JPH05271878A - Stainless steel for spring excellent in formability and stress corrosion cracking resistance and its manufacture - Google Patents

Stainless steel for spring excellent in formability and stress corrosion cracking resistance and its manufacture

Info

Publication number
JPH05271878A
JPH05271878A JP10244292A JP10244292A JPH05271878A JP H05271878 A JPH05271878 A JP H05271878A JP 10244292 A JP10244292 A JP 10244292A JP 10244292 A JP10244292 A JP 10244292A JP H05271878 A JPH05271878 A JP H05271878A
Authority
JP
Japan
Prior art keywords
less
stainless steel
corrosion cracking
steel
stress corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10244292A
Other languages
Japanese (ja)
Inventor
Sadao Hirotsu
貞雄 廣津
Yoshihiro Uematsu
美博 植松
Shigeto Hayashi
茂人 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP10244292A priority Critical patent/JPH05271878A/en
Publication of JPH05271878A publication Critical patent/JPH05271878A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To improve the formability, stress corrosion cracking resistance and spring properties of stainless steel by specifying components of C, Si, Mn, Ni, Cr, N or the like and subjecting the stainless steel in which these components are regulated to a specified rolling process. CONSTITUTION:Stainless steel constituted of, by weight, 0.03 to 0.15% C, 1.5 to 3% Si, <=3% Mn, 4 to 10% Ni, 12 to 20% Cr, <=0.3% N, <=0.008% S, >=0.1% C+N and >=30 M-value, and the balance Fe is smelted. The M-value is defined by M=330-(480XC%)-(2XSi%)-(10XMn%)-(14XNi%)-(5.7XCr%)-(5XMo%)--(14XCu%)-( 320XM%). Then, the stainless steel is subjected to hot rolling, cold rolling and annealing, then subjected to >=20% temper rolling.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は, 高強度でかつ曲げ加工
などの成形加工を必要とし且つ耐応力腐食割れ特性が要
求されるばね部品に好適なばね用ステンレス鋼に関す
る。本発明のステンレス鋼は, 例えば自動車やオートバ
イ等のエンジンを構成する金属ガスケット部分に好適に
供される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stainless steel for springs suitable for spring parts which have high strength and require forming such as bending and which are required to have stress corrosion cracking resistance. INDUSTRIAL APPLICABILITY The stainless steel of the present invention is suitably applied to a metal gasket portion that constitutes an engine of, for example, an automobile or a motorcycle.

【0002】[0002]

【従来の技術】従来より, 耐食性の要求されるばね部品
用のステンレス鋼素材としては,冷間加工によって簡単
に高強度が得られる加工硬化型の準安定オーステナイト
系ステンレス鋼, 例えばSUS301や301Lなどが広く使用さ
れてきた。
2. Description of the Related Art Conventionally, work-hardening type metastable austenitic stainless steels, such as SUS301 and 301L, that can easily obtain high strength by cold working have been used as stainless steel materials for spring parts that require corrosion resistance. Has been widely used.

【0003】[0003]

【発明が解決しようとする課題】SUS301や301Lでは,高
強度を得るためには強度な冷間加工を施す必要がある。
高強度にしたこの素材を成形加工すると,加工R部に割
れやミクロクラックが発生したりする, という問題があ
った。ミクロクラックが発生すると, 加工部に繰返し変
動応力が加わった場合に, ミクロクラックから疲労クラ
ックが発生し, 破断に至ることがしばしばあった。この
ため, 成型加工Rを大きくしたり, 変動応力が小さくし
たりすることで対応することを余儀なくされた。
[Problems to be Solved by the Invention] With SUS301 and 301L, it is necessary to perform strong cold working in order to obtain high strength.
When this high-strength material is formed and processed, there is a problem that cracks and microcracks occur in the processed R part. When microcracks are generated, fatigue cracks often occur from microcracks to fractures when cyclically varying stress is applied to the machined part. For this reason, it has been unavoidable to deal with it by increasing the molding process R or reducing the fluctuating stress.

【0004】このようなことから,耐食性が要求される
ばね部材において,高強度を得ようとすると,所望の部
品形状にすることができなかったり,部品形状が大きく
なったり, 板厚の厚いものとなったりするという問題が
付随した。
From the above, in the spring member which is required to have corrosion resistance, it is not possible to obtain a desired component shape, the component shape becomes large, or the plate thickness is large when trying to obtain high strength. It was accompanied by the problem of becoming.

【0005】一方, 自動車やオートバイ等のエンジン周
辺の金属ガスケットでは,燃焼排気ガス中の結露水や冷
却水中に存在するCl-などに接触することにより,応力
腐食割れが発生したりする。また, 海洋レジヤー製品に
使用されるオートファスナー等では海水中で使用される
ので,この場合も応力腐食割れが問題となる。
On the other hand, in a metal gasket around an engine of an automobile or a motorcycle, stress corrosion cracking may occur due to contact with dew condensation water in combustion exhaust gas or Cl existing in cooling water. Also, since auto fasteners used in marine register products are used in seawater, stress corrosion cracking becomes a problem in this case as well.

【0006】ところが,SUS301や301Lでは強度を高める
と耐応力腐食割れ特性が低下してくるという問題があっ
た。
However, SUS301 and 301L had a problem that the stress corrosion cracking resistance was deteriorated when the strength was increased.

【0007】したがって,成型加工性と耐応力腐食割れ
特性の双方が要求されるばね部品では,強度の低いもの
を使用することが余儀なくされた。
Therefore, it has been unavoidable to use a spring component having low strength as a spring component which requires both moldability and stress corrosion cracking resistance.

【0008】本発明の目的は,このような成型加工を施
して使用されるステンレス鋼製ばね部品において,優れ
た疲労特性やばね特性を具備したうえ,高強度と成型加
工性を保持したままで,より耐応力腐食割れ特性に優れ
たステンレス鋼ばね材料を得ることである。
An object of the present invention is to provide a stainless steel spring component which is used after being subjected to such a molding process, while having excellent fatigue properties and spring properties, while maintaining high strength and moldability. , To obtain a stainless steel spring material with better stress corrosion cracking resistance.

【0009】[0009]

【課題を解決するための手段】本発明によれば,重量%
において, C:0.03%超え〜0.15%以下, 好ましくは0.05%超え〜
0.13%, Si:1.5%超え〜3.0%以下, Mn:3.0%以下, 好ましくは0.5%未満, Ni:4.0〜10.0%, Cr:12.0〜20.0%, N:0.30%以下, 好ましくは0.06〜0.15%, S:0.008%以下, 好ましくは0.003 %以下 C+N:0.10%以上, 場合によっては,さらに3.0%以下のMoまたは0.5〜3.0
%のCuの1種又は2種を含み, 且つ M=330−(480×C%)−(2×Si%)−(10×Mn%)−(14×Ni%) −(5.7×Cr%)−(5×Mo%)−(14×Cu%)−(320×N%) の式に従うM値が30以上となるようにC, Si,Mn,Ni,
Cr,Cu,Mo,N量が調整されており, 残部がFeおよび
不可避的に混入してくる不純物からなる成形加工性およ
び応力腐食割れ特性に優れたばね用ステンレス鋼を提供
する。
According to the present invention, the weight percent is
In, C: 0.03% to 0.15% or less, preferably 0.05% to
0.13%, Si: more than 1.5% to 3.0% or less, Mn: 3.0% or less, preferably less than 0.5%, Ni: 4.0 to 10.0%, Cr: 12.0 to 20.0%, N: 0.30% or less, preferably 0.06 to 0.15 %, S: 0.008% or less, preferably 0.003% or less C + N: 0.10% or more, and 3.0% or less Mo or 0.5 to 3.0 in some cases.
% Cu of 1 or 2 and M = 330− (480 × C%) − (2 × Si%) − (10 × Mn%) − (14 × Ni%) − (5.7 × Cr% )-(5 * Mo%)-(14 * Cu%)-(320 * N%) so that the M value becomes 30 or more, C, Si, Mn, Ni,
(EN) Provided is a stainless steel for springs, in which the amounts of Cr, Cu, Mo, N are adjusted, and the balance is Fe and impurities inevitably mixed in, which are excellent in formability and stress corrosion cracking characteristics.

【0010】そして,該目的を達成する材料を工業的規
模で製造する方法として,前述の成分および組成を有す
るステンレス鋼を, 通常の熱間圧延工程および冷間圧延
工程を経たうえ焼鈍後に20%以上の調質圧延と100℃以
上300℃未満の温度で時効処理を施すことからなる該ス
テンレス鋼の製造法を提供する。
Then, as a method for producing a material for achieving the object on an industrial scale, a stainless steel having the above-mentioned components and composition is subjected to a normal hot rolling step and a cold rolling step, and then 20% after annealing. There is provided a method for producing the stainless steel, which comprises temper rolling as described above and aging treatment at a temperature of 100 ° C or higher and lower than 300 ° C.

【0011】当製造法において,時効処理は調質圧延さ
れたままの鋼帯または鋼板に施すことができる。この場
合, この時効処理後の鋼帯または鋼板を素材として, ば
ね成品に成形加工が施される。場合によっては,所望形
状のばね成品に成形加工後に100℃以上300℃未満の温度
で時効処理を施すこともできる。
In this manufacturing method, the aging treatment can be applied to the as-tempered steel strip or steel sheet. In this case, the spring component is formed by using the steel strip or steel plate after the aging treatment as a raw material. In some cases, a spring component having a desired shape can be subjected to an aging treatment at a temperature of 100 ° C or higher and lower than 300 ° C after the forming process.

【0012】[0012]

【作用】本発明に従うばね用ステンレス鋼における各成
分の作用と各成分の含有量範囲の限定理由を個別に説明
すると次のとおりである。
The action of each component and the reason for limiting the content range of each component in the stainless steel for springs according to the present invention will be individually described as follows.

【0013】Cは,オーステナイト生成元素であり,高
温で生成するδフエライトの抑制,冷間加工(オーステ
ナイト相を呈する焼鈍状態からの調質圧延,特別のこと
がないかぎり冷間加工とは以後これを指す)で誘発され
るマルテンサイト相の強化に極めて有効に作用する。し
たがって,より成形加工性に優れたものを得るために
は,できるだけCを高くして低い冷間加工率でより高強
度を得ることが, 優れた成形加工性と高強度を両立させ
るのに有効である。しかし,あまりCを高くすると, 粒
界に炭化物が析出するようになり,耐粒界腐食や延性低
下の原因となるのでC含有量は0.03%超え0.15%以下と
した。より好ましくは0.05%超え〜0.13%以下である。
C is an austenite-forming element, and it suppresses δ-ferrite produced at high temperature, cold working (temper rolling from an annealing state exhibiting an austenite phase, cold working unless otherwise specified). It acts very effectively on the strengthening of the martensite phase induced by. Therefore, in order to obtain more excellent formability, it is effective to make C as high as possible and obtain higher strength at a low cold workability in order to achieve both excellent formability and high strength. Is. However, if the C content is too high, carbides will be precipitated at the grain boundaries, causing intergranular corrosion resistance and reduced ductility. Therefore, the C content was set to more than 0.03% and 0.15% or less. More preferably, it is more than 0.05% and 0.13% or less.

【0014】Siは,脱酸材としても有効であるが,冷
間加工によるマルテンサイト相の誘発および強化する上
で有効に作用し,低温での時効処理による硬化の上でも
有効し,且つ耐応力腐食割れ特性を付与するにも有効に
作用する本発明鋼の重要な元素である。このような効果
を発揮させるためには少なくとも1.5%以上を必要とす
る。しかし,あまり高くするとδフエライト相の生成を
助長し,また,あまり高くしてもその割りには該効果は
小さくなるので,その上限を3.0%とした。
Si is also effective as a deoxidizing agent, but it acts effectively in inducing and strengthening the martensite phase by cold working, and also effective in hardening by aging treatment at low temperature, and resistance to It is an important element of the steel of the present invention that effectively acts to impart stress corrosion cracking characteristics. At least 1.5% or more is required to exert such effects. However, if it is made too high, the formation of the δ-ferrite phase is promoted, and if it is made too high, the effect becomes small in proportion, so the upper limit was made 3.0%.

【0015】Mnは,脱酸材としても有効に働くが,オ
ーステナイト相の安定度を支配する元素であり,その活
用は他の元素とのバランスのもとに考慮される。本発明
においては3.0%までのMn量でその活用が図れる。しか
し, 特に成形加工性の厳しい用途向きには,Mn量は0.5
%未満として,MnSの生成を極力避けるのが好まし
い。
Mn works effectively as a deoxidizer, but it is an element that controls the stability of the austenite phase, and its utilization is considered in balance with other elements. In the present invention, the utilization can be achieved with the Mn amount up to 3.0%. However, the Mn content is 0.5 for applications with particularly severe formability.
%, It is preferable to avoid the formation of MnS as much as possible.

【0016】Crは,ばね部品の耐食性を確保するうえ
で必須の成分である。意図する耐食性を付与するのに
は,少なくとも12.0%以上のCrを必要とする。しかし,
Crはフエライト生成元素でもあるので,高くしすぎる
と高温でδフエライトが多量に生成してしまう。そこ
で, δフエライト相抑制のためにオーステナイト生成元
素 (C,N,Ni,Mn,Cuなど)をそれに見合った量で添
加しなければならなくなるが,オーステナイト生成元素
を多く添加すると今度は室温でのオーステナイト相が安
定し,冷間加工後あるいは時効処理しても高強度が得ら
れなくなる。このようなことからCrの上限は20%とし
た。
Cr is an essential component for ensuring the corrosion resistance of spring parts. At least 12.0% or more of Cr is required to provide the intended corrosion resistance. However,
Since Cr is also a ferrite-producing element, if it is made too high, a large amount of δ-ferrite will be produced at high temperatures. Therefore, in order to suppress the δ-ferrite phase, it is necessary to add austenite-forming elements (C, N, Ni, Mn, Cu, etc.) in an amount commensurate with that. The austenite phase is stable and high strength cannot be obtained even after cold working or aging. Therefore, the upper limit of Cr is set to 20%.

【0017】Niは, 高温および室温でオーステナイト
相を得るに必須の成分である。本発明鋼の場合, 室温で
準安定オーステナイト相にし, 冷間加工でマルテンサイ
ト相を誘発させるようにしなければならない。本発明鋼
ではNiを4.0%より低くすると,オーステナイト相中
に,高温でδフェライト相が,また室温で焼入れマルテ
ンサイト相がかなり生成する場合があり,この場合には
加工誘起マルテンサイトの元となるオーステナイト相の
割合が不足するので好ましくない。一方, Niが10%を
越えると冷間加工でマルテンサイト相が誘発され難くな
る。このためNi量は4.0〜10.0%とした。より好ましく
は5.0〜8.0%である。
Ni is an essential component for obtaining an austenite phase at high temperature and room temperature. In the case of the steel of the present invention, a metastable austenite phase should be obtained at room temperature, and a martensite phase should be induced by cold working. In the steel of the present invention, when Ni is lower than 4.0%, a δ ferrite phase may be generated in the austenite phase at a high temperature and a hardened martensite phase may be considerably generated at room temperature. Is not preferable because the ratio of the austenite phase is insufficient. On the other hand, when Ni exceeds 10%, it becomes difficult to induce the martensite phase during cold working. Therefore, the amount of Ni is set to 4.0 to 10.0%. It is more preferably 5.0 to 8.0%.

【0018】Moは,鋼のベース硬さを上昇させるとと
もに時効処理後の硬さを上昇させるので,高強度を得る
上で有効に作用する。また耐食性の向上にも有効な元素
である。しかし, フエライトフォーマーであるために多
量に添加するとδフエライト相を晶出させ, かえって強
度低下の要因ともなるので上限を3.0%とした。
Mo increases the base hardness of the steel and also increases the hardness after aging treatment, and therefore works effectively in obtaining high strength. It is also an effective element for improving corrosion resistance. However, since it is a ferrite former, a large amount of it causes the δ-ferrite phase to crystallize, which rather causes a decrease in strength. Therefore, the upper limit was made 3.0%.

【0019】Cuは, 時効処理の際にSiとの相互作用に
より鋼を硬化させる作用を供する。少なすぎるとその効
果は小さく, 多すぎると熱間加工性を阻害し割れの要因
となる。この理由から0.5〜3.0%とした。
Cu serves to harden the steel by interacting with Si during the aging treatment. If the amount is too small, the effect is small, and if the amount is too large, the hot workability is impaired and cracking occurs. For this reason, it is set to 0.5 to 3.0%.

【0020】Sは, Mnと共存のもとにMnSを生成し,
延性の低下をもたらす。この理由から0.008%以下とし
た。なお, 特に薄板成品の場合には,高強度領域ではこ
の介在物が延性および疲労特性に悪い影響を与えるの
で,MnおよびSは低いほうが好ましく, Mn量は0.5%
未満, S量は0.003%以下とするのがよい。
S produces MnS in the coexistence with Mn,
It causes a decrease in ductility. For this reason, it is set to 0.008% or less. Especially in the case of thin plate products, Mn and S should be low because the inclusions adversely affect ductility and fatigue properties in the high strength region.
Less, S content is preferably 0.003% or less.

【0021】Nは, オーステナイト生成元素であると共
にオーステナイト相およびマルテンサイト相を硬化させ
るのに極めて有効な元素である。また時効温度の低下に
寄与する。しかし多量になると鋳造時にブローホールの
原因となるので0.30%以下とした。より好ましくは0.06
〜0.15%の範囲で含有させる。
N is an austenite-forming element and an extremely effective element for hardening the austenite phase and the martensite phase. It also contributes to lowering the aging temperature. However, a large amount causes blow holes during casting, so the content was made 0.30% or less. More preferably 0.06
Included in the range of ~ 0.15%.

【0022】CとNとは同様な作用効果を示し互換性が
ある。各々の上限はそれぞれ上記のように限定するが,
これらの作用効果を十分に発揮させるには合計量で0.10
%以上とする必要がある。
C and N have similar effects and are compatible with each other. Each upper limit is limited as described above,
In order to fully exert these effects, the total amount is 0.10
It must be at least%.

【0023】M値:30以上について,C,Si,Mn,Ni,C
r,Mo,CuおよびNについて, それぞれ上記の範囲で含
有させるが,下記(1)式に従うM値が30以上となるよう
に各成分を調整する。 M=330−(480×C%)−(2×Si%)−(10×Mn%)−(14×Ni%)− −(5.7×Cr%)−(5×Mo%)−(14×Cu%)−(320×N%) ・・(1) (1) 式における各成分の定数は,本発明鋼の開発中に実
験室的に確定されたものである。このM値はオーステナ
イト安定度の指標となるもので, 30より低い値では調質
圧延後あるいは時効処理後に高強度を得るためには,室
温で60%以上の強圧下率を施す必要があり, この場合に
は延性が低下する。したがって, 成形加工性を確保する
にはM値を30以上にする必要がある。
M value: C, Si, Mn, Ni, C for 30 or more
Although r, Mo, Cu and N are contained in the above ranges respectively, the respective components are adjusted so that the M value according to the following formula (1) becomes 30 or more. M = 330− (480 × C%) − (2 × Si%) − (10 × Mn%) − (14 × Ni%) − − (5.7 × Cr%) − (5 × Mo%) − (14 × Cu%) − (320 × N%) ··· (1) The constants of each component in the equation (1) were determined in the laboratory during the development of the steel of the present invention. This M value is an index of austenite stability, and if it is lower than 30, it is necessary to apply a strong rolling reduction of 60% or more at room temperature to obtain high strength after temper rolling or aging treatment. In this case, the ductility decreases. Therefore, it is necessary to set the M value to 30 or more to secure the moldability.

【0024】本発明鋼は,以上の範囲に化学成分が調整
される。しかし,これらの成分以外に脱酸材として添加
されるAlや, 脱硫剤として添加されるCaやREM,熱
間加工性改善効果のあるB (0.01%以下) 等の他, 不可
避的に混入する不純物を含有することができる。ただ
し, Alは高強度でかつ疲労強度の高いものが要求され
る場合は使用しないか,あるいは鋼中に非金属介在物を
形成しない程度の量とすることが望ましい。なお,従来
鋼と同程度の強度および疲労強度でもよい場合には,さ
らに多量のAlを含有させることもできる。
The chemical composition of the steel of the present invention is adjusted within the above range. However, in addition to these components, Al added as a deoxidizing agent, Ca and REM added as a desulfurizing agent, B (0.01% or less) with an effect of improving hot workability, and inevitably mixed. It can contain impurities. However, Al is not used when high strength and high fatigue strength is required, or it is desirable to use an amount that does not form nonmetallic inclusions in steel. If the strength and fatigue strength are similar to those of conventional steel, a larger amount of Al can be contained.

【0025】上述の各成分含有量の範囲に調整された本
発明に従う鋼は,その組織状態は溶体化処理状態で実質
的にはオーステナイト組織を呈する。この状態で調質圧
延を施すことにより, より高強度で目的とする優れた成
形加工性と耐応力腐食割れ特性を備えたばね部品として
の適材を得ることができる。
The steel according to the present invention adjusted to the range of the content of each component described above exhibits substantially austenite structure in the solution treatment state. By temper-rolling in this state, it is possible to obtain a suitable material as a spring component that has higher strength and excellent target formability and stress corrosion cracking resistance.

【0026】調質圧延は,目標の強度レベルを得るため
に少なくとも20%以上の圧延率が必要である。圧延率の
上限については特に限定されないが,本発明鋼の場合に
は,従来鋼よりも低い圧延率でも目標強度が達成される
こと,また,できるだけ良好な成形加工性を確保する意
味から,圧延率の上限は60%前後が適当である。
Temper rolling requires a rolling ratio of at least 20% or more to obtain a target strength level. Although the upper limit of the rolling ratio is not particularly limited, in the case of the steel of the present invention, the target strength can be achieved even at a lower rolling ratio than that of the conventional steel, and in the sense that the forming workability as good as possible is secured. The upper limit of the rate is appropriately around 60%.

【0027】調質圧延された鋼帯は,さらにばね部品と
しての強度特性を一層発現するために,鋼帯のままある
いは所望のばね部品に成形加工後に時効処理を施す。本
発明における時効処理の温度は100℃以上300℃未満であ
る。
The temper-rolled steel strip is subjected to an aging treatment as it is or after being formed into a desired spring component in order to further develop strength characteristics as a spring component. The aging temperature in the present invention is 100 ° C or higher and lower than 300 ° C.

【0028】時効処理温度の範囲を100℃以上300℃未満
とするのは,本発明鋼ではSi,Nの添加, 場合によって
はさらにMo,Cuの添加により, 従来鋼に比べてより低
温の時効でも優れた時効硬化能を有し, したがってより
高強度が得られること,および, より優れた耐応力腐食
割れ特性を得るためには, より低温時効が好ましいから
である。時効温度が300℃以上では優れた耐応力腐食割
れ特性が得られない。しかし,100℃より低い時効温度
では目的とする高強度が得られない。
The range of the aging treatment temperature is set to 100 ° C. or more and less than 300 ° C. The steel of the present invention has an aging temperature lower than that of the conventional steel due to the addition of Si and N and, in some cases, addition of Mo and Cu. However, low temperature aging is preferable in order to have excellent age hardening ability and therefore higher strength, and to obtain better stress corrosion cracking resistance. If the aging temperature is 300 ° C or higher, excellent stress corrosion cracking resistance cannot be obtained. However, the desired high strength cannot be obtained at an aging temperature lower than 100 ° C.

【0029】この温度範囲の時効処理を10分以上行う。
これ以下の短時間では時効処理の効果が十分には得られ
ない。なお時効処理時間の上限は特には限定されない
が,製造コスト面から考えると1時間前後が好ましい。
Aging treatment in this temperature range is performed for 10 minutes or more.
If the time is shorter than this, the effect of the aging treatment cannot be sufficiently obtained. The upper limit of the aging treatment time is not particularly limited, but it is preferably about 1 hour from the viewpoint of manufacturing cost.

【0030】以上のように本発明は, 特にSiを添加し
CとNの合計量を0.1%以上としたうえで適度な成分バ
ランスを調整することによって, 低い調質圧延率でも高
強度で微細かつ緻密にα' 相 (加工誘起マルテンサイト
相) を分布させ得ること,並びにSi,Nの添加により低
温での時効処理でも充分な時効硬化能が発現することを
知見し,低度の調質圧延率で高い成形加工性と高強度を
付与し且つ低温時効により優れた耐応力腐食割れ特性を
付与したところに特徴がある。
As described above, according to the present invention, in particular, Si is added so that the total amount of C and N is 0.1% or more, and the proper component balance is adjusted. Moreover, it was found that the α'phase (work-induced martensite phase) can be densely distributed, and that the addition of Si and N produces sufficient age hardening ability even at low temperature aging treatment. It is characterized in that it imparts high formability and high strength at the rolling ratio and imparts excellent stress corrosion cracking resistance characteristics to low temperature aging.

【0031】このようにして得られた鋼は,調質圧延状
態での延性が高く, 加工部の疲労特性に優れかつ優れた
耐応力腐食割れ特性が得られるため,高強度でかつ成形
加工性と疲労特性, 耐応力腐食割れ特性を必要とする例
えば海水中で使用されるオートファスナー, 自動車やオ
ートバイ等のエンジン周辺の金属ガスケットに使用され
た場合に, 加工部の割れが防止され,疲労による破壊,
応力腐食割れが防止されるので長期間の使用に耐え得る
ことができる。
The steel thus obtained has high ductility in the temper-rolled state, excellent fatigue properties of the worked part, and excellent stress corrosion cracking resistance properties. And fatigue resistance and stress corrosion cracking resistance are required, for example, when used for auto fasteners used in seawater, metal gaskets around engines such as automobiles and motorcycles, cracks in the processed part are prevented and Destruction,
Since stress corrosion cracking is prevented, it can withstand long-term use.

【0032】このように適度な調質圧延率で高い強度と
成形加工性並びに耐応力腐食割れ特性を付与したところ
に本発明の特徴があるが,特に本発明においては,次の
ような作用効果を奏する。
As described above, the present invention is characterized in that high strength, forming workability, and stress corrosion cracking resistance are imparted at an appropriate temper rolling rate. In particular, in the present invention, the following operational effects are obtained. Play.

【0033】(A)冷間加工 (調質圧延) によって誘発
されるマルテンサイト相の微細化および強化に寄与する
Siを1.5%を超え3.0%以下と従来鋼よりも多くし,か
つマルテンサイト相の強化元素であるCとNを合計で0.
1%以上にして,誘発されたマルテンサイト相をSi,C,
Nにより硬化したものであるから,調質圧延状態で強
度, 延性に富んだ材料である。
(A) Si that contributes to the refinement and strengthening of the martensite phase induced by cold working (temper rolling) is more than 1.5% and 3.0% or less, which is larger than that of the conventional steel, and the martensite phase is increased. The total of C and N which are strengthening elements of
If the induced martensite phase is Si, C,
Since it is hardened by N, it is a material with high strength and ductility in the temper-rolled state.

【0034】(B)M値による適度なγ安定度の調整と
適量のSi添加により軽圧延でより緻密なマルテンサイ
ト相を生成させ,さらにNの添加により, SiとNの作
用で低温時効処理でも時効による強度が上昇する。さら
にCuの添加により時効処理による強度上昇が大きくな
る。これによって,調質圧延率を低く保つことが可能と
なり, 成形加工性が改善され, 成形加工部の疲労特性が
改善される。
(B) An appropriate γ-stability is adjusted by the M value and a proper amount of Si is added to produce a more dense martensite phase in the light rolling, and further N is added to effect the low temperature aging treatment by the action of Si and N. However, the strength increases due to aging. Furthermore, the addition of Cu increases the strength increase due to the aging treatment. As a result, it is possible to keep the temper rolling rate low, improve the formability, and improve the fatigue properties of the formed part.

【0035】(C)耐応力腐食割れ特性に対しては, S
i量と時効処理温度が影響する。適量のSi添加と時効処
理温度を300℃未満とすることで優れた耐応力腐食割れ
特性が付与される。さらにMo,Cuの添加により, 一層
の耐応力腐食割れ性の向上が図れる。
(C) For the stress corrosion cracking resistance property, S
The amount of i and the aging temperature affect. By adding an appropriate amount of Si and setting the aging temperature to less than 300 ° C, excellent stress corrosion cracking resistance is imparted. Furthermore, by adding Mo and Cu, the stress corrosion cracking resistance can be further improved.

【0036】以下に実施例によって本発明の効果を具体
的に示す。
The effects of the present invention will be specifically described below with reference to examples.

【0037】[0037]

【実施例】表1に示す成分の本発明鋼(H1〜8), 従
来鋼 (A,B), 比較鋼(a〜d)を常法により溶製し
熱間圧延を施した後,冷延, 焼鈍, 酸洗あるいは光輝焼
鈍を行い, 最終板厚が0.25mmとなるように表2に示す各
圧延率で最終調質圧延し,板厚0.25mmtのサンプルを採
取した。
EXAMPLES Steels of the present invention (H1 to 8), conventional steels (A and B) and comparative steels (a to d) having the components shown in Table 1 were melted by a conventional method, hot-rolled, and then cooled. It was rolled, annealed, pickled or bright annealed, and finally temper-rolled at each rolling rate shown in Table 2 so that the final strip thickness was 0.25 mm, and a sample with a strip thickness of 0.25 mmt was taken.

【0038】得られた冷延鋼板サンプルの耐力,伸びお
よび曲げ性を調べ, その結果を表2に示した。また,各
鋼板に 250℃×30分の時効処理を施した後の耐力,伸
び, ΔYSを調べるとともに, 1部のものについては曲
げ加工付与後の疲労特性を調査した。また耐応力腐食割
れ特性も調べた。それらの結果も表2に併記した。
The yield strength, elongation and bendability of the obtained cold rolled steel sheet sample were investigated and the results are shown in Table 2. In addition, the proof stress, elongation, and ΔYS of each steel sheet after aging treatment at 250 ° C for 30 minutes were examined, and for one part, the fatigue properties after bending were examined. The stress corrosion cracking resistance was also investigated. The results are also shown in Table 2.

【0039】表2中のΔYSは時効処理前後の耐力の差
である。曲げ性は, 図1に示すようなダイス1とポンチ
2の間に試験片3を挿入し,90度の突き曲げ加工を加え
た時の外側R部 (先端R=0.2mm) を観察し,この部分
に割れ無し (○印), 微細な割れあり (△印), 割れあり
(×印) で評価した。
ΔYS in Table 2 is the difference in proof stress before and after the aging treatment. The bendability was measured by observing the outer R part (tip R = 0.2 mm) when the test piece 3 was inserted between the die 1 and the punch 2 as shown in Fig. 1 and 90-degree butt bending was applied. No cracks (○), fine cracks (△), cracks in this part
It was evaluated by (X mark).

【0040】疲労試験は, 図4に示した寸法のWビード
形状に成型加工した試験片に,最大応力1000N/mm2で応
力振幅350N/mm2を付加したときの片振り引張り疲労試験
を行い,破断に至るまでの繰り返し回数で評価した。
The fatigue test is a one-sided tensile fatigue test in which a stress amplitude of 350 N / mm 2 is applied at a maximum stress of 1000 N / mm 2 to a test piece molded into a W bead shape having the dimensions shown in FIG. , Evaluated by the number of repetitions until breakage.

【0041】耐応力腐食割れ特性は0.25mm厚み×10mm幅
×80mm長さの短冊板を切り出し, 表面応力1400N/mm2
曲げ応力を付与した状態で, 200℃に保持した100ppmCl
-溶液中に浸漬し,割れ発生までの時間で評価した。
The resistance to stress corrosion cracking was measured by cutting a 0.25 mm thick × 10 mm wide × 80 mm long strip, and applying 100 ppm Cl of 200 ° C with surface stress of 1400 N / mm 2 bending stress applied.
- it was immersed in the solution, was evaluated by the time until cracking.

【0042】[0042]

【表1】 [Table 1]

【0043】[0043]

【表2】 [Table 2]

【0044】表2の結果から次のことが明らかである。
なお,ばね材としては高強度であることが望ましく,時
効処理後の耐力で少なくとも1500N/mm2以上の強度が目
標である。
From the results shown in Table 2, the following is clear.
It is desirable for the spring material to have high strength, and the target strength is at least 1500 N / mm 2 in terms of proof stress after aging treatment.

【0045】本発明に従う実施例H1〜8では, 焼鈍
後,表示の調質圧延率を付与した材料(圧延ままの材料)
は,成形加工性の基本となる曲げ加工性については先
端R=0.2mmで評価した90度突き曲げにおいて割れを発
生することなく, 十分な強度を有していることがわか
る。
In Examples H1 to H8 according to the present invention, after annealing, a material having the indicated temper rolling rate was given (as-rolled material).
As for the bending workability, which is the basis of the forming workability, it can be seen that there is no crack in the 90 ° butt bend evaluated at the tip R = 0.2 mm, and it has sufficient strength.

【0046】これに対し, 従来鋼A(SUS301)およびB(S
US301L) では割れが発生し,充分な成形加工性が得られ
ていない。これは従来鋼AおよびBでは, 時効処理後に
高強度を得ようとすれば,時効硬化度 (ここではΔY
S) が小さいので,時効処理前の調質圧延率を高くする
必要があることによる。
On the other hand, conventional steels A (SUS301) and B (S
In US301L), cracking occurred and sufficient moldability was not obtained. This is because in conventional steels A and B, the age-hardening degree (here, ΔY
Because S) is small, it is necessary to increase the temper rolling ratio before aging treatment.

【0047】比較鋼aでは本発明で規定するM値が30以
下であるから,強度を得るための調質圧延率を高く取る
必要があり,やはり良好な曲げ加工性が得られていな
い。
In Comparative Steel a, since the M value specified in the present invention is 30 or less, it is necessary to have a high temper rolling rate to obtain strength, and good bending workability is not obtained.

【0048】時効処理による耐力の上昇量をΔYSとし
て表2に記載したが,本発明の鋼ではいずれも200N/mm2
以上の高いΔYSを示している。これは, 適度なγ安定
度とSi,Nの添加によってもたらされたものである。す
なわち本発明で規定するM値が30以上で且つSiとNが
本発明で規定する範囲にあることから,低い時効処理温
度でも良好な時効硬化能が得られるのである。
The amount of increase in proof stress due to aging treatment is shown in Table 2 as ΔYS. In the steels of the present invention, both are 200 N / mm 2
The above shows a high ΔYS. This was brought about by moderate γ stability and addition of Si, N. That is, since the M value specified by the present invention is 30 or more and Si and N are within the range specified by the present invention, good age hardening ability can be obtained even at a low aging treatment temperature.

【0049】このことから,本発明鋼では, 時効処理前
の強度は従来鋼よりは低くても時効後は同等以上の強度
が得られる。このため時効処理前の調質圧延率は低く保
つことができ,目的とする成形加工性が得られる。
From the above, in the steel of the present invention, even if the strength before aging treatment is lower than that of the conventional steel, the same or higher strength is obtained after aging. Therefore, the temper rolling ratio before aging treatment can be kept low, and the desired formability can be obtained.

【0050】図2は, 本発明鋼のH2, 従来鋼A,比較
鋼bについて,時効処理温度と耐力の関係を示したもの
である。本発明鋼では低い温度から耐力の上昇する割合
が高いことがわかる。
FIG. 2 shows the relationship between the aging temperature and the proof stress for H2 of the present invention steel, conventional steel A, and comparative steel b. It can be seen that the steel of the present invention has a high rate of increase in yield strength from a low temperature.

【0051】図3は, 成形加工性が疲労特性に及ぼす影
響を調査したものである。すなわち図4に示す寸法のW
ビードを成形付与した試験片について,片振り引張り疲
労試験し(図5のようにWビード加工を付与した試験片
に最大応力1000N/mm2の荷重を付与した状態で振幅応力
を各種変化させて加える), 疲労特性に及ぼす成形加工
性の影響を調べた。
FIG. 3 shows the investigation of the influence of the formability on the fatigue characteristics. That is, W of the dimension shown in FIG.
A test piece with a bead formed thereon was subjected to a unilateral tensile fatigue test (as shown in Fig. 5, the amplitude stress was variously changed under the condition that a maximum stress of 1000 N / mm 2 was applied to the test piece with W bead processing). The effect of forming workability on the fatigue properties was investigated.

【0052】図3には,本発明鋼(H2), 従来鋼
(A), 比較鋼(a,d)についてのデータを示した。
縦軸に付与した応力振幅の大きさ (繰返し曲げ応力)
を,横軸に破断に至るまでの繰り返し回数をプロットし
た。図3の結果より,曲げ加工性の優れた本発明鋼は疲
労強度および疲労限が高いことが明らかであり,成形加
工性が疲労寿命に大きく影響していることが認められ
る。
FIG. 3 shows the data for the steel of the present invention (H2), the conventional steel (A), and the comparative steels (a, d).
Magnitude of stress amplitude applied to vertical axis (repeating bending stress)
The horizontal axis shows the number of repetitions until fracture. From the results of FIG. 3, it is clear that the steel of the present invention having excellent bending workability has high fatigue strength and fatigue limit, and it is recognized that the formability has a great influence on the fatigue life.

【0053】このことは表2の疲労試験結果からも明ら
かである。350N/mm2の振幅応力を付与した時の破断寿命
は曲げ加工性の優れたものが長寿命を示している。すな
わち成形加工性が疲労寿命に影響していることが分か
る。
This is also clear from the fatigue test results shown in Table 2. The fracture life when an amplitude stress of 350 N / mm 2 is applied shows that the one with excellent bending workability has a long life. That is, it can be seen that the formability affects the fatigue life.

【0054】図6は,耐応力腐食割れ特性と鋼中Si量
との関係を示したものである。すなわち,前記したよう
に200℃の100ppmCl-中での応力付与下での割れ発生ま
での時間と,表1の各鋼のSi量との関係を示したもの
である。図6から明らかなように, 本発明で規定するS
iが1.5%越える材料は破断寿命が格段に長くなってい
る。
FIG. 6 shows the relationship between stress corrosion cracking resistance and the amount of Si in steel. That is, as described above, it shows the relationship between the time until crack initiation under stress application in 100 ppm Cl at 200 ° C. and the Si content of each steel in Table 1. As is clear from FIG. 6, S defined in the present invention
The material with i exceeding 1.5% has a significantly longer fracture life.

【0055】このうち比較鋼 (d)は低CでSiを添加
したものであるが, 本発明鋼に比べると長寿命を示して
いる。しかし, 表2に見られるように,本発明鋼と同等
レベルの強度を得るためには調質圧延率を高くする必要
があり, 本発明鋼よりも成形加工性に劣るとともに成形
加工後の疲労特性も劣る。
Among them, the comparative steel (d) is a low C alloy to which Si is added, and has a longer life than the steel of the present invention. However, as shown in Table 2, in order to obtain the same level of strength as the steel of the present invention, it is necessary to increase the temper rolling ratio, which is inferior to the steel of the present invention in formability and fatigue after forming. The characteristics are also inferior.

【0056】このことから, 特に成形加工性を必要とし
ない場合は,比較鋼dのようなlowCにSiを添加したも
のがむしろ耐応力腐食割れ特性に優れる。これらの結果
は時効処理温度を300℃未満で実施することによっても
たらされる。
From these facts, when forming workability is not particularly required, low steel such as comparative steel d having Si added thereto is rather excellent in stress corrosion cracking resistance. These results are brought about by carrying out the aging temperature below 300 ° C.

【0057】図7は,本発明鋼H4および従来鋼Aおよ
びBの時効処理温度と応力腐食割れ試験における割れ発
生までの時間との関係を示したものである。これによれ
ば,時効処理後の耐力が1500N/mm2以上の状態では,従
来鋼Aではいずれの時効処理温度でも24時間以内に割れ
を発生する。比較鋼Bは200℃では割れ発生までの時間
が若干伸びる傾向にはあるが, いずれにしても24時間か
ら36時間前後で割れを発生している。
FIG. 7 shows the relationship between the aging temperature of the steel H4 of the present invention and the conventional steels A and B and the time until crack initiation in the stress corrosion cracking test. According to this, when the proof stress after aging treatment is 1500 N / mm 2 or more, conventional steel A cracks within 24 hours at any aging treatment temperature. In Comparative Steel B, the time until crack initiation tends to slightly increase at 200 ° C, but in any case, cracking occurs around 24 to 36 hours.

【0058】これに対し,本発明鋼H4では350℃以上
の温度では従来鋼Bよりもむしろ短時間で割れが発生す
る傾向にあるが,300℃未満の時効処理温度では割れ発
生までの時間が著しく長くなっている。すなわち,低温
での時効処理によって,本発明鋼の場合には優れた耐応
力腐食割れ特性を発現する。
On the other hand, in the case of the steel H4 of the present invention, cracks tend to occur in a shorter time than the conventional steel B at a temperature of 350 ° C. or higher, but at an aging temperature of less than 300 ° C., the time until crack initiation occurs. It is extremely long. That is, by the aging treatment at a low temperature, the steel of the present invention exhibits excellent stress corrosion cracking resistance.

【0059】従来より時効処理前に調質圧延が施される
ばね用材料では,強度,ばね特性の改善の面から400℃
前後での時効処理が施されており,高強度で成形加工性
を有したうえで耐応力腐食割れ特性に優れた材料を得る
ことはできなかったし,たとえ低温で時効しても耐応力
腐食割れ特性は改善できず且つ強度やばね特性も良好と
はならなかったのである。この点で,本発明はばね用ス
テンレス鋼の分野において格段の効果を奏するものであ
る。
From the viewpoint of improving strength and spring characteristics, a spring material that has been conventionally temper-rolled before aging treatment has a temperature of 400 ° C.
Before and after aging treatment was performed, it was not possible to obtain a material that had high strength and formability and was excellent in stress corrosion cracking resistance. The cracking characteristics could not be improved, and the strength and spring characteristics were not good either. In this respect, the present invention exerts a remarkable effect in the field of stainless steel for springs.

【0060】[0060]

【発明の効果】前記の実施例に示したように,本発明に
よれば,強度,成形加工性,耐応力腐食割れ特性が同時
に優れ且つばね特性の優れたステンレス鋼が提供され
る。
As shown in the above embodiments, according to the present invention, there is provided a stainless steel which is excellent in strength, formability, stress corrosion cracking resistance and spring characteristics at the same time.

【0061】特に,本発明鋼は従来のバネ用ステンレス
鋼であるSUS301やSUS301L等に比べて時効による強度上
昇が大きいため, 時効処理前の調質圧延を低い圧延率に
することができる。また,低い温度で時効処理すること
により従来鋼に比べて優れた耐応力腐食割れ特性を付与
することができる。
In particular, the steel of the present invention has a greater strength increase due to aging than conventional stainless steels for springs, such as SUS301 and SUS301L, so that temper rolling before aging treatment can be performed at a low rolling rate. Also, aging treatment at a low temperature can provide stress corrosion cracking resistance superior to that of conventional steel.

【0062】このようなことから,例えば, 海水中で使
用されるオートファスナー, 自動車やオートバイ等のエ
ンジン周辺の金属ガスケット向け用途に使用した場合
に,応力腐食割れが防止され,耐用寿命が従来材に比べ
ると著しく改善される。
From the above, for example, when it is used for auto fasteners used in seawater, metal gaskets around engines of automobiles, motorcycles, etc., stress corrosion cracking is prevented and the service life of conventional materials is reduced. Is significantly improved compared to.

【0063】加えて,本発明鋼は従来法とコスト的には
変わらない製造法によって製造できるから,製造コスト
の点でも有利である。
In addition, since the steel of the present invention can be manufactured by a manufacturing method which does not differ from the conventional method in terms of cost, it is advantageous in terms of manufacturing cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】成形加工性を評価するための突き曲げ試験方法
を示す略断面図である。
FIG. 1 is a schematic cross-sectional view showing a butt-bending test method for evaluating moldability.

【図2】本発明の実施例鋼のH2,従来鋼A,比較鋼b
の時効処理温度と耐力の関係を示す図である。
FIG. 2 is an example steel of the present invention, H2, conventional steel A, comparative steel b.
It is a figure which shows the relationship between the aging treatment temperature and yield strength of.

【図3】本発明の実施例鋼H2,従来鋼A,比較鋼a,
dのWビード加工品の片振り引張り疲労試験結果を示す
図である。
[FIG. 3] Example steel H2 of the present invention, conventional steel A, comparative steel a,
It is a figure which shows the one sided swing fatigue test result of the W bead processed product of d.

【図4】疲労特性及び加工性の影響を評価するためのW
ビード形状と寸法を示す略断面図である。
[Fig. 4] W for evaluating the influence of fatigue characteristics and workability
It is a schematic sectional drawing which shows a bead shape and dimensions.

【図5】Wビード加工付与試験片による片振り引張り疲
労試験の概要を説明するための図である。
FIG. 5 is a diagram for explaining the outline of a unilateral tensile fatigue test using a W bead processing test piece.

【図6】本発明実施例鋼H1〜6 (○印), 比較材b,
c,d(●印), 従来鋼A(□印)および従来鋼B(△
印)の時効処理材(250℃×30分)におけるSi量と応力
腐食割れ発生時間の関係を示す図である。
[Fig. 6] Inventive Example Steels H1 to H6 (○), Comparative Material b,
c, d (● mark), conventional steel A (□ mark) and conventional steel B (△
It is a figure which shows the relationship between Si amount and stress corrosion cracking generation time in the aging treated material (marked) (250 ° C. × 30 minutes).

【図7】本発明鋼H4および従来鋼(A,B)の時効処
理温度と応力腐食割れ発生時間の関係を示す図である。
FIG. 7 is a diagram showing the relationship between the aging temperature and the time of occurrence of stress corrosion cracking for steel H4 of the present invention and conventional steels (A, B).

【符号の説明】[Explanation of symbols]

1 ダイズ 2 ポンチ 3 試験片 1 Soybean 2 Punch 3 Test piece

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 重量%において, C:0.03%超え〜0.15%以下, Si:1.5%超え〜3.0%以下, Mn:3.0%以下, Ni:4.0〜10.0%, Cr:12.0〜20.0%, N:0.30%以下, S:0.008%以下, C+N:0.10%以上 を含み, かつ M=330−(480×C%)−(2×Si%)−(10×Mn%)−(14×Ni%) −(5.7×Cr%)−(320×N%) の式に従うM値が30以上となるようにC,Si,Mn,Ni,
Cr,N量が調整されており, 残部がFeおよび不可避的
に混入してくる不純物からなる成形加工性および応力腐
食割れ特性に優れたばね用ステンレス鋼。
1. In% by weight, C: 0.03% to 0.15% or less, Si: 1.5% to 3.0% or less, Mn: 3.0% or less, Ni: 4.0 to 10.0%, Cr: 12.0 to 20.0%, N : 0.30% or less, S: 0.008% or less, C + N: 0.10% or more, and M = 330− (480 × C%) − (2 × Si%) − (10 × Mn%) − (14 × Ni% ) − (5.7 × Cr%) − (320 × N%) C, Si, Mn, Ni, so that the M value becomes 30 or more.
Stainless steel for springs with excellent Cr formability and stress corrosion cracking characteristics, with the balance of Cr and N adjusted and the balance of Fe and impurities inevitably mixed in.
【請求項2】 重量%において, C:0.03%超え〜0.15%以下, Si:1.5%超え〜3.0%以下, Mn:3.0%以下, Ni:4.0〜10.0%, Cr:12.0〜20.0%, N:0.30%以下, S:0.008%以下, C+N:0.10%以上, 3.0%以下のMoまたは0.5〜3.0%のCuの1種又は2種
を含み, 且つ M=330−(480×C%)−(2×Si%)−(10×Mn%)−(14×Ni%) −(5.7×Cr%)−(5×Mo%)−(14×Cu%)−(320×N%) の式に従うM値が30以上となるようにC, Si,Mn,Ni,
Cr,Cu,Mo,N量が調整されており, 残部がFeおよび
不可避的に混入してくる不純物からなる成形加工性およ
び応力腐食割れ特性に優れたばね用ステンレス鋼。
2. In% by weight, C: more than 0.03% to less than 0.15%, Si: more than 1.5% to less than 3.0%, Mn: less than 3.0%, Ni: 4.0 to 10.0%, Cr: 12.0 to 20.0%, N : 0.30% or less, S: 0.008% or less, C + N: 0.10% or more, 3.0% or less of Mo or 0.5 to 3.0% Cu of 1 or 2 types, and M = 330− (480 × C%) − (2 × Si%) − (10 × Mn%) − (14 × Ni%) − (5.7 × Cr%) − (5 × Mo%) − (14 × Cu%) − (320 × N%) C, Si, Mn, Ni, so that the M value according to
Cr, Cu, Mo, N content is adjusted, and the balance is Fe and the unavoidably mixed impurities, and it has excellent formability and stress corrosion cracking characteristics.
【請求項3】 C:0.05%超え〜0.13%,Mn:0.5%未
満, S:0.003%以下, N:0.06〜0.15%である請求項
1または2に記載のばね用ステンレス鋼。
3. The spring stainless steel according to claim 1, wherein C: more than 0.05% to 0.13%, Mn: less than 0.5%, S: 0.003% or less, and N: 0.06 to 0.15%.
【請求項4】 重量%において, C:0.03%超え〜0.15%以下, Si:1.5%超え〜3.0%以下, Mn:3.0%以下, Ni:4.0〜10.0%, Cr:12.0〜20.0%, N:0.30%以下, S:0.008%以下, C+N:0.10%以上, 場合によっては,さらに3.0%以下のMoまたは0.5〜3.0
%のCuの1種又は2種を含み, 且つ M=330−(480×C%)−(2×Si%)−(10×Mn%)−(14×Ni%) −(5.7×Cr%)−(5×Mo%)−(14×Cu%)−(320×N%) の式に従うM値が30以上となるようにC, Si,Mn,Ni,
Cr,Cu,Mo,N量が調整されており, 残部がFeおよび
不可避的に混入してくる不純物からなるステンレス鋼
を, 通常の熱間圧延工程および冷間圧延工程を経たう
え, 焼鈍後に20%以上の調質圧延を施すことからなる成
形加工性および応力腐食割れ特性に優れたばね用ステン
レス鋼の製造方法。
4. In% by weight, C: 0.03% to 0.15% or less, Si: 1.5% to 3.0% or less, Mn: 3.0% or less, Ni: 4.0 to 10.0%, Cr: 12.0 to 20.0%, N : 0.30% or less, S: 0.008% or less, C + N: 0.10% or more, depending on the case, further 3.0% or less Mo or 0.5 to 3.0
% Cu of 1 or 2 and M = 330− (480 × C%) − (2 × Si%) − (10 × Mn%) − (14 × Ni%) − (5.7 × Cr% )-(5 * Mo%)-(14 * Cu%)-(320 * N%) so that the M value becomes 30 or more, C, Si, Mn, Ni,
The amounts of Cr, Cu, Mo and N are adjusted, and the balance is made of stainless steel consisting of Fe and impurities that are inevitably mixed in. After passing through normal hot rolling process and cold rolling process, 20 % Tempering rolling is performed, and a method for producing spring stainless steel excellent in formability and stress corrosion cracking characteristics.
【請求項5】 重量%において, C:0.03%超え〜0.15%以下, Si:1.5%超え〜3.0%以下, Mn:3.0%以下, Ni:4.0〜10.0%, Cr:12.0〜20.0%, N:0.30%以下, S:0.008%以下, C+N:0.10%以上, 場合によっては,さらに3.0%以下のMoまたは0.5〜3.0
%のCuの1種又は2種を含み, 且つ M=330−(480×C%)−(2×Si%)−(10×Mn%)−(14×Ni%) −(5.7×Cr%)−(5×Mo%)−(14×Cu%)−(320×N%) の式に従うM値が30以上となるようにC, Si,Mn,Ni,
Cr,Cu,Mo,N量が調整されており, 残部がFeおよび
不可避的に混入してくる不純物からなるステンレス鋼
を, 通常の熱間圧延工程および冷間圧延工程を経たう
え, 焼鈍後に20%以上の調質圧延を施し,100℃以上300
℃未満の温度範囲で10分間以上の時効処理を施すことか
らなる成形加工性および応力腐食割れ特性に優れたばね
用ステンレス鋼の製造方法。
5. In% by weight, C: more than 0.03% to less than 0.15%, Si: more than 1.5% to less than 3.0%, Mn: less than 3.0%, Ni: 4.0 to 10.0%, Cr: 12.0 to 20.0%, N : 0.30% or less, S: 0.008% or less, C + N: 0.10% or more, depending on the case, further 3.0% or less Mo or 0.5 to 3.0
% Cu of 1 or 2 and M = 330− (480 × C%) − (2 × Si%) − (10 × Mn%) − (14 × Ni%) − (5.7 × Cr% )-(5 * Mo%)-(14 * Cu%)-(320 * N%) so that the M value becomes 30 or more, C, Si, Mn, Ni,
The amounts of Cr, Cu, Mo and N are adjusted, and the balance is made of stainless steel consisting of Fe and impurities that are inevitably mixed in. After passing through normal hot rolling process and cold rolling process, 20 % Tempered rolling, 100 ℃ or more 300
A method for producing a stainless steel for spring, which is excellent in forming workability and stress corrosion cracking property, which comprises performing an aging treatment for 10 minutes or more in a temperature range of less than ℃.
【請求項6】 時効処理は,調質圧延された鋼板から所
望形状に成型加工された後に施される請求項5に記載の
ステンレス鋼の製造方法。
6. The method for producing stainless steel according to claim 5, wherein the aging treatment is performed after the temper-rolled steel sheet is formed into a desired shape.
JP10244292A 1992-03-30 1992-03-30 Stainless steel for spring excellent in formability and stress corrosion cracking resistance and its manufacture Pending JPH05271878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10244292A JPH05271878A (en) 1992-03-30 1992-03-30 Stainless steel for spring excellent in formability and stress corrosion cracking resistance and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10244292A JPH05271878A (en) 1992-03-30 1992-03-30 Stainless steel for spring excellent in formability and stress corrosion cracking resistance and its manufacture

Publications (1)

Publication Number Publication Date
JPH05271878A true JPH05271878A (en) 1993-10-19

Family

ID=14327586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10244292A Pending JPH05271878A (en) 1992-03-30 1992-03-30 Stainless steel for spring excellent in formability and stress corrosion cracking resistance and its manufacture

Country Status (1)

Country Link
JP (1) JPH05271878A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10989303B2 (en) 2015-12-28 2021-04-27 Nichias Corporation Cylinder head gasket and stainless steel sheet for cylinder head gasket

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10989303B2 (en) 2015-12-28 2021-04-27 Nichias Corporation Cylinder head gasket and stainless steel sheet for cylinder head gasket

Similar Documents

Publication Publication Date Title
KR100336339B1 (en) Steel wire for high-strength springs and method of producing the same
EP1118687B1 (en) High-strength, high-toughness martensitic stainless steel sheet, method of inhibiting cold-rolled steel sheet edge cracking, and method of producing the steel sheet
JPH05117813A (en) Stainless steel for metal gasket having excellent formability and fatigue characteristic and this manufacture
JPH0686645B2 (en) Nickel-saving austenitic stainless steel with excellent hot workability
JP4019630B2 (en) Stainless steel for engine gasket and its manufacturing method
TW202146675A (en) Austenitic-based stainless steel material and manufacturing method thereof, and leaf spring having high strength and high ductility and excellent fatigue resistance
JPH05279802A (en) Stainless steel for spring excellent in fatigue characteristic in formed part as well as in spring characteristic and its production
KR100741993B1 (en) Work-hardened material from stainless steel
JPS5935412B2 (en) Manufacturing method of stainless steel material for precipitation hardening springs
JPH09279315A (en) Austenitic stainless steel for metal gasket and its production
TW202233863A (en) Austenitic stainless steel material, method for producing same, and leaf spring
JP2008195976A (en) Steel sheet for spring, spring material using the same, and method for manufacturing them
JP3068861B2 (en) Stainless steel for engine gasket excellent in moldability and method of manufacturing the same
JP3606200B2 (en) Chromium-based stainless steel foil and method for producing the same
JP2001140041A (en) Chromium stainless steel with double layer structure for spring and producing method therefor
JP3251648B2 (en) Precipitation hardening type martensitic stainless steel and method for producing the same
JP2002332543A (en) High strength stainless steel for metal gasket having excellent fatigue performance and high temperature setting resistance and production method therefor
JP2826819B2 (en) Method for producing high-strength stainless steel with excellent workability and no welding softening
JP4209513B2 (en) Martensitic stainless steel annealed steel with good strength, toughness and spring properties
JP3230587B2 (en) A high-strength stainless cold-rolled steel strip having excellent formability and fatigue properties and exhibiting high strength by aging treatment, and a method for producing the same.
JPH05271878A (en) Stainless steel for spring excellent in formability and stress corrosion cracking resistance and its manufacture
JP3001614B2 (en) Extremely soft austenitic stainless steel
JPH06228641A (en) Production of gasket material for internal combustion engine excellent in stress corrosion cracking resistance
JP2000063947A (en) Manufacture of high strength stainless steel
JP3289947B2 (en) Manufacturing method of stainless steel for high strength spring with excellent stress corrosion cracking resistance used in hot water environment

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010619