JP2003254750A - Coordinate measurement method for excavation route in pipe jacking excavation method - Google Patents

Coordinate measurement method for excavation route in pipe jacking excavation method

Info

Publication number
JP2003254750A
JP2003254750A JP2002053926A JP2002053926A JP2003254750A JP 2003254750 A JP2003254750 A JP 2003254750A JP 2002053926 A JP2002053926 A JP 2002053926A JP 2002053926 A JP2002053926 A JP 2002053926A JP 2003254750 A JP2003254750 A JP 2003254750A
Authority
JP
Japan
Prior art keywords
excavation
target
measuring instrument
projector
coordinates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002053926A
Other languages
Japanese (ja)
Other versions
JP3864102B2 (en
Inventor
Eiji Sakai
栄治 酒井
Naoto Tokieda
直人 時枝
Tadao Fujita
忠男 藤田
Hiroya Nagai
博也 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ALPHA CIVIL ENGINEERING KK
FUJITA YUKI SERVICE KK
Kyowa Exeo Corp
Alpha Civil Engineering Inc
Original Assignee
ALPHA CIVIL ENGINEERING KK
FUJITA YUKI SERVICE KK
Kyowa Exeo Corp
Alpha Civil Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ALPHA CIVIL ENGINEERING KK, FUJITA YUKI SERVICE KK, Kyowa Exeo Corp, Alpha Civil Engineering Inc filed Critical ALPHA CIVIL ENGINEERING KK
Priority to JP2002053926A priority Critical patent/JP3864102B2/en
Publication of JP2003254750A publication Critical patent/JP2003254750A/en
Application granted granted Critical
Publication of JP3864102B2 publication Critical patent/JP3864102B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately measure the coordinates of an excavation route in a pipe jacking excavation method without any influence of vibration, obstacle, the condition inside a pipe line and the like. <P>SOLUTION: While excavation is stopped, intermediate measurement apparatuses 2 each having a pair of left and right laser light projectors, a target, and a monitoring camera are arranged inside a jacking pipe 5, and light is projected toward the target of the intermediate measurement apparatus 2 in front of another intermediate measurement apparatus 2 by means of its laser light projectors respectively. In a remote location, the coordinates of the respective targets are found by trigonometry on the basis of an angle between two axes of the respective laser light projectors projecting light toward the target and the distance between the laser light projectors. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、小口径等により入
坑できない又は人の計測が不可能な掘削路線の計測にお
いて、高度角及び水平角が同時に計測可能でローリング
やピッチングを検算により水平距離に換算して掘削路線
を正確に計測するシステムとした推進掘削工法における
掘削路線の座標計測方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the measurement of an excavation route that cannot enter a pit or cannot be measured by a person due to a small diameter or the like, and the altitude angle and the horizontal angle can be measured at the same time. The present invention relates to a method for measuring coordinates of an excavation route in a propulsion excavation method, which is a system for accurately measuring the excavation route by converting to.

【0002】[0002]

【従来の技術】従来の計測方法としては、ジャイロを用
いて掘進機の掘進方向を確認する方法や、電磁波による
地中探査方法、小口径の車輌を掘進開始位置から管路内
を往復移動させてその記録を検算することにより割り出
す方法などが公知である。ところで、前者のジャイロに
よる方法は、ジャイロの位置が変化した場合角度が判明
したとしても掘進時の振動で横滑りすることがあり正確
な計測を行うことが難しかった。また、中者の電磁波に
よる方法では、地中に障害物が存在する場合掘進機の位
置が不明となり、また地下4mぐらいまでが計測可能範
囲でそれ以上深い個所を掘進する場合は計測が困難であ
った。さらに、後者の車輌を往復移動させる方法でも、
管路内のロ−リングの状態や路面の目地等による段差で
車輌が揺れたり姿勢が変化したりして正確な計測を行う
ことは難しかった。
2. Description of the Related Art Conventional measuring methods include a method of confirming the excavation direction of an excavator using a gyro, a method of underground exploration by electromagnetic waves, and a reciprocating movement of a vehicle with a small diameter from the excavation start position in a pipeline. It is known that a method of calculating the record by checking the record is used. By the way, in the former method using a gyro, even if the angle is known when the position of the gyro changes, it may slip due to vibration during excavation, making it difficult to perform accurate measurement. Also, with the electromagnetic wave method of the middle person, the position of the excavator becomes unknown when there are obstacles in the ground, and it is difficult to measure when excavating deeper than 4 m below the measurable range. there were. In addition, the latter method of reciprocating the vehicle,
It was difficult to perform accurate measurement because the vehicle swayed or the posture changed due to a step due to the rolling condition in the pipeline or joints on the road surface.

【0003】[0003]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、従来のこれらの問題点を解消し、小口径等
により入坑できない又は人の計測が不可能な掘削路線を
掘進時の振動や障害物や管路内の状態等に影響されるこ
となく正確に計測できる推進掘削工法における掘削路線
の座標計測方法を提供することにある。
SUMMARY OF THE INVENTION The problems to be solved by the present invention are to solve these problems in the related art, and to excavate an excavation route which cannot be entered due to a small diameter or the like, or where humans cannot be measured. An object of the present invention is to provide a coordinate measuring method for an excavation route in a propulsion excavation method that can be accurately measured without being affected by vibrations, obstacles, conditions in pipelines, and the like.

【0004】[0004]

【課題を解決するための手段】かかる課題を解決した本
発明の構成は、 1) 掘進機の後方に地中に埋設される推進管を配置
し、同推進管の後端を後押しして掘進しながら推進管を
押し進め、新しい推進管を最後端に追加して長い管路を
構築する推進掘削工法における掘削路線の座標計測方法
であって、最後端に追加される所要の推進管内に投光器
とタ−ゲットと監視カメラとを備えた計測器を置き、前
記投光器は計測器の掘進側又はその反対側の器端に左右
一対所定間隔に離して且つ二軸方向に回動自在に設け、
前記タ−ゲットは各投光器の投光方向と反対側後方の計
測器に前後左右それぞれ所定間隔に離して且つ投光器か
ら所定距離隔てて設け、前記監視カメラは各タ−ゲット
への投光状態を観察できるようにし、各投光器の二軸の
回動角度を検出して掘削路外に送信する角度検出器を設
けた計測器構造とし、掘削の発進立坑の計測基準位置に
投光器を左右一対所定間隔に離して且つ二軸方向に回動
自在に設け、遠隔操作で発進立坑の投光器から前方の計
測器の少なくとも前後二つのタ−ゲットに向けて投光さ
せ、その投光状態を監視カメラで観察しながら各タ−ゲ
ットの中心に正確に投光されるように投光器を回動操作
し、各タ−ゲットの中心に投光された状態の各投光器の
二軸角度及び投光器間距離より三角法で投光先の計測器
の各タ−ゲットの座標を求め、その計測器の投光器から
更に前方の計測器の少なくとも前後二つのターゲットに
投光して同各ターゲットの座標を求め、これら一連の工
程で地中に押し進めた推進管内の計測器のタ−ゲットの
座標を発進立坑から掘進とともに逐次求め、各計測器の
タ−ゲットの座標及び投光器とタ−ゲットの間の距離で
もって全体の掘削路線を計測できるようにした推進掘削
工法における掘削路線の座標計測方法 2) 少なくとも三つ以上のターゲットに投光してその
座標からローリング角度を求めて換算し、水平距離と水
平座標と垂直座標を、より精度良く計測できるようにし
た推進掘削工法における掘削路線の座標計測方法 3) 投光器がレーザーを投光するレーザー投光器であ
る前記1)又は2)記載の推進掘削工法における掘削路
線の座標計測方法 4) 計測器に車輪を設けて走行自在にし、各計測器同
士をワイヤ−で連結して作業終了後に回収できるように
した前記1)〜3)記載の推進掘削工法における掘削路
線の座標計測方法にある。
Means for Solving the Problems The constitution of the present invention which has solved the above problems is as follows: 1) A propulsion pipe buried in the ground is arranged behind the excavator, and the rear end of the propulsion pipe is pushed backward to excavate. While pushing the propulsion pipe, a new propulsion pipe is added to the end to build a long pipe. A measuring instrument provided with a target and a monitoring camera is placed, and the light projector is provided at a device end on the excavation side or the opposite side of the measuring instrument so as to be rotatable in a biaxial direction with a pair of left and right spaced apart from each other,
The target is provided on a measuring instrument located on the opposite side of the light projecting direction of each light projector at a predetermined distance from each of the front, rear, left, and right and at a predetermined distance from the light projector, and the surveillance camera monitors a light emitting state to each target. It has a measuring instrument structure that allows observation and detects the rotation angle of each projector's two axes and sends it to the outside of the excavation road. It is installed separately from the center and is rotatable in two axial directions.By remote control, the light is emitted from the projector of the starting shaft to at least two targets in front of and behind the measuring instrument in front, and the projected state is observed by the monitoring camera. While operating the projector so that the light is accurately projected to the center of each target, the triangulation method is performed from the biaxial angle of each projector and the distance between the projectors in the state where the light is projected to the center of each target. Of each target of the measuring instrument Obtain the target, project the light from the measuring instrument to at least two targets in front of and behind the measuring instrument in front of the measuring instrument, and determine the coordinates of each target.The measuring instrument in the propulsion pipe pushed into the ground in these series of steps. Excavation in the propulsion excavation method that enables the coordinates of the target to be sequentially obtained from the starting shaft along with excavation, and the entire excavation route can be measured with the coordinates of the target of each measuring instrument and the distance between the projector and the target. Line coordinate measurement method 2) A propulsion excavation method in which at least three or more targets are projected and the rolling angle is calculated from the coordinates and converted to measure the horizontal distance and the horizontal and vertical coordinates more accurately. Method for measuring coordinates of excavation route in 3) Coordinates of excavation route in the propulsion excavation method described in 1) or 2) above, wherein the projector is a laser projector for projecting a laser Measuring method 4) Coordinates of the excavation route in the propulsion excavation method described in 1) to 3) above, in which the measuring instrument is provided with wheels so that the vehicle can travel freely, and the measuring instruments are connected by a wire so that they can be collected after the work is completed. There is a measuring method.

【0005】[0005]

【作用】本発明によれば、遠隔地において各投光器から
前方のタ−ゲットに向けて投光状態を観察しながら投光
操作を行ない、タ−ゲット中心に投光した状態の各投光
器の二軸の角度及び投光器間の距離より投光先のタ−ゲ
ットの座標を定め、これらの一連の工程を繰り返して各
計測器のターゲットの座標及び投光器とターゲットの間
の距離から正確な掘削路線が計測される。したがって、
掘進時の振動により計測器が管内で横滑りしても発進立
坑を基点として常に全体を計測するため問題にならず、
計測は管内で行うので障害物とは関係なく、計測器は停
止した状態で計測するから管路内のロ−リングや目地等
による段差にも影響を受けない。
According to the present invention, the light-emission operation is performed while observing the light-emission state from each light-emitter toward the target in the front in a remote place, and each of the light-emitters in the state in which light is emitted to the center of the target. The coordinate of the target to be projected is determined from the angle of the axis and the distance between the projectors, and these series of steps are repeated to determine the exact excavation route from the coordinates of the target of each measuring instrument and the distance between the projector and the target. To be measured. Therefore,
Even if the measuring instrument slides inside the pipe due to vibration during excavation, there is no problem because the entire starting point is always measured from the starting shaft.
Since the measurement is performed inside the pipe, it is independent of obstacles, and the measurement is performed while the measuring device is stopped, so there is no effect from rolling or joints in the pipe.

【0006】[0006]

【発明の実施の形態】本発明の計測器のタ−ゲットは、
掘削路のカ−ブの状態に応じて投光器の投光を受け易い
ように左右に所定間隔おいて設けるのが望ましく、しか
もタ−ゲット左右にそれぞれに投光し、三角測量の手順
及び左右二点の計測により投光線を三角形状に常に形成
して座標を求めることにより更に精度良く計測を行うこ
とができて好ましい。監視カメラは、一般にタ−ゲット
をそれぞれ個別に観察できるように各タ−ゲット毎に設
けるが、監視カメラを遠隔操作で左右に回動自在に設け
て、各タ−ゲットに応じて向きも変えて一つのカメラで
観察できるようにしてもよい。また、計測器の下面に車
輪を設けて走行自在にするとともに各計測器同士をワイ
ヤ−で連結し、掘削作業終了後にワイヤ−を引張ること
で発進立坑に各計測器を容易に回収できるようにするの
が望ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The measuring instrument target of the present invention comprises:
Depending on the state of the curve of the excavation road, it is desirable to install them at a predetermined interval on the left and right so that they can be easily received by the projector. It is preferable that the projection light beam is always formed in a triangular shape by the measurement of the points and the coordinates are obtained so that the measurement can be performed more accurately. A surveillance camera is generally provided for each target so that each target can be observed individually. However, the surveillance camera is provided to be rotatable left and right by remote control, and the orientation can be changed according to each target. One camera may be used for observation. Also, wheels are provided on the lower surface of the measuring instrument so that it can travel freely, and each measuring instrument is connected with a wire so that each measuring instrument can be easily collected on the starting shaft by pulling the wire after completion of excavation work. It is desirable to do.

【0007】[0007]

【実施例】以下、本発明の実施例を図面に基づいて具体
的に説明する。図1〜12に示す実施例は、電話、電
力、上下水道などのライフライン施設用の管路の座標計
測に本発明を適用した例である。図1は、実施例の地中
管路の全体図である。図2は、実施例の発進坑計測器の
正面図である。図3は、実施例の発進坑計測器の平面図
である。図4は、実施例の発進坑計測器の側面図であ
る。図5は、実施例の中間計測器の正面図である。図6
は、実施例の中間計測器の平面図である。図7は、実施
例の中間計測器の側面図である。図8は、実施例のメイ
ンタ−ゲットの説明図である。図9は、実施例のサブタ
−ゲットの説明図である。図10は、実施例の地中に管
路を構築している状態を示す説明図である。図11は、
実施例の計測を示す説明図である。図12は、実施例の
計測を示す説明図である。
Embodiments of the present invention will be described below in detail with reference to the drawings. The embodiments shown in FIGS. 1 to 12 are examples in which the present invention is applied to coordinate measurement of pipelines for lifeline facilities such as telephones, electric power, water and sewage. FIG. 1 is an overall view of an underground pipe according to an embodiment. FIG. 2 is a front view of the starting pit measuring instrument according to the embodiment. FIG. 3 is a plan view of the starting pit measuring instrument according to the embodiment. FIG. 4 is a side view of the starting pit measuring instrument according to the embodiment. FIG. 5 is a front view of the intermediate measuring instrument according to the embodiment. Figure 6
[Fig. 3] is a plan view of the intermediate measuring instrument of the embodiment. FIG. 7 is a side view of the intermediate measuring instrument according to the embodiment. FIG. 8 is an explanatory diagram of the main target of the embodiment. FIG. 9 is an explanatory diagram of the sub-target of the embodiment. FIG. 10: is explanatory drawing which shows the state which is constructing the pipeline in the ground of an Example. FIG. 11 shows
It is explanatory drawing which shows the measurement of an Example. FIG. 12 is an explanatory diagram showing the measurement of the example.

【0008】図中、1は発進坑計測器であって、躯体1
aの上方に測定テ−ブル1bの両端を軸支して上下角調
整モ−タ1cの出力軸1dの駆動力を測定テ−ブル1b
の回転軸1eに伝達して上下角調整自在にし、測定テ−
ブル1bの左右にレーザー投光器1fをそれぞれ取り付
けて左右角調整モ−タ1hの出力軸1iの駆動力を各レ
ーザー投光器1fの回転軸1gに伝達してそれぞれ左右
角調整自在にしている。1jはレーザー投光器1fの左
右角を検出する左右角検出エンコ−ダ、1kは測定テー
ブル1bの上下角を検出する上下角検出エンコ−ダであ
る。2は中間計測器であって、躯体2aの前端に発進坑
計測器1と同じ計測器を前方に投光できる向きに取り付
け、その回動中心位置から100mm離隔して受光部2
cを左右に有したメインタ−ゲット2bを取り付け、躯
体2aの後端に透視できる受光部2eを左右に有したサ
ブタ−ゲット2dをメインタ−ゲット2bと500mm
離隔して取り付け、メインタ−ゲット2bとサブタ−ゲ
ット2dとの間にタ−ゲット監視カメラ2fを各タ−ゲ
ット2b、2dに向けて取り付けている。2gは車輪、
2hはワイヤ−である。3は後押しジャッキ、4は掘進
機、5は推進管、6は上下角調整モータ1c、左右角調
整モータ1hを制御する制御部、7は左右角検出エンコ
−ダ1j、上下角検出エンコーダ1kの検出角度と各レ
ーザー投光器1f間の距離から投光先のタ−ゲットの座
標を三角法で求める計算部、8は各ターゲット監視カメ
ラ2fの映像を表示するモニタ8aを有した表示手段、
Gは地盤、hは作業者、Rは発進立坑である。
In the figure, 1 is a starting pit measuring instrument, which is a skeleton 1
The driving force of the output shaft 1d of the vertical angle adjusting motor 1c is measured by supporting both ends of the measuring table 1b above a.
The vertical angle can be adjusted by transmitting it to the rotary shaft 1e of the
The laser projectors 1f are attached to the left and right of the bull 1b, respectively, and the driving force of the output shaft 1i of the left-right angle adjustment motor 1h is transmitted to the rotary shafts 1g of the laser projectors 1f so that the left and right angles can be adjusted. Reference numeral 1j is a horizontal angle detection encoder for detecting the horizontal angle of the laser projector 1f, and 1k is a vertical angle detection encoder for detecting the vertical angle of the measurement table 1b. Reference numeral 2 denotes an intermediate measuring device, which is attached to the front end of the skeleton 2a in the direction in which the same measuring device as the starting pit measuring device 1 can be projected forward, and is separated by 100 mm from the rotation center position of the light receiving portion 2
The main target 2b having the left and right sides c is attached to the main target 2b and the sub-target 2d having the light receiving portions 2e which can be seen through the rear end of the skeleton 2a.
The target monitoring cameras 2f are mounted separately from each other between the main target 2b and the sub target 2d so as to face the respective targets 2b and 2d. 2g is a wheel,
2h is a wire. Reference numeral 3 is a back-up jack, 4 is an excavator, 5 is a propulsion pipe, 6 is a control unit for controlling the vertical angle adjustment motor 1c, the horizontal angle adjustment motor 1h, and 7 is a horizontal angle detection encoder 1j and a vertical angle detection encoder 1k. A calculation unit that triangulates the coordinates of the target of the projection destination from the detection angle and the distance between the laser projectors 1f, and 8 is a display unit having a monitor 8a for displaying the image of each target monitoring camera 2f,
G is the ground, h is a worker, and R is a starting shaft.

【0009】本実施例では、まず推進管5内に中間計測
器2を載置して掘進機4の後端に配置し、後押しジャッ
キ3で後押しして掘進機4で掘進しながら推進管5を地
盤G中に押し進める。次に、掘進を停止させて発進立坑
Rの計測基準点となる位置に発進坑計測器1を前記推進
管5内に向けて設置し、図11に示すように左右のレー
ザー投光器1fで前方の中間計測器2のメインタ−ゲッ
ト2b及びサブターゲット2dの左右の各受光部2c,
2eに向けてタ−ゲット監視カメラ2fで観察しながら
投光操作を行い、投光した状態における各レーザー投光
器1fの上下角度HTAと左右角度VTL,VTRを上
下角検出エンコ−ダ1kと左右角検出エンコ−ダ1jで
検出する。次に、前記レーザー投光器1fの上下角HT
Aと左右角VTL,VTRと左右のレーザー投光器1f
間の距離LKAでもって次式によりレーザー投光器1f
からメインタ−ゲット2b及びサブターゲット2dまで
の距離LTAをそれぞれ求め、同LTAより投光先のメ
インタ−ゲット2b及びサブターゲット2dのX座標X
TA、Y座標YTA、Z座標ZTAをそれぞれ計測す
る。ローリング角度はメインターゲット2b及びサブタ
ーゲット2dの左右の受光部2c,2eの各Y座標YT
Aから前後の各計測器のターゲット同士の差異を求める
ことにより計測する。 LTA=LKA/(tanVTR+tanVTL) XTA=LKA×{tanVTL/(tanVTR+t
anVTL)−0.5} YTA=LTA×sinHTA ZTA=LTA×cosHTA そして、前記各座標を設計された掘削路線と照合してズ
レを確認し、ズレがあった場合はその差異をとって修正
値を求め、作業者hはその修正値に応じて掘進機4の掘
進方向を遠隔操作で修正する。以上の計測方法を用い
て、図10に示すように順次掘削を進めながら所要の推
進管5内に配置された各中間計測器2のターゲットの座
標を発進立坑Rの基準位置から逐次求め、各中間計測器
2の各ターゲットの座標とレーザー投光器1fとメイン
ターゲット2b間の距離でもって全体の掘削路線を計測
し、その都度掘進機4の掘進方向の修正に反映させるこ
とにより設計通りの正確な管路が構築されることとな
る。
In the present embodiment, first, the intermediate measuring instrument 2 is placed in the propulsion pipe 5 and is arranged at the rear end of the excavator 4, and the propulsion pipe 5 is pushed while being pushed by the backing jack 3 and being advanced by the excavator 4. Is pushed into the ground G. Next, the excavation is stopped and the starting pit measuring instrument 1 is installed at the position serving as the measurement reference point of the starting pit R toward the inside of the propulsion pipe 5, and as shown in FIG. Left and right light receiving portions 2c of the main target 2b and the sub target 2d of the intermediate measuring instrument 2,
2e is operated while projecting with the target monitoring camera 2f, and the vertical angle HTA and the horizontal angles VTL, VTR of each laser projector 1f in the projected state are detected by the vertical angle detection encoder 1k and the horizontal angle. It is detected by the detection encoder 1j. Next, the vertical angle HT of the laser projector 1f
A and right and left corner VTL, VTR and left and right laser projectors 1f
Laser projector 1f according to the following formula with the distance LKA
Distance LTA from the main target 2b to the sub target 2d, respectively, and the X coordinate X of the main target 2b and the sub target 2d at the projection destination from the LTA.
The TA, Y coordinate YTA, and Z coordinate ZTA are measured. The rolling angle is the Y coordinate YT of the left and right light receiving portions 2c and 2e of the main target 2b and the sub target 2d.
The measurement is performed by obtaining the difference between the targets of the respective measuring instruments before and after A from A. LTA = LKA / (tanVTR + tanVTL) XTA = LKA * {tanVTL / (tanVTR + t
anVTL) -0.5} YTA = LTA × sinHTA ZTA = LTA × cosHTA Then, the above-mentioned coordinates are checked against the designed excavation route to confirm the deviation, and if there is deviation, the difference is taken and a corrected value is obtained. Then, the worker h remotely corrects the excavation direction of the excavator 4 according to the corrected value. Using the above measuring method, the coordinates of the target of each intermediate measuring instrument 2 arranged in the required propulsion pipe 5 are sequentially obtained from the reference position of the starting shaft R while sequentially excavating as shown in FIG. The entire excavation route is measured with the coordinates of each target of the intermediate measuring device 2 and the distance between the laser projector 1f and the main target 2b, and each time it is reflected in the correction of the excavation direction of the excavator 4 to achieve the exact design. The pipeline will be constructed.

【0010】本実施例では以上のように構成したから、
従来行なわれていた一本のレーザー投光による開放トラ
バース測量と比較して、二本のレーザー投光による三角
測量を逐次行うことでズレが蓄積されることなく極めて
高精度な計測が可能となる。また、管自体の偏位も問題
とならずローリングやピッチングに十分に対応でき、コ
ンピュータによる検算で水平距離に換算することにより
水平高低計測を同時に行い、計測時間の短縮化も同時に
図ることが可能となる。
In the present embodiment, because of the configuration as described above,
Compared to the conventional open traverse survey with one laser projection, by performing triangulation with two laser projections in succession, extremely accurate measurement can be performed without accumulating deviations. . In addition, the deviation of the tube itself does not pose a problem, it can sufficiently cope with rolling and pitching, and the horizontal height can be measured at the same time by converting it into a horizontal distance by computer calculation, and the measurement time can be shortened at the same time. Becomes

【0011】[0011]

【発明の効果】以上説明したように、本発明によれば小
口径等により入坑できない又は人の計測が不可能な掘削
路線を掘進時の振動や障害物や管路内の状態等に影響さ
れることなく正確に計測できる推進掘削工法における掘
削路線の座標計測方法を提供できる。
As described above, according to the present invention, vibrations at the time of excavation of an excavation line that cannot enter a mine due to a small diameter or the like, or cannot measure humans, influences on obstacles, conditions in pipelines, etc. It is possible to provide a coordinate measuring method for an excavation route in a propulsion excavation method that can be accurately measured without being damaged.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の地中管路の全体図である。FIG. 1 is an overall view of an underground pipe according to an embodiment.

【図2】実施例の発進坑計測器の正面図である。FIG. 2 is a front view of the starting pit measuring instrument according to the embodiment.

【図3】実施例の発進坑計測器の平面図である。FIG. 3 is a plan view of a launch pit measuring instrument according to an embodiment.

【図4】実施例の発進坑計測器の側面図である。FIG. 4 is a side view of the starting pit measuring instrument according to the embodiment.

【図5】実施例の中間計測器の正面図である。FIG. 5 is a front view of the intermediate measuring instrument according to the embodiment.

【図6】実施例の中間計測器の平面図である。FIG. 6 is a plan view of the intermediate measuring device according to the embodiment.

【図7】実施例の中間計測器の側面図である。FIG. 7 is a side view of the intermediate measuring instrument according to the embodiment.

【図8】実施例のメインタ−ゲットの説明図である。FIG. 8 is an explanatory diagram of a main target according to the embodiment.

【図9】実施例のサブタ−ゲットの説明図である。FIG. 9 is an explanatory diagram of a sub-target according to the embodiment.

【図10】実施例の地中に管路を構築している状態を示
す説明図である。
FIG. 10 is an explanatory view showing a state in which a pipeline is constructed in the ground according to the embodiment.

【図11】実施例の計測を示す説明図である。FIG. 11 is an explanatory diagram showing the measurement of the example.

【図12】実施例の計測を示す説明図である。FIG. 12 is an explanatory diagram showing the measurement of the example.

【符号の説明】[Explanation of symbols]

1 発進坑計測器 1a 躯体 1b 測定テーブル 1c 上下角調整モータ 1d 出力軸 1e 回転軸 1f レーザー投光器 1g 回転軸 1h 左右角調整モータ 1i 出力軸 1j 左右角検出エンコ−ダ 1k 上下角検出エンコ−ダ 2 中間計測器 2a 躯体 2b メインタ−ゲット 2c 受光部 2d サブタ−ゲット 2e 受光部 2f タ−ゲット監視カメラ 2g 車輪 2h ワイヤ− 3 後押しジャッキ 4 掘進機 5 推進管 6 制御部 7 計算部 8 表示手段 8a モニタ G 地盤 h 作業者 R 発進立坑 1 Start pit measuring instrument 1a body 1b measurement table 1c Vertical angle adjustment motor 1d output shaft 1e rotating shaft 1f laser floodlight 1g rotating shaft 1h Left-right angle adjustment motor 1i output shaft 1j Left / right angle detection encoder 1k Vertical angle detection encoder 2 Intermediate measuring instrument 2a body 2b Main target 2c Light receiving part 2d sub target 2e Light receiving part 2f target surveillance camera 2g wheels 2h wire 3 boost jack 4 excavator 5 propulsion pipe 6 control unit 7 calculator 8 display means 8a monitor G ground h worker R start shaft

───────────────────────────────────────────────────── フロントページの続き (72)発明者 酒井 栄治 福岡県福岡市博多区山王1丁目1番18号 株式会社アルファシビルエンジニアリング 内 (72)発明者 時枝 直人 福岡県福岡市博多区山王1丁目1番18号 株式会社アルファシビルエンジニアリング 内 (72)発明者 藤田 忠男 奈良県磯城郡川西町大字結崎1465 有限会 社藤田油機サービス内 (72)発明者 永井 博也 奈良県磯城郡川西町大字結崎1465 有限会 社藤田油機サービス内 Fターム(参考) 2D054 AA02 AC18 GA02 GA04 GA19 GA62 GA65 GA82    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Eiji Sakai             1-1-18 Sanno, Hakata-ku, Fukuoka City, Fukuoka Prefecture             Alpha Civil Engineering Co., Ltd.             Within (72) Inventor Naoto Tokieda             1-1-18 Sanno, Hakata-ku, Fukuoka City, Fukuoka Prefecture             Alpha Civil Engineering Co., Ltd.             Within (72) Inventor Tadao Fujita             1465 Yuizaki, Kawanishi Town, Isojo District, Nara Prefecture             Inside Fujita Oil Machine Service (72) Inventor Hiroya Nagai             1465 Yuizaki, Kawanishi Town, Isojo District, Nara Prefecture             Inside Fujita Oil Machine Service F-term (reference) 2D054 AA02 AC18 GA02 GA04 GA19                       GA62 GA65 GA82

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 掘進機の後方に地中に埋設される推進管
を配置し、同推進管の後端を後押しして掘進しながら推
進管を押し進め、新しい推進管を最後端に追加して長い
管路を構築する推進掘削工法における掘削路線の座標計
測方法であって、最後端に追加される所要の推進管内に
投光器とタ−ゲットと監視カメラとを備えた計測器を置
き、前記投光器は計測器の掘進側又はその反対側の器端
に左右一対所定間隔に離して且つ二軸方向に回動自在に
設け、前記タ−ゲットは各投光器の投光方向と反対側後
方の計測器に前後左右それぞれ所定間隔に離して且つ投
光器から所定距離隔てて設け、前記監視カメラは各タ−
ゲットへの投光状態を観察できるようにし、各投光器の
二軸の回動角度を検出して掘削路外に送信する角度検出
器を設けた計測器構造とし、掘削の発進立坑の計測基準
位置に投光器を左右一対所定間隔に離して且つ二軸方向
に回動自在に設け、遠隔操作で発進立坑の投光器から前
方の計測器の少なくとも前後二つのタ−ゲットに向けて
投光させ、その投光状態を監視カメラで観察しながら各
タ−ゲットの中心に正確に投光されるように投光器を回
動操作し、各タ−ゲットの中心に投光された状態の各投
光器の二軸角度及び投光器間距離より三角法で投光先の
計測器の各タ−ゲットの座標を求め、その計測器の投光
器から更に前方の計測器の少なくとも前後二つのターゲ
ットに投光して同各ターゲットの座標を求め、これら一
連の工程で地中に押し進めた推進管内の計測器のタ−ゲ
ットの座標を発進立坑から掘進とともに逐次求め、各計
測器のタ−ゲットの座標及び投光器とタ−ゲットの間の
距離でもって全体の掘削路線を計測できるようにした推
進掘削工法における掘削路線の座標計測方法。
1. A propulsion pipe to be buried in the ground is arranged behind the excavator, the rear end of the propulsion pipe is pushed to push the propulsion pipe while excavating, and a new propulsion pipe is added to the rear end. A method for measuring coordinates of an excavation route in a propulsion excavation method for constructing a long pipe, wherein a measuring instrument equipped with a projector, a target and a surveillance camera is placed in a required propulsion pipe added to the last end, Is provided at the end of the measuring instrument on the digging side or the opposite side thereof so as to be rotatable in a biaxial direction with a pair of left and right spaced apart from each other, and the target is a measuring instrument on the rear side opposite to the light projecting direction of each projector. Are provided at a predetermined distance to the front, rear, left, and right, and at a predetermined distance from the projector, and the monitoring cameras are provided with respective targets.
It has a measuring instrument structure with an angle detector that detects the angle of bi-axial rotation of each floodlight and transmits it outside the excavation route so that the light projection state to the get can be observed. A pair of right and left projectors are provided at a predetermined interval so as to be rotatable in two axial directions.The projectors are remotely operated to project light from at least two front and rear targets of the measuring instrument in front of the starting shaft, and the projectors are operated. While observing the light condition with a surveillance camera, rotate the projector so that the light is accurately projected to the center of each target, and the biaxial angle of each projector projected to the center of each target. And the coordinate of each target of the measuring instrument of the projection destination is calculated from the distance between the projectors by the trigonometric method, and the projector of the measuring instrument projects light to at least two targets in front of and behind the measuring instrument of the measuring instrument. Obtain the coordinates, and in the series of these steps The target coordinate of the measuring instrument in the advanced propulsion pipe is sequentially obtained from the starting shaft along with the excavation, and the entire excavation route is measured by the coordinate of the target of each measuring instrument and the distance between the projector and the target. A method for measuring the coordinates of excavation routes in the propulsion excavation method.
【請求項2】 少なくとも三つ以上のターゲットに投光
してその座標からローリング角度を求めて換算し、水平
距離と水平座標と垂直座標を、より精度良く計測できる
ようにした推進掘削工法における掘削路線の座標計測方
法。
2. An excavation method using a propulsion excavation method, which is capable of projecting at least three or more targets and obtaining a rolling angle from the coordinates and converting the rolling angle to measure the horizontal distance, the horizontal coordinate, and the vertical coordinate with higher accuracy. Coordinate measurement method for routes.
【請求項3】 投光器がレーザーを投光するレーザー投
光器である請求項1又は2記載の推進掘削工法における
掘削路線の座標計測方法。
3. The method for measuring coordinates of an excavation route in the propulsion excavation method according to claim 1, wherein the projector is a laser projector that projects a laser.
【請求項4】 計測器に車輪を設けて走行自在にし、各
計測器同士をワイヤ−で連結して作業終了後に回収でき
るようにした請求項1〜3記載の推進掘削工法における
掘削路線の座標計測方法。
4. Coordinates of the excavation route in the propulsion excavation method according to claim 1, wherein the measuring instrument is provided with wheels so as to be freely movable, and the measuring instruments are connected by a wire so that they can be collected after the work is completed. Measuring method.
JP2002053926A 2002-02-28 2002-02-28 Coordinate measurement method of excavation line in propulsion excavation method Expired - Fee Related JP3864102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002053926A JP3864102B2 (en) 2002-02-28 2002-02-28 Coordinate measurement method of excavation line in propulsion excavation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002053926A JP3864102B2 (en) 2002-02-28 2002-02-28 Coordinate measurement method of excavation line in propulsion excavation method

Publications (2)

Publication Number Publication Date
JP2003254750A true JP2003254750A (en) 2003-09-10
JP3864102B2 JP3864102B2 (en) 2006-12-27

Family

ID=28665223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002053926A Expired - Fee Related JP3864102B2 (en) 2002-02-28 2002-02-28 Coordinate measurement method of excavation line in propulsion excavation method

Country Status (1)

Country Link
JP (1) JP3864102B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006284248A (en) * 2005-03-31 2006-10-19 Tekken Constr Co Ltd Position measurement method and instrument for displacement meter
JP2007100918A (en) * 2005-10-07 2007-04-19 Jfe Koken Corp Curvature shape control device and pipe feeding method
CN104142145A (en) * 2014-08-06 2014-11-12 上海隧道工程有限公司 Automatic measuring method and device for rectangular large-section jacking pipe
CN105403203A (en) * 2015-12-22 2016-03-16 中铁上海工程局集团有限公司 Long distance linear top pipe center simple control measuring system and method
CN107218584A (en) * 2017-05-12 2017-09-29 成都金玉雄辉建筑工程有限公司 A kind of push pipe vibrates prior-warning device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006284248A (en) * 2005-03-31 2006-10-19 Tekken Constr Co Ltd Position measurement method and instrument for displacement meter
JP4606226B2 (en) * 2005-03-31 2011-01-05 鉄建建設株式会社 Displacement meter position measuring method and position measuring device
JP2007100918A (en) * 2005-10-07 2007-04-19 Jfe Koken Corp Curvature shape control device and pipe feeding method
JP4692205B2 (en) * 2005-10-07 2011-06-01 Jfeエンジニアリング株式会社 Curved shape management device and pipe feeding method
CN104142145A (en) * 2014-08-06 2014-11-12 上海隧道工程有限公司 Automatic measuring method and device for rectangular large-section jacking pipe
CN105403203A (en) * 2015-12-22 2016-03-16 中铁上海工程局集团有限公司 Long distance linear top pipe center simple control measuring system and method
CN107218584A (en) * 2017-05-12 2017-09-29 成都金玉雄辉建筑工程有限公司 A kind of push pipe vibrates prior-warning device
CN107218584B (en) * 2017-05-12 2023-05-30 成都金玉雄辉建筑工程有限公司 Pipe jacking vibration early warning device

Also Published As

Publication number Publication date
JP3864102B2 (en) 2006-12-27

Similar Documents

Publication Publication Date Title
JP2008144379A (en) Image processing system of remote controlled working machine
AU2022201209B2 (en) A drill rig positioning and drill rod alignment system
US6480289B1 (en) Position measuring apparatus and optical deflection angle measuring apparatus for underground excavators
CN108007378B (en) Deformation monitoring integrated system and use method thereof
JP2007018164A (en) Self-propelled measurement device, diagnosis device, and automatic diagnosis system
JP2007017318A (en) Base line measuring system and base line measuring technique
JP2003254750A (en) Coordinate measurement method for excavation route in pipe jacking excavation method
JP2003262090A (en) Position measuring device for tunnel excavator
JP3383857B2 (en) Pipe body construction method
US11592457B2 (en) Methods and systems for tunnel profiling
JP3759281B2 (en) Underground excavator position measurement device
JP2004138422A (en) Method of surveying in tunnel hole and system of surveying in tunnel hole
JP2019173393A (en) Steel support work building method and building system
JPH0727564A (en) Measuring device for position and attitude of excavator
JP2003262521A (en) Surveying apparatus for pipe jacking method, surveying method, and the pipe jacking method
JP2823396B2 (en) Excavator automatic search equipment
JP4871163B2 (en) Surveying system for excavator
GB2570101A (en) Survey system and method
JP2008082804A (en) Measurement method and measurement device of link type displacement gauge
JP2996521B2 (en) Shield surveying method
JP2757058B2 (en) Underground excavator relative position detector
JPH08338721A (en) Posture measuring instrument of shield machine for pipe with small diameter
JP7377132B2 (en) Rehabilitation pipe communication port position measuring device and communication port position measurement method
Jardón et al. Extended range guidance system for the teleoperation of microtunnelling machines
JP4422927B2 (en) Survey method in civil engineering work

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061002

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091006

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131006

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees