JP2007100918A - Curvature shape control device and pipe feeding method - Google Patents

Curvature shape control device and pipe feeding method Download PDF

Info

Publication number
JP2007100918A
JP2007100918A JP2005294486A JP2005294486A JP2007100918A JP 2007100918 A JP2007100918 A JP 2007100918A JP 2005294486 A JP2005294486 A JP 2005294486A JP 2005294486 A JP2005294486 A JP 2005294486A JP 2007100918 A JP2007100918 A JP 2007100918A
Authority
JP
Japan
Prior art keywords
pipe
inner pipe
target
assumed
joined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005294486A
Other languages
Japanese (ja)
Other versions
JP4692205B2 (en
Inventor
Jun Adachi
純 足立
Kenichi Kojima
賢一 小嶋
Yoshiteru Aizawa
好輝 相沢
Mitsuo Sakurai
光夫 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Koken Co Ltd
Original Assignee
JFE Koken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Koken Co Ltd filed Critical JFE Koken Co Ltd
Priority to JP2005294486A priority Critical patent/JP4692205B2/en
Publication of JP2007100918A publication Critical patent/JP2007100918A/en
Application granted granted Critical
Publication of JP4692205B2 publication Critical patent/JP4692205B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To feed a pipe into a jacking pipe inside after mating for joining a shape of a main pipe with a shape of the jacking pipe by calculating the most appropriate inside pipe end part adjusting angle which meets the curvature of the jacking pipe toward a bevel of each joining part of an inside pipe constituting the main pipe. <P>SOLUTION: A coordinate is worked out by measuring positions of a target 7 of the three points provided in the position at a constant distance away from the back end part of the feeding direction of the inside pipe 6n which is joined inside a starting shaft 2 and forward two pieces of the inside pipe 6(n-1), 6(n-2). Assuming that the inside pipe 6n connected at a plurality of correction angles for assumption is joined, a position error toward the jacking pipe 4 of each target 7 ahead than the inside pipe 6n is calculated when the inside pipe 6n is fed into the jacking pipe 4 curved at a constant curvature. Then a linear correction angle at which position errors of each target 7 are the smallest is sorted so that the inside pipe 6n is connected with the inside pipe 6(n-1) and the shape of the main pipe 5 constituting plural inside pipes 6 is substantially same as the curvature of the jacking pipe 4 so that the main pipe 5 is stably fed into the jacking pipe 4 inside. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、一定の曲率で湾曲している推進管内に導入する本管の形状を推進管の形状に合わせるために本管を構成する各内管の接合部における内管端部調整角を推進管の曲率に応じて算出する湾曲形状管理装置及び管送り込み方法に関するものである。   This invention propels the inner tube end adjustment angle at the joint of each inner tube constituting the main tube so that the shape of the main tube introduced into the propulsion tube curved with a certain curvature matches the shape of the propulsion tube. The present invention relates to a curved shape management device and a pipe feeding method which are calculated according to the curvature of a pipe.

例えばガス管等を敷設する場合、発進立坑から到達立坑の間に鋼管やヒューム管からなる推進管を推進させ、本管を構成する内管を発進立坑で接合により順次接続しながら推進管内に導入している。   For example, when laying gas pipes, etc., propulsion pipes made of steel pipes and fume pipes are propelled between the starting shaft and the reaching shaft, and the inner pipes constituting the main pipe are introduced into the propulsion pipe while being sequentially connected by joining at the starting shaft is doing.

この本管を導入する推進管が一定の曲率で湾曲している場合、本管の形状を推進管の形状に合わせるため、現場で本管を構成する内管を順次接続するときに、推進管の曲率に合わせて接続する内管を他方の内管に対して僅かに傾けて接合する必要がある。このため特許文献1に示すように、接続する内管を他方の内管に対して内管の単位長さと推進管の曲率に応じて定められた一定微小角度だけ傾けた状態で接続する内管の端部を他方の内管の端面に倣わせて切断して内管相互の端面を一致させて接合している。
特開昭55−54268号公報
When the propulsion pipe into which the main pipe is introduced is curved with a certain curvature, in order to match the shape of the main pipe with the shape of the propulsion pipe, when the inner pipes constituting the main pipe are sequentially connected at the site, the propulsion pipe It is necessary to join the inner tube to be connected to the other inner tube with a slight inclination to the other inner tube. For this reason, as shown in Patent Document 1, the inner pipe to be connected is inclined with respect to the other inner pipe by a certain minute angle determined according to the unit length of the inner pipe and the curvature of the propulsion pipe. The end portions of the inner pipes are cut along the end face of the other inner pipe so that the end faces of the inner pipes coincide with each other.
JP-A-55-54268

推進管が一定の曲率で湾曲している場合、特許文献1に示すように、現場で接続する内管の端部を他方の内管の端面に倣わせて切断して内管相互の端面を一致させていると内管の切断作業に多くの時間を要してしまう。   When the propulsion pipe is curved with a certain curvature, as shown in Patent Document 1, the end of the inner pipe connected at the site is cut along the end face of the other inner pipe to cut the end faces of the inner pipes together. If they are matched, it takes a lot of time to cut the inner tube.

また、接続する内管を他方の内管に対して内管の単位長さと推進管の曲率に応じて定められた一定微小角度で傾けて接続する内管の端部を他方の内管の端面に倣わせて切断しても、内管の製作精度により単位長さは必ずしも一定でないため、本管の形状を湾曲した推進管の形状に精度良く合わせることは容易でなかった。   In addition, the end of the inner tube that is connected to the other inner tube is inclined at a fixed minute angle determined according to the unit length of the inner tube and the curvature of the propulsion tube with respect to the other inner tube. Even if cut according to the above, the unit length is not always constant due to the manufacturing accuracy of the inner tube, so it is not easy to accurately match the shape of the main tube to the shape of the curved propulsion tube.

この発明は、このような短所を改善し、一定の曲率で湾曲している推進管内に導入する内管を順次接続するとき、接続する内管の端部を他方の内管の端面に倣わせて切断せずに、各接合部の開先に対して推進管の曲率に応じた最適な内管端部調整角を算出して本管の形状を推進管の形状に合わせることができる湾曲形状管理装置と管送り込み方法を提供することを目的とするものである。   The present invention improves such disadvantages, and when connecting an inner pipe to be introduced into a propulsion pipe that is curved with a constant curvature, the end of the inner pipe to be connected follows the end face of the other inner pipe. Curved shape that can calculate the optimum inner tube end adjustment angle according to the curvature of the propulsion pipe for the groove of each joint without cutting, and match the shape of the main pipe with the shape of the propulsion pipe The object is to provide a management device and a pipe feeding method.

この発明の湾曲形状管理装置は、発進立坑から到達立坑の間で一定の曲率で湾曲している外管内に内管を順次接合しながら送り込んで形成する内管の形状を選定する湾曲形状管理装置であって、複数のターゲットと測量装置及び情報処理装置を有し、前記ターゲットは、各内管の送り込み方向の後端部から一定距離隔てた位置に取り付けられ、前記測量装置は、発進立坑内で接合する送り順がn番目の内管に設けられたターゲットと外管に送り込まれた送り順が(n−1)番目の内管に設けられたターゲット及び送り順が(n−2)番目の内管に設けられたターゲットの位置を測量して3点のターゲットの座標値を算出し、前記情報処理装置は、入力装置と演算処理装置を有し、前記入力装置は、一定曲率で湾曲している外管が形成する曲線の半径と、発進立坑で内管を送り込むときの送込角及び外管に送り込む内管の送り順を入力するとともに、各内管を接合するとき、各接合部における内管端部調整用の修正角の仮定値である複数の仮定修正角を入力し、前記演算処理装置は、座標入力部とデータ記憶部と演算処理部及び評価部を有し、前記座標入力部は、前記測量装置で算出した3点のターゲットの座標値を入力し、前記データ記憶部は、入力装置で入力した各種データを記憶するとともに内管の送り順に対応して各内管の接合部における内管端部調整用の線形修正角を記憶し、前記演算処理部は、入力した複数の仮定修正角でそれぞれ内管を接合したと仮定して外管に送り込んだときの、仮定修正角で接合したとした内管より送り込み方向前方の各ターゲットの位置を、座標入力部で入力した3点のターゲットの座標と、仮定修正角と、仮定修正角で接合して送り込んだとした内管にあるターゲットの位置と、内管を送り込むときの送込角及び仮定修正角で接合したとした内管より送り込み方向前方の各内管を接合したときの線形修正角から演算して外管に対する位置誤差を算出し、前記評価部は、演算処理部で算出した各ターゲットの位置誤差が最も小さくなる仮定修正角を選択して接合部の内管端部調整用の線形修正角を決定することを特徴とする。   The curved shape management device according to the present invention selects a shape of an inner tube that is formed by feeding the inner tube while sequentially joining the outer tube that is curved with a certain curvature between the starting shaft and the reaching shaft. A plurality of targets, a surveying device, and an information processing device, wherein the targets are attached to a position separated from the rear end of the feeding direction of each inner pipe by a certain distance, and the surveying device is installed in a start shaft And the target provided in the (n-1) th inner pipe and the feed order provided in the (n-1) th inner pipe and the feed order provided in the (n-2) th inner pipe. The position of the target provided in the inner pipe is measured to calculate the coordinate values of the three targets, and the information processing apparatus has an input device and an arithmetic processing device, and the input device is curved with a constant curvature. Curve formed by the outer tube Enter the radius, the feed angle when feeding the inner pipe at the start shaft, and the feed order of the inner pipes fed to the outer pipe, and when joining the inner pipes, correction for adjusting the inner pipe end at each joint A plurality of assumed correction angles, which are assumed values of angles, are input, and the arithmetic processing unit includes a coordinate input unit, a data storage unit, an arithmetic processing unit, and an evaluation unit, and the coordinate input unit is calculated by the surveying device. The coordinate values of the three target points are input, and the data storage unit stores various data input by the input device and corresponds to the inner tube end adjustment at the joint portion of each inner tube corresponding to the feeding order of the inner tube. The linear correction angle is stored, and the arithmetic processing unit assumes that the inner pipe is joined at the assumed correction angles when the inner pipe is fed to the outer pipe on the assumption that the inner pipes are joined at the plurality of input assumed correction angles. The position of each target in front of the feeding direction The coordinates of the three targets input at the input unit, the assumed correction angle, the position of the target in the inner pipe that was assumed to be joined and sent at the assumed correction angle, the feed angle and the assumed correction when the inner pipe is fed Calculate the position error relative to the outer pipe by calculating from the linear correction angle when each inner pipe in the feed direction is joined from the inner pipe joined at the corner, and the evaluation unit calculates each target calculated by the arithmetic processing unit. The assumed correction angle that minimizes the position error is selected, and the linear correction angle for adjusting the inner pipe end of the joint is determined.

前記演算処理部は、仮定修正角で接合したとした内管より送り込み方向直前のターゲットの位置を、座標入力部で算出した3点のターゲットの座標と、仮定修正角と、仮定修正角で接合したとした内管にあるターゲットの位置及び内管を送り込むときの送込角から演算し、仮定修正角で接合したとした内管より送り込み方向直前のターゲットより前方のターゲットの位置を、1つ後方のターゲットの位置と、そのターゲットがある内管を接合したときの線形修正角と、仮定修正角で接合したとした内管の仮定修正角及び送込角で演算すると良い。   The arithmetic processing unit joins the position of the target immediately before the feeding direction from the inner pipe joined at the assumed correction angle, the target coordinates calculated by the coordinate input unit, the assumed correction angle, and the assumed correction angle. One target position is calculated from the position of the target in the inner pipe and the feed angle when the inner pipe is fed, and the target ahead of the target in the feed direction from the inner pipe joined at the assumed correction angle. It is preferable to calculate the position of the rear target, the linear correction angle when the target inner pipe is joined, and the assumed correction angle and the feeding angle of the inner pipe assumed to be joined at the assumed correction angle.

この発明の管送り込み方法は、発進立坑から到達立坑の間で一定の曲率で湾曲している外管内に内管を順次接合しながら送り込む管送り込み方法であって、発進立坑内で接合する送り順がn番目の内管の送り込み方向の後端部から一定距離隔てた位置に設けられたターゲットと外管に送り込まれた送り順が(n−1)番目の内管の送り込み方向の後端部から一定距離隔てた位置に設けられたターゲット及び送り順が(n−2)番目の内管の送り込み方向の後端部から一定距離隔てた位置に設けられたターゲットの位置を測量し、測量した3点のターゲットの測量データから3点のターゲットの座標を算出し、複数の仮定修正角でそれぞれ内管を接合したと仮定して外管に送り込んだときの、仮定修正角で接合したとした内管より送り込み方向前方の各ターゲットの位置を、算出した3点のターゲットの座標と、仮定修正角と、仮定修正角で接合して送り込んだとした内管にあるターゲットの位置と、内管を送り込むときの送込角及び仮定修正角で接合したとした内管より送り込み方向前方の各内管を接合したときの線形修正角から演算して外管に対する位置誤差を算出し、算出した各ターゲットの位置誤差が最も小さくなる仮定修正角を選択して接合部の内管端部調整用の線形修正角を決定し、決定した線形修正角により内管の接合部における内管端部調整角を設定して接合する内管を外管に送り込んだ内管に接合して外管に送り込むことを特徴とする。   The pipe feeding method according to the present invention is a pipe feeding method in which an inner pipe is fed into an outer pipe that is curved with a constant curvature between a starting shaft and a reaching shaft while sequentially joining the inner pipe. Is a target provided at a position spaced apart from the rear end of the nth inner tube in the feeding direction and the rear end of the (n-1) th inner tube in the feeding direction. The target provided at a position separated by a certain distance from the target and the position of the target provided at a position spaced by a certain distance from the rear end of the feeding direction of the (n-2) th inner pipe in the feeding order were measured and surveyed. It was assumed that the coordinates of the three target points were calculated from the survey data of the three target points, and the joints were joined at the assumed correction angle when they were sent to the outer pipe assuming that the inner pipes were joined at a plurality of assumed correction angles. Feed direction from inner pipe The position of each target is calculated with the calculated three target coordinates, the assumed correction angle, the target position in the inner pipe that is joined at the assumed correction angle, and the sending position when the inner pipe is sent. The position error relative to the outer pipe is calculated by calculating from the linear correction angle when each inner pipe in the feed direction is joined from the inner pipe that is joined at the insertion angle and the assumed correction angle. Select the smallest assumed correction angle to determine the linear correction angle for adjusting the inner pipe end of the joint, and set the inner pipe end adjustment angle at the inner pipe joint based on the determined linear correction angle to join The inner pipe is joined to the inner pipe fed into the outer pipe and fed into the outer pipe.

また、仮定修正角で接合したとした内管より送り込み方向直前のターゲットの位置を、算出した3点のターゲットの座標と、仮定修正角と、仮定修正角で接合したとした内管にあるターゲットの位置及び内管を送り込むときの送込角から演算し、仮定修正角で接合したとした内管より送り込み方向直前のターゲットより前方のターゲットの位置を、1つ後方のターゲットの位置と、そのターゲットがある内管を接合したときの線形修正角と、仮定修正角で接合したとした内管の仮定修正角及び送込角で演算すると良い。   In addition, the target position immediately before the feeding direction from the inner pipe assumed to be joined at the assumed correction angle, the target in the inner pipe assumed to be joined at the calculated three target coordinates, the assumed correction angle, and the assumed correction angle. And the position of the target in front of the target immediately before the feeding direction from the inner pipe joined at the assumed correction angle, and the position of the target one behind, It is preferable to calculate with the linear correction angle when the target inner pipe is joined, and the assumed correction angle and the feeding angle of the inner pipe joined with the assumed correction angle.

この発明は、発進立坑内で接合する内管とその前方2本の内管の送り込み方向の後端部から一定距離隔てた位置に設けられた3点のターゲットの位置を測量して座標を算出し、複数の仮定修正角で接合する内管を接合したと仮定して内管に送り込んだときの、仮定修正角で接合したとした内管より送り込み方向前方の各ターゲットの位置を、算出した3点のターゲットの座標と、仮定修正角と、仮定修正角で接合して送り込んだとした内管にあるターゲットの位置と、内管を送り込むときの送込角及び仮定修正角で接合したとした内管より送り込み方向前方の各内管を接合したときの線形修正角から演算して外管に対する位置誤差を算出し、算出した各ターゲットの位置誤差が最も小さくなる線形修正角を選択して接合する内管を接合するから、外管内に送り込む複数の内管から構成する本管の形状を外管の曲率にほぼ合わせることができ、本管を外管内に安定して送り込むことができる。   This invention calculates the coordinates by measuring the positions of three targets provided at a distance from the rear ends of the inner pipe to be joined in the starting shaft and the two inner pipes in the feed direction. Then, the position of each target ahead of the feed direction was calculated from the inner pipe that was assumed to be joined at the assumed correction angle when it was sent to the inner pipe assuming that the inner pipes that were joined at a plurality of assumed correction angles were joined. It is assumed that the coordinates of the three points of the target, the assumed correction angle, the position of the target in the inner pipe that was joined and sent at the assumed correction angle, and the feed angle and the assumed correction angle when the inner pipe is fed Calculate the position error relative to the outer pipe by calculating from the linear correction angle when each inner pipe in the feed direction ahead of the inner pipe is joined, and select the linear correction angle that minimizes the calculated position error of each target. Whether to join inner pipes to be joined , Can be matched substantially to the shape of the main pipe which constitutes a plurality of inner tubes for feeding the outer tube to the curvature of the outer tube, it is possible to feed the main stably the outer tube.

また、内管の長さに誤差があっても、接合する内管とその前方の内管に設けられたターゲットの位置を測量することにより、各内管の長さを検出することができ、接合部の線形修正角を外管の湾曲形状に合わせて精度良く決定することができる。   In addition, even if there is an error in the length of the inner pipe, by measuring the position of the inner pipe to be joined and the target provided in the front of the inner pipe, the length of each inner pipe can be detected, The linear correction angle of the joint can be accurately determined according to the curved shape of the outer tube.

図1はこの発明の湾曲形状管理装置の構成を示すブロック図である。湾曲形状管理装置1は、図2の平面断面図に示すように、発進立坑2から到達立坑3の間で一定の曲率で湾曲している推進管4内に送り込んで本管5を構成する各内管6の各接合部の曲がり角度を示す内管端部調整用の線形修正角を算出して本管5の形状を選定するものであり、複数のターゲット7と測量装置8及び情報処理装置9を有する。ターゲット7は、図3(a)の平面断面図と(b)の側面断面図に示すように、推進管4が形成する曲線の半径Rに応じて定められた送込角βで推進管4に送り込む各内管6の後端部から一定距離隔てた位置に取り付けられている。測量装置8は、図3に示すように、発進立坑2内に設置され、接合する送り順がn番目の内管6nに設けられたターゲット7nと推進管4に送り込まれた送り順が(n−1)番目の内管6(n−1)に設けられたターゲット7(n−1)及び送り順が(n−2)番目の内管6(n−2)に設けられたターゲット7(n−2)の位置を測量して各ターゲット7n〜7(n−2)の座標値を算出して情報処理装置9に出力する。   FIG. 1 is a block diagram showing the configuration of the curved shape management device of the present invention. As shown in the plan sectional view of FIG. 2, the curved shape management device 1 sends each of the main pipes 5 into the propulsion pipe 4 which is curved with a certain curvature between the starting shaft 2 and the reaching shaft 3. The shape of the main pipe 5 is selected by calculating a linear correction angle for adjusting the inner pipe end part indicating the bending angle of each joint part of the inner pipe 6, and a plurality of targets 7, surveying devices 8, and information processing devices are selected. 9 As shown in the plan sectional view of FIG. 3A and the side sectional view of FIG. 3B, the target 7 has a propulsion pipe 4 at a feed angle β determined according to the radius R of the curve formed by the propulsion pipe 4. It is attached at a position spaced apart from the rear end of each inner pipe 6 fed into the pipe. As shown in FIG. 3, the surveying device 8 is installed in the start shaft 2, and the joining order of the target 7 n provided in the nth inner pipe 6 n and the feeding order sent to the propulsion pipe 4 are (n -1) Target 7 (n-1) provided in the inner pipe 6 (n-1) of the first and target 7 (n-2) provided in the (n-2) th inner pipe 6 (n-2) The position of (n-2) is surveyed, the coordinate values of the targets 7n to 7 (n-2) are calculated and output to the information processing apparatus 9.

情報処理装置9は、入力装置10と演算処理装置11と表示装置12及び外部記憶装置13を有する。入力装置10は、一定曲率で湾曲している推進管4が形成する曲線の半径Rや推進管4に送り込む内管6の送り順及び内管6の各接合部における内管端部調整用の修正角の仮定値である仮定修正角等の各種データを演算処理装置11に入力する。演算処理装置11は、中央制御部14とプログラム記憶部15とデータ記憶部16と座標入力部17と演算処理部18及び評価部19を有する。中央制御部14はプログラム記憶部15に格納された制御プログラムにより装置全体の動作を制御する。データ記憶部16は各種データを記憶するものであり、図4に示すように、入力装置10から入力した推進管4の曲線半径Rや各内管6の長さ等の各種データを記憶する入力情報記憶領域16aと、内管6の送り順毎に3点のターゲット7nとターゲット7(n−1)及びターゲット7(n−2)の座標値を記憶する座標記憶領域16bと、入力装置10から入力した各接合部における内管端部調整用の複数の仮定修正角と各修正角に応じたデータを記憶する仮定修正角記憶領域16c及び内管6の送り順毎に接合するときの内管端部調整用の線形修正角を記憶する線形修正角記憶領域16dを有する。座標入力部17は測量装置8で算出した3点のターゲット7n〜ターゲット7(n−2)のXY座標を中央制御部14に入力する。演算処理部18は内管端部調整用の複数の仮定修正角で内管6(n−1)に内管6nを接合したと仮定して推進管4に送り込んだときの各ターゲット7の推進管4に対する位置誤差をシミュレーションして算出する。評価部19は、演算処理部18で算出した各ターゲット7の位置誤差が最低となる仮定修正角を選択して内管端部調整用の線形修正角を決定する。表示装置12は各種データや内管6の送り順毎に仮定した複数の仮定修正角及び線形修正角等を表示する。外部記憶装置13はデータ記憶部16に格納された各種データを保持する。   The information processing device 9 includes an input device 10, an arithmetic processing device 11, a display device 12, and an external storage device 13. The input device 10 is used for adjusting the radius R of the curve formed by the propulsion pipe 4 curved with a constant curvature, the feeding order of the inner pipe 6 fed into the propulsion pipe 4, and the inner pipe end at each joint portion of the inner pipe 6. Various data such as an assumed correction angle, which is an assumed value of the correction angle, is input to the arithmetic processing unit 11. The arithmetic processing unit 11 includes a central control unit 14, a program storage unit 15, a data storage unit 16, a coordinate input unit 17, an arithmetic processing unit 18, and an evaluation unit 19. The central control unit 14 controls the operation of the entire apparatus by a control program stored in the program storage unit 15. The data storage unit 16 stores various types of data. As shown in FIG. 4, the data storage unit 16 stores various types of data such as the curve radius R of the propulsion pipe 4 and the length of each inner pipe 6 input from the input device 10. An information storage area 16a, a coordinate storage area 16b for storing coordinate values of three targets 7n, targets 7 (n-1) and targets 7 (n-2) for each feeding order of the inner tube 6, and an input device 10 A plurality of assumed correction angles for adjusting the inner pipe end at each joint input from the above, and an assumed correction angle storage area 16c for storing data corresponding to each correction angle, and the inner pipe 6 when the inner pipe 6 is joined for each feed order. It has a linear correction angle storage area 16d for storing a linear correction angle for adjusting the pipe end. The coordinate input unit 17 inputs the XY coordinates of the three targets 7 n to 7 (n−2) calculated by the surveying instrument 8 to the central control unit 14. The arithmetic processing unit 18 propels each target 7 when the inner tube 6n is joined to the inner tube 6 (n-1) at a plurality of assumed correction angles for adjusting the inner tube end, and is sent to the propulsion tube 4. A position error with respect to the tube 4 is calculated by simulation. The evaluation unit 19 selects an assumed correction angle at which the position error of each target 7 calculated by the arithmetic processing unit 18 is the lowest, and determines a linear correction angle for adjusting the inner tube end. The display device 12 displays various data and a plurality of assumed correction angles and linear correction angles assumed for each feeding order of the inner tube 6. The external storage device 13 holds various data stored in the data storage unit 16.

この湾曲形状選定装置1で各ターゲット7の推進管4に対する位置誤差を算出して推進管4の形状に合わせた本管5の形状を選定して内管6を推進管4内に送り込むときの処理を図5のフローチャートを参照して説明する。   The curved shape selection device 1 calculates the position error of each target 7 with respect to the propulsion tube 4, selects the shape of the main pipe 5 that matches the shape of the propulsion pipe 4, and feeds the inner pipe 6 into the propulsion pipe 4. The process will be described with reference to the flowchart of FIG.

まず、オペレータが情報処理装置9の入力装置10から湾曲した推進管4の曲線半径Rと、推進管4の曲線半径Rに応じて定めた内管端部調整用修正角α(R)及び発進立坑2で内管6を送り込むときの送込角βを入力してデータ記憶部16の入力情報記憶領域16a格納する(ステップS1)。この状態で、図6に示すように、発進立坑2から送り順が1番目の内管61を推進管4に送り込み、送り順が2番目の内管62をデータ記憶部16に記憶した内管端部調整用修正角α(R)で内管61に接合して推進管4に送り込む。次に、送り順が3番目の内管63の先端部を内管62の後端部に突き当ててセットし、入力装置10から送り順を入力してデータ記憶部16の座標記憶領域16bと線形修正角記憶領域16dに格納する(ステップS2)。その後、ベント管61と内管62及び内管63に設けたターゲット71とターゲット72及びターゲット73の3点の位置を測量装置8で測量してターゲット71〜73の座標値を情報処理装置9に入力する。情報処理装置9の座標入力部17は入力した3点のターゲット71〜ターゲット73のX,Y座標を送り順に対応させてデータ記憶部16の座標記憶領域16bに格納する(ステップS3)。この測量装置8による3点のターゲット71〜ターゲット73の測量が終了すると、オペレータは入力装置10で内管62と内管63の接合部における内管端部調整用の修正角を入力した内管端部調整用修正角Rαを参照にして複数、例えば4種類仮定して入力する。中央制御部14は入力した複数の仮定修正角αa〜αdをデータ記憶部16の仮定修正角記憶領域16cに格納し、表示装置12に表示する(ステップS4)。この仮定修正角αは、図7(a)に示すように、接合する内管6nを前段の内管6(n−1)に対して推進管4が形成する曲線の中心方向に傾ける場合はプラスの符号を付け、図7(b)に示すように、接合する内管6nを前段の内管6(n−1)に対して推進管4が形成する曲線の中心方向と反対側に傾ける場合はマイナスの符号を付ける。   First, the curve radius R of the propulsion pipe 4 curved by the operator from the input device 10 of the information processing apparatus 9, the correction angle α (R) for adjusting the inner pipe end determined according to the curve radius R of the propulsion pipe 4, and the start The feed angle β when the inner pipe 6 is fed by the shaft 2 is input and stored in the input information storage area 16a of the data storage unit 16 (step S1). In this state, as shown in FIG. 6, the inner pipe 61 having the first feed order from the start shaft 2 is fed into the propulsion pipe 4, and the inner pipe 62 having the second feed order stored in the data storage unit 16. It is joined to the inner pipe 61 at the end adjustment angle α (R) and fed into the propulsion pipe 4. Next, the leading end of the inner pipe 63 with the third feeding order is set against the rear end of the inner pipe 62, the feeding order is input from the input device 10, and the coordinate storage area 16b of the data storage unit 16 is set. Stored in the linear correction angle storage area 16d (step S2). Thereafter, the three positions of the target 71, the target 72, and the target 73 provided on the vent pipe 61, the inner pipe 62, and the inner pipe 63 are measured by the surveying device 8, and the coordinate values of the targets 71 to 73 are stored in the information processing device 9. input. The coordinate input unit 17 of the information processing device 9 stores the input X and Y coordinates of the three targets 71 to 73 in the coordinate storage area 16b of the data storage unit 16 in the order of sending (step S3). When the surveying of the three targets 71 to 73 by the surveying device 8 is completed, the operator inputs the correction angle for adjusting the inner tube end at the joint between the inner tube 62 and the inner tube 63 with the input device 10. A plurality of, for example, four types, for example, are input with reference to the edge adjustment correction angle Rα. The central control unit 14 stores the input plurality of assumed correction angles αa to αd in the assumed correction angle storage area 16c of the data storage unit 16 and displays them on the display device 12 (step S4). As shown in FIG. 7A, the assumed correction angle α is obtained when the inner pipe 6n to be joined is tilted toward the center of the curve formed by the propulsion pipe 4 with respect to the preceding inner pipe 6 (n-1). 7B, the inner pipe 6n to be joined is tilted to the opposite side of the center direction of the curve formed by the propulsion pipe 4 with respect to the inner pipe 6 (n-1) at the previous stage. If so, attach a minus sign.

この状態で入力装置10でシミュレーションの実行が指示されると、演算処理部18は座標記憶領域16bに記憶した内管62と内管63に設けたターゲット72,73のX,Y座標からターゲット72,73間の距離すなわち内管63の長さL3を演算する。そして表示装置12に表示された仮定修正角αa〜αdのいずれかを入力装置10で選択すると、選択された例えば仮定修正角αaで送り順が2番目の内管62に送り順が3番目の内管63を接合して推進管4に送込角βで送り込んだとしたときの、内管62に設けたターゲット72のX,Y座標を、仮定修正角αaと送り込んだときの内管63に設けたターゲット63のX、Y座標と内管63の長さL3及び送込角βで演算し、推進管4の曲線半径Rで示す曲線との誤差を算出する。   When execution of simulation is instructed by the input device 10 in this state, the arithmetic processing unit 18 uses the X and Y coordinates of the targets 72 and 73 provided in the inner tube 62 and the inner tube 63 stored in the coordinate storage area 16b to target 72. , 73, that is, the length L3 of the inner pipe 63 is calculated. When any one of the assumed correction angles αa to αd displayed on the display device 12 is selected by the input device 10, the feed order is set to the third inner pipe 62 having the selected feed rate, for example, the assumed correction angle αa. When the inner pipe 63 is joined and sent to the propulsion pipe 4 at the feed angle β, the X and Y coordinates of the target 72 provided on the inner pipe 62 are fed with the assumed correction angle αa to the inner pipe 63. Is calculated by the X and Y coordinates of the target 63 provided in the above, the length L3 of the inner tube 63 and the feed angle β, and an error from the curve indicated by the curve radius R of the propulsion tube 4 is calculated.

例えば図8(a)に示すように、内管63をセットして測量装置8で3点のターゲット71〜ターゲット73の位置を測量したとき、ターゲット73が位置P3(x3,y3)にあり、ターゲット72が位置P2(x2,y2)にあってターゲット71が位置P1(x1,y1)にある場合、内管63を内管62に仮定修正角αaで接合したとすると、ターゲット73は位置P3(x3,y3)から僅かに離れた位置P3a(x3a,y3a)に移動する。この状態で内管63を、図8(b)に示すように、送込角βで推進管4に送り込んでターゲット73が位置P31(x31,y31)に移動したとすると、ターゲット72は位置P21(x21,y21)に移動し、ターゲット71は位置P11(x11,y11)に移動する。このターゲット72が移動した位置P21(x21,y21)はターゲット73の位置P31(x31,y31)と内管63の長さL3と仮定修正角αa及び送込角βで特定される。この特定されたターゲット72の位置P21(x21,y21)の座標x21,y21と推進管4の曲線半径Rとから湾曲した推進管4の曲線4aに対する位置誤差d2を算出することができる。同様にターゲット71が移動した位置P11(x11,y11)はターゲット72の位置P21(x21,y21)と内管62の長さL2と仮定修正角αaと送込角β及び送り順が1番目の内管61に送り順が2番目の内管62を接合したときの内管端部調整用修正角α(R)で特定され、ターゲット71の推進管4に対する位置誤差d1を算出することができる。   For example, as shown in FIG. 8A, when the inner pipe 63 is set and the surveying device 8 measures the positions of the three targets 71 to 73, the target 73 is at a position P3 (x3, y3). When the target 72 is at the position P2 (x2, y2) and the target 71 is at the position P1 (x1, y1), assuming that the inner tube 63 is joined to the inner tube 62 at the assumed correction angle αa, the target 73 is positioned at the position P3. It moves to a position P3a (x3a, y3a) slightly away from (x3, y3). In this state, if the inner pipe 63 is sent to the propulsion pipe 4 at the feeding angle β and the target 73 moves to the position P31 (x31, y31) as shown in FIG. 8B, the target 72 is moved to the position P21. Moving to (x21, y21), the target 71 moves to the position P11 (x11, y11). The position P21 (x21, y21) to which the target 72 has moved is specified by the position P31 (x31, y31) of the target 73, the length L3 of the inner tube 63, the assumed correction angle αa, and the feeding angle β. From the coordinates x21, y21 of the position P21 (x21, y21) of the specified target 72 and the curve radius R of the propulsion tube 4, a position error d2 with respect to the curved line 4a of the curved propulsion tube 4 can be calculated. Similarly, the position P11 (x11, y11) where the target 71 has moved is the position P21 (x21, y21) of the target 72, the length L2 of the inner tube 62, the assumed correction angle αa, the feed angle β, and the feed order are the first. The position error d1 of the target 71 relative to the propulsion pipe 4 can be calculated by specifying the correction angle α (R) for adjusting the end of the inner pipe when the second inner pipe 62 is joined to the inner pipe 61. .

演算処理部18は算出したターゲット71,72の位置誤差をデータ記憶部16の仮定修正角記憶領域16cの選択された仮定修正角αaに対応させて記憶させ、表示装置12にも選択された仮定修正角αaに対応させて表示する。この処理を入力した全ての仮定修正角αa〜αdについて行い、各仮定修正角αa〜αd毎にターゲット71,72の位置誤差を算出してデータ記憶部16に記憶させ、表示装置12に表示する(ステップS5)。   The arithmetic processing unit 18 stores the calculated position errors of the targets 71 and 72 in association with the selected assumed correction angle αa in the assumed correction angle storage area 16c of the data storage unit 16, and the display device 12 also selects the assumption. Displayed in correspondence with the correction angle αa. This process is performed for all the assumed correction angles αa to αd that have been input, the position errors of the targets 71 and 72 are calculated for each of the assumed correction angles αa to αd, stored in the data storage unit 16, and displayed on the display device 12. (Step S5).

入力した全ての仮定修正角αa〜αdに対するターゲット71,72の位置誤差を算出すると、評価部19は各仮定修正角αa〜αdにおけるターゲット71,72の位置誤差の中から最も小さい位置誤差の仮定修正角αを選択し、選択した仮定修正角αを内管63の線形修正角としてデータ記憶部12の線形修正角記憶領域16dに内管6の送り順に対応させて格納し、表示装置12に表示する(ステップS6)。オペレータは、表示された線形修正角により内管62と内管63の接合部における内管端部調整角を設定し(ステップS7)、内管63を内管62に接合する(ステップS8)。その後、内管61〜63に設けたターゲット71〜ターゲット73の確定位置を測量装置8で測量し、各ターゲット71〜73の確定座標をデータ記憶部16の座標記憶領域16bに記憶させて内管63を推進管4に送り込む(ステップS9,S10)。この処理を各内管6を推進管4内に送り込むたびに繰り返す(ステップS11,S2〜S10)。   When the position errors of the targets 71 and 72 with respect to all the input assumption correction angles αa to αd are calculated, the evaluation unit 19 assumes the smallest position error among the position errors of the targets 71 and 72 at the respective assumption correction angles αa to αd. The correction angle α is selected, and the selected assumed correction angle α is stored as the linear correction angle of the inner tube 63 in the linear correction angle storage area 16d of the data storage unit 12 in correspondence with the feeding order of the inner tube 6, and stored in the display device 12. Displayed (step S6). The operator sets the inner tube end adjustment angle at the joint between the inner tube 62 and the inner tube 63 based on the displayed linear correction angle (step S7), and joins the inner tube 63 to the inner tube 62 (step S8). Thereafter, the determined positions of the targets 71 to 73 provided in the inner pipes 61 to 63 are measured by the surveying device 8, and the determined coordinates of the targets 71 to 73 are stored in the coordinate storage area 16 b of the data storage unit 16. 63 is fed into the propulsion pipe 4 (steps S9 and S10). This process is repeated every time each inner pipe 6 is fed into the propulsion pipe 4 (steps S11, S2 to S10).

例えばn番目の内管6nを送り込んだとしたとき、内管6nの前段にある内管6(n−1)に設けたターゲット7(n−1)が移動した位置は内管6nに設けたターゲット7nの位置と内管6nの長さLnと仮定修正角α及び送込角βで特定され、それより送り方向前方のターゲットの位置は、1つ後方のターゲットの位置とそのターゲットがある内管を接合したときの線形修正角と内管6nに対する仮定修正角α及び送込角βで特定される。   For example, when the nth inner pipe 6n is fed, the position where the target 7 (n-1) provided in the inner pipe 6 (n-1) in the previous stage of the inner pipe 6n has moved is provided in the inner pipe 6n. The position of the target 7n, the length Ln of the inner tube 6n, the assumed correction angle α and the feeding angle β are specified, and the position of the target forward in the feed direction is the position of the target one behind and the target. The linear correction angle when the pipe is joined and the assumed correction angle α and the feed angle β for the inner pipe 6n are specified.

このようにして例えばn番目の内管6nを送り込むとき、内管6nの前段にある内管6(n−1)から1番目に送り込んだ内管61までの各内管6に設けたターゲット7n〜71の推進管4に対する位置誤差が最も小さくなる線形修正角を選択して内管6nを内管6(n−1)に接合することができ、推進管4内に送り込む複数の内管6から構成する本管5の形状を推進管4の曲率にほぼ合わせることができ、本管5を推進管4内に容易に送り込むことができる。   Thus, for example, when the nth inner pipe 6n is fed, the target 7n provided in each inner pipe 6 from the inner pipe 6 (n-1) in the previous stage of the inner pipe 6n to the inner pipe 61 fed first. The inner pipe 6n can be joined to the inner pipe 6 (n-1) by selecting a linear correction angle with the smallest positional error of the -71 propulsion pipe 4, and a plurality of inner pipes 6 fed into the propulsion pipe 4 can be joined. Thus, the shape of the main pipe 5 can be substantially matched with the curvature of the propulsion pipe 4, and the main pipe 5 can be easily fed into the propulsion pipe 4.

また、内管6の長さに誤差があっても、接合する内管6nとその前方の内管6(n−1)に設けられたターゲット7の位置を測量することにより、内管6nの長さを検出することができ、接合部の線形修正角を推進管4の湾曲形状に合わせて精度良く決定することができる。   Even if there is an error in the length of the inner tube 6, by measuring the positions of the inner tube 6n to be joined and the target 7 provided in the front inner tube 6 (n-1), the inner tube 6n The length can be detected, and the linear correction angle of the joint can be accurately determined according to the curved shape of the propulsion tube 4.

この本管5を推進管4内に送り込むとき、各内管6に推進管4の内面に沿って滑る滑動部材を設け、推進管4内に液体を注入して本管6に浮力を与えることにより、本管5を推進管4内により容易に送り込むことができる。   When this main pipe 5 is fed into the propulsion pipe 4, each inner pipe 6 is provided with a sliding member that slides along the inner surface of the propulsion pipe 4, and liquid is injected into the propulsion pipe 4 to give buoyancy to the main pipe 6. Thus, the main pipe 5 can be easily fed into the propulsion pipe 4.

この発明の湾曲形状管理装置の構成を示すブロック図である。It is a block diagram which shows the structure of the curved shape management apparatus of this invention. 一定の曲率で湾曲している推進管内に送り込んだ本管を示す平面断面図である。It is a plane sectional view showing the main pipe sent in the propulsion pipe which is curving with a fixed curvature. 内管の設けたターゲットと測量装置を示す断面図である。It is sectional drawing which shows the target and surveying instrument which the inner pipe | tube was provided. 演算処理装置のデータ記憶部の構成を示す模式図である。It is a schematic diagram which shows the structure of the data storage part of an arithmetic processing unit. 湾曲形状管理装置の処理と管送り込み処理を示すフローチャートである。It is a flowchart which shows the process of a curved shape management apparatus, and a pipe feeding process. 送り順が2番目の内管に送り順が3番目の内管をセットした状態を示す平面断面図である。It is a top sectional view showing the state where the 3rd inner order pipe was set to the 2nd inner order pipe. 内管の接合部の仮定修正角を示す模式図である。It is a schematic diagram which shows the assumption correction angle | corner of the junction part of an inner pipe. 内管を仮定修正角で接合して推進管に送り込んだとしたときの、3点のターゲットの位置変化を示す模式図である。It is a schematic diagram which shows the position change of the target of 3 points | pieces, when an inner pipe | tube is joined with an assumption correction angle | corner and it sent to the propulsion pipe | tube.

符号の説明Explanation of symbols

1;湾曲形状管理装置、2;発進立坑、3;到達立坑、4;推進管、5;本管、
6;内管、7;ターゲット、8;測量装置、9;情報処理装置、
10;入力装置、11;演算処理装置、12;表示装置、13;外部記憶装置、
14;中央制御部、15;プログラム記憶部、16;データ記憶部、
17;座標入力部、18;演算処理部、19;評価部。
DESCRIPTION OF SYMBOLS 1; Curved shape management apparatus, 2; Starting shaft, 3; Reaching shaft, 4; Propulsion pipe, 5; Main pipe,
6; Inner tube, 7; Target, 8; Surveying device, 9; Information processing device,
10; input device, 11; arithmetic processing device, 12; display device, 13; external storage device,
14; central control unit, 15; program storage unit, 16; data storage unit,
17; Coordinate input part, 18; Arithmetic processing part, 19; Evaluation part.

Claims (4)

発進立坑から到達立坑の間で一定の曲率で湾曲している外管内に内管を順次接合しながら送り込んで形成する内管の形状を選定する湾曲形状管理装置であって、
複数のターゲットと測量装置及び情報処理装置を有し、
前記ターゲットは、各内管の送り込み方向の後端部から一定距離隔てた位置に取り付けられ、
前記測量装置は、発進立坑内で接合する送り順がn番目の内管に設けられたターゲットと外管に送り込まれた送り順が(n−1)番目の内管に設けられたターゲット及び送り順が(n−2)番目の内管に設けられたターゲットの位置を測量して各ターゲットの座標値を算出し、
前記情報処理装置は、入力装置と演算処理装置を有し、
前記入力装置は、一定曲率で湾曲している外管が形成する曲線の半径と、発進立坑で内管を送り込むときの送込角及び外管に送り込む内管の送り順を入力するとともに、各内管を接合するとき、各接合部における内管端部調整用の修正角の仮定値である複数の仮定修正角を入力し、
前記演算処理装置は、座標入力部とデータ記憶部と演算処理部及び評価部を有し、
前記座標入力部は、前記測量装置で測量して算出した3点のターゲットの座標値を入力し、
前記データ記憶部は、入力装置で入力した各種データを記憶するとともに内管の送り順に対応して各内管の接合部における内管端部調整用の線形修正角を記憶し、
前記演算処理部は、入力した複数の仮定修正角でそれぞれ内管を接合したと仮定して外管に送り込んだときの、仮定修正角で接合したとした内管より送り込み方向前方の各ターゲットの位置を、座標入力部で入力した3点のターゲットの座標と、仮定修正角と、仮定修正角で接合して送り込んだとした内管にあるターゲットの位置と、内管を送り込むときの送込角及び仮定修正角で接合したとした内管より送り込み方向前方の各内管を接合したときの線形修正角から演算して外管に対する位置誤差を算出し、
前記評価部は、演算処理部で算出した各ターゲットの位置誤差が最も小さくなる仮定修正角を選択して接合部の内管端部調整用の線形修正角を決定することを特徴とする湾曲形状管理装置。
A curved shape management device for selecting a shape of an inner pipe formed by sequentially feeding an inner pipe into an outer pipe that is curved with a constant curvature between a starting shaft and a reaching shaft,
It has a plurality of targets, surveying equipment and information processing equipment,
The target is attached to a position separated from the rear end of the feeding direction of each inner pipe by a certain distance,
The surveying device includes a target provided in the nth inner pipe for the order of joining in the start shaft and a target provided in the (n-1) th inner pipe for the order in which the feed order is sent to the outer pipe. Survey the position of the target provided in the (n-2) th inner tube in order, and calculate the coordinate value of each target,
The information processing apparatus includes an input device and an arithmetic processing device,
The input device inputs the radius of the curve formed by the outer pipe that is curved with a constant curvature, the feeding angle when the inner pipe is fed in the start shaft, and the feeding order of the inner pipe fed to the outer pipe, When joining the inner pipe, input a plurality of assumed correction angles, which are assumed values of the adjustment angle for adjusting the inner pipe end at each joint,
The arithmetic processing device includes a coordinate input unit, a data storage unit, an arithmetic processing unit, and an evaluation unit,
The coordinate input unit inputs coordinate values of three targets calculated by surveying with the surveying instrument,
The data storage unit stores various data input by the input device and stores a linear correction angle for adjusting the inner tube end portion in the joint portion of each inner tube corresponding to the feeding order of the inner tube,
The arithmetic processing unit assumes that each of the targets in the feed direction ahead of the inner pipe assumed to be joined at the assumed correction angle when the inner pipe is fed to the outer pipe assuming that the inner pipe is joined at each of the plurality of inputted assumed correction angles. The coordinates of the three targets entered in the coordinate input unit, the assumed correction angle, the position of the target in the inner pipe that was joined and sent at the assumed correction angle, and the feed when feeding the inner pipe Calculate the position error relative to the outer pipe by calculating from the linear correction angle when each inner pipe in the feed direction is joined from the inner pipe joined at the angle and the assumed corrected angle,
The evaluation unit selects a hypothetical correction angle that minimizes the position error of each target calculated by the arithmetic processing unit, and determines a linear correction angle for adjusting the inner pipe end of the joint, Management device.
前記演算処理部は、仮定修正角で接合したとした内管より送り込み方向直前のターゲットの位置を、座標入力部で算出した3点のターゲットの座標と、仮定修正角と、仮定修正角で接合したとした内管にあるターゲットの位置及び内管を送り込むときの送込角から演算し、仮定修正角で接合したとした内管より送り込み方向直前のターゲットより前方のターゲットの位置を、1つ後方のターゲットの位置と、そのターゲットがある内管を接合したときの線形修正角と、仮定修正角で接合したとした内管の仮定修正角及び送込角で演算する請求項1記載の湾曲形状管理装置。   The arithmetic processing unit joins the position of the target immediately before the feeding direction from the inner pipe joined at the assumed correction angle, the target coordinates calculated by the coordinate input unit, the assumed correction angle, and the assumed correction angle. One target position is calculated from the position of the target in the inner pipe and the feed angle when the inner pipe is fed, and the target ahead of the target in the feed direction from the inner pipe joined at the assumed correction angle. The curvature according to claim 1, wherein the calculation is performed based on the position of the rear target, the linear correction angle when the inner pipe with the target is joined, and the assumed correction angle and the feeding angle of the inner pipe joined at the assumed correction angle. Shape management device. 発進立坑から到達立坑の間で一定の曲率で湾曲している外管内に内管を順次接合しながら送り込む管送り込み方法であって、
発進立坑内で接合する送り順がn番目の内管の送り込み方向の後端部から一定距離隔てた位置に設けられたターゲットと外管に送り込まれた送り順が(n−1)番目の内管の送り込み方向の後端部から一定距離隔てた位置に設けられたターゲット及び送り順が(n−2)番目の内管の送り込み方向の後端部から一定距離隔てた位置に設けられたターゲットの位置を測量し、測量した3点のターゲットの測量データから3点のターゲットの座標を算出し、
複数の仮定修正角でそれぞれ内管を接合したと仮定して外管に送り込んだときの、仮定修正角で接合したとした内管より送り込み方向前方の各ターゲットの位置を、算出した3点のターゲットの座標と、仮定修正角と、仮定修正角で接合して送り込んだとした内管にあるターゲットの位置と、内管を送り込むときの送込角及び仮定修正角で接合したとした内管より送り込み方向前方の各内管を接合したときの線形修正角から演算して外管に対する位置誤差を算出し、
算出した各ターゲットの位置誤差が最も小さくなる仮定修正角を選択して接合部の内管端部調整用の線形修正角を決定し、
決定した線形修正角により内管の接合部における内管端部調整角を設定して接合する内管を外管に送り込んだ内管に接合して外管に送り込むことを特徴とする管送り込み方法。
A pipe feeding method for feeding the inner pipe while sequentially joining the inner pipe into the outer pipe curved with a constant curvature between the starting shaft and the reaching shaft,
The feed sequence to be joined in the starting shaft is the (n-1) th feed sequence sent to the target and the outer tube provided at a distance from the rear end of the feed direction of the nth inner tube. A target provided at a position spaced apart from the rear end of the pipe feeding direction by a certain distance and a target provided at a position spaced from the rear end of the feeding direction of the (n-2) th inner pipe by a certain distance. Measure the position of, calculate the coordinates of the three targets from the surveyed data of the three measured targets,
Assuming that the inner pipes are joined at multiple assumed correction angles, the target positions ahead of the feed direction from the inner pipe assumed to be joined at the assumed correction angles are calculated at three points. Target coordinates, hypothetical correction angle, target position in the inner pipe assumed to be joined and sent at the assumed correction angle, inner pipe assumed to be joined at the feeding angle and assumed correction angle when the inner pipe is fed Calculate the position error with respect to the outer pipe by calculating from the linear correction angle when joining the inner pipes ahead of the feeding direction,
Select the assumed correction angle that minimizes the calculated position error of each target to determine the linear correction angle for adjusting the inner pipe end of the joint,
A pipe feeding method characterized in that an inner pipe end adjustment angle at a joint portion of the inner pipe is set by the determined linear correction angle, and the inner pipe to be joined is joined to the inner pipe fed to the outer pipe and fed to the outer pipe. .
前記仮定修正角で接合したとした内管より送り込み方向直前のターゲットの位置を、算出した3点のターゲットの座標と、仮定修正角と、仮定修正角で接合したとした内管にあるターゲットの位置及び内管を送り込むときの送込角から演算し、仮定修正角で接合したとした内管より送り込み方向直前のターゲットより前方のターゲットの位置を、1つ後方のターゲットの位置と、そのターゲットがある内管を接合したときの線形修正角と、仮定修正角で接合したとした内管の仮定修正角及び送込角で演算する請求項3記載の管送り込み方法。   The target position immediately before the feeding direction from the inner pipe assumed to be joined at the assumed correction angle, the calculated target coordinates, the assumed correction angle, and the target in the inner pipe assumed to be joined at the assumed correction angle. Calculated from the position and the feed angle at the time of feeding the inner pipe, the position of the target ahead of the target immediately before the feed direction from the inner pipe joined at the assumed correction angle, the position of the target one behind, and the target 4. The pipe feeding method according to claim 3, wherein calculation is performed using a linear correction angle when a certain inner pipe is joined, an assumed correction angle of the inner pipe assumed to be joined at the assumed correction angle, and a feed angle.
JP2005294486A 2005-10-07 2005-10-07 Curved shape management device and pipe feeding method Active JP4692205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005294486A JP4692205B2 (en) 2005-10-07 2005-10-07 Curved shape management device and pipe feeding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005294486A JP4692205B2 (en) 2005-10-07 2005-10-07 Curved shape management device and pipe feeding method

Publications (2)

Publication Number Publication Date
JP2007100918A true JP2007100918A (en) 2007-04-19
JP4692205B2 JP4692205B2 (en) 2011-06-01

Family

ID=38028062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005294486A Active JP4692205B2 (en) 2005-10-07 2005-10-07 Curved shape management device and pipe feeding method

Country Status (1)

Country Link
JP (1) JP4692205B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5578878A (en) * 1978-12-11 1980-06-13 Nippon Steel Corp Laying method of main pipe into casing pipe laid in arc
JPH05280982A (en) * 1992-03-31 1993-10-29 Ohbayashi Corp Position measuring apparatus of tunnel excavator
JPH11193881A (en) * 1998-01-06 1999-07-21 Kubota Corp Pipe-in-pipe construction method for bent pipe part
JP2003254750A (en) * 2002-02-28 2003-09-10 Alpha Civil Engineering:Kk Coordinate measurement method for excavation route in pipe jacking excavation method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5578878A (en) * 1978-12-11 1980-06-13 Nippon Steel Corp Laying method of main pipe into casing pipe laid in arc
JPH05280982A (en) * 1992-03-31 1993-10-29 Ohbayashi Corp Position measuring apparatus of tunnel excavator
JPH11193881A (en) * 1998-01-06 1999-07-21 Kubota Corp Pipe-in-pipe construction method for bent pipe part
JP2003254750A (en) * 2002-02-28 2003-09-10 Alpha Civil Engineering:Kk Coordinate measurement method for excavation route in pipe jacking excavation method

Also Published As

Publication number Publication date
JP4692205B2 (en) 2011-06-01

Similar Documents

Publication Publication Date Title
CN106994684B (en) Method for controlling a robot tool
JP5715136B2 (en) Device and method for automatic multi-bead welding
JP4234059B2 (en) Camera calibration method and camera calibration apparatus
CN108952742B (en) Shield machine guiding method based on machine vision
CN109059879A (en) A kind of guidance method for determining the small-bore Curve Pipe Jacking of curvature
US20190255706A1 (en) Simulation device that simulates operation of robot
JP6468756B2 (en) 3D model generation method, 3D model generation system, and 3D model generation program
JP3390629B2 (en) Survey method of propulsion method
JPH07266272A (en) Follow-up method and device for manipulator
JP4692205B2 (en) Curved shape management device and pipe feeding method
JP2001062566A (en) Weld line position detecting device
CN111608664B (en) Automatic guiding method for long-distance curved jacking pipe
CN105809736A (en) Three-dimensional reconstruction method and device of pipeline
JP2004184094A (en) Device and method for measuring propulsion locus of propulsion object in shield pipe jacking method
JPH1094874A (en) Automatic welding method for tube joint
JP3610460B2 (en) Measuring device, measuring method, propulsion trajectory management device, and propulsion trajectory management method for propulsion trajectory and propulsion posture in propulsion shield method
JP3836699B2 (en) Measuring method of excavator position in propulsion method
JP2002228044A (en) Method for joining existing pipe and mating pipe by three- dimensional measurement
JP3759281B2 (en) Underground excavator position measurement device
CN109540087B (en) Method and equipment for automatically adjusting cursor position
CN102314686A (en) Reference view field determination method, system and device of splicing type panoramic video
JP4128697B2 (en) Measuring apparatus and measuring system
JP2020134393A (en) System and method for inspecting layout of reinforcement
JP6705173B2 (en) Welding method and welding equipment
US20230390934A1 (en) Weld angle correction device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071116

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4692205

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350