator according to the horizontal and vertical displacements are calculated. Because of the output configuration, the position of the tunnel machine can be easily and accurately measured by automatic surveying without obstructing the line of sight by using the trolley that has been an obstacle to conventional measurement. It is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明をシールド推進工法に適用した場合を
示す説明図である。
FIG. 1 is an explanatory diagram showing a case where the present invention is applied to a shield propulsion method.

【図2】計測管と孔曲がり測定器の内部構成を示す説明
図である。
FIG. 2 is an explanatory diagram showing an internal configuration of a measuring pipe and a hole bending measuring device.

【図3】掘削機の水平方向の偏位量の演算方法を模式化
して示す説明図である。
FIG. 3 is an explanatory view schematically showing a method of calculating a horizontal displacement amount of the excavator.

【符号の説明】[Explanation of symbols]

1 シールド掘削機 2 セグメント 3 軌条 4 連結台車 4a 最後尾台車 4n 最前部台車 5 レーザ投受光装置(第一の撮像装置) 6,8 ターゲット 7 テレビカメラ(第二の撮像装置) 9 フレキシブルジョイント 10 計測管 11 孔曲がり計測器 12 演算処理部(演算手段) 1 Shield excavator 2 Segment 3 Rail 4 Connection trolley 4a Last trolley 4n Front trolley 5 Laser light emitting / receiving device (first imaging device) 6,8 Target 7 TV camera (second imaging device) 9 Flexible joint 10 Measurement Pipe 11 Hole bend measuring instrument 12 Arithmetic processing unit (arithmetic means)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 トンネル掘削孔の定点位置に配置された
第一の撮像装置と、トンネル掘削孔に敷設された軌条上
を走行する複数の連結台車の後尾台車に配置された前記
第一の撮像装置のターゲットと、前記連結台車の前部台
車に配置されてトンネル掘削機の定位置を監視する第二
の撮像装置と、前記各連結台車に備えられ、かつ互いに
フレキシブルジョイントを介して連結された計測管と、
該計測管内に挿通されて計測管の曲がり度合いを検出す
る孔曲がり測定器と、前記第一の撮像装置とターゲット
間の距離及び角度,前記孔曲がり測定器により計測され
た計測管の距離及び角度、および前記第二の撮像装置と
トンネル掘進機との距離及び角度により各部の座標を演
算するとともに、定点座標に対する各部の座標を加算
し、トンネル掘進機の位置座標を割り出す演算手段を設
けたことを特徴とするトンネル掘進機の位置計測装置。
1. A first imaging device arranged at a fixed point position of a tunnel excavation hole, and the first imaging device arranged on a trailing bogie of a plurality of connecting carriages traveling on a rail laid in the tunnel excavation hole. A target of the device, a second imaging device arranged on the front carriage of the connecting carriage to monitor the fixed position of the tunnel excavator, and provided on each connecting carriage, and connected to each other via a flexible joint. Measuring tube,
A hole bend measuring instrument that is inserted into the measuring pipe to detect the bending degree of the measuring pipe, a distance and an angle between the first imaging device and the target, and a distance and an angle of the measuring pipe measured by the hole bending measuring instrument. And a calculation means for calculating the coordinates of each part based on the distance and angle between the second image pickup device and the tunnel machine and adding the coordinates of each part to the fixed point coordinates to determine the position coordinates of the tunnel machine. Position measuring device for tunnel machine.
JP7766692A 1992-03-31 1992-03-31 Position measurement device for tunnel machine Expired - Lifetime JP2814829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7766692A JP2814829B2 (en) 1992-03-31 1992-03-31 Position measurement device for tunnel machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7766692A JP2814829B2 (en) 1992-03-31 1992-03-31 Position measurement device for tunnel machine

Publications (2)

Publication Number Publication Date
JPH05280982A true JPH05280982A (en) 1993-10-29
JP2814829B2 JP2814829B2 (en) 1998-10-27

Family

ID=13640208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7766692A Expired - Lifetime JP2814829B2 (en) 1992-03-31 1992-03-31 Position measurement device for tunnel machine

Country Status (1)

Country Link
JP (1) JP2814829B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100918A (en) * 2005-10-07 2007-04-19 Jfe Koken Corp Curvature shape control device and pipe feeding method
CN109991025A (en) * 2019-04-08 2019-07-09 中国矿业大学(北京) A kind of subway segment deviation automatic measurement target and its measurement method
CN116295313A (en) * 2023-05-22 2023-06-23 太原理工大学 Real-time positioning system of heading machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100918A (en) * 2005-10-07 2007-04-19 Jfe Koken Corp Curvature shape control device and pipe feeding method
JP4692205B2 (en) * 2005-10-07 2011-06-01 Jfeエンジニアリング株式会社 Curved shape management device and pipe feeding method
CN109991025A (en) * 2019-04-08 2019-07-09 中国矿业大学(北京) A kind of subway segment deviation automatic measurement target and its measurement method
CN109991025B (en) * 2019-04-08 2023-11-14 中国矿业大学(北京) Automatic subway segment deviation measuring target and measuring method thereof
CN116295313A (en) * 2023-05-22 2023-06-23 太原理工大学 Real-time positioning system of heading machine
CN116295313B (en) * 2023-05-22 2023-07-18 太原理工大学 Real-time positioning system of heading machine

Also Published As

Publication number Publication date
JP2814829B2 (en) 1998-10-27

Similar Documents

Publication Publication Date Title
US9037336B2 (en) Robot system
JPH0321045B2 (en)
JPH0772472B2 (en) Horizontal deviation measuring device for underground excavator
JP2814829B2 (en) Position measurement device for tunnel machine
JP2003227718A (en) Instrument and method for measuring driving locus and driving attitude for shield driving method and device and method for managing driving locus
JP2001003683A (en) Device and method for propelling pipe
JP3759281B2 (en) Underground excavator position measurement device
JP3864102B2 (en) Coordinate measurement method of excavation line in propulsion excavation method
JP2742493B2 (en) Flaw detector for self-supporting traveling plate
JPH0727564A (en) Measuring device for position and attitude of excavator
JP3407174B2 (en) Non-drilling measuring device
JPH08338721A (en) Posture measuring instrument of shield machine for pipe with small diameter
JPH0742093Y2 (en) Position detection device for moving body
JP2688690B2 (en) Surveying system
JPH04309809A (en) Inside tunnel measuring method in tunnel excavation work
JP3140947B2 (en) Propulsion position detection method
WO1997008429A1 (en) Method and apparatus for measuring position and attitude of tunnel boring machine
JPH09243365A (en) Position detecting device, surveying method, and digging-direction control system
JP3384766B2 (en) Automatic tunnel surveying method
JP2007046278A (en) Small diameter pipe jacking method
JPH0348116A (en) Measuring apparatus of position and attitude of digging machine of small diameter
JP3056870B2 (en) Propulsion device
JPS5938557Y2 (en) Attitude position detection device for underground pipe burying machine
JP3441006B2 (en) Correction method of position and attitude angle of thruster
JPH1088969A (en) Pipeline measuring device