JPH05271877A - High strength and high thermal expansion fe-ni alloy and its manufacture - Google Patents

High strength and high thermal expansion fe-ni alloy and its manufacture

Info

Publication number
JPH05271877A
JPH05271877A JP9604892A JP9604892A JPH05271877A JP H05271877 A JPH05271877 A JP H05271877A JP 9604892 A JP9604892 A JP 9604892A JP 9604892 A JP9604892 A JP 9604892A JP H05271877 A JPH05271877 A JP H05271877A
Authority
JP
Japan
Prior art keywords
alloy
thermal expansion
strength
less
high thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9604892A
Other languages
Japanese (ja)
Other versions
JP3112199B2 (en
Inventor
Kon Ou
昆 王
Masaomi Tsuda
正臣 津田
Takeya Toge
竹弥 峠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yakin Kogyo Co Ltd
Original Assignee
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yakin Kogyo Co Ltd filed Critical Nippon Yakin Kogyo Co Ltd
Priority to JP04096048A priority Critical patent/JP3112199B2/en
Publication of JPH05271877A publication Critical patent/JPH05271877A/en
Application granted granted Critical
Publication of JP3112199B2 publication Critical patent/JP3112199B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain a high strength and high thermal expansion Fe-Ni alloy not only having a high thermal expansion coefficient but also having strength higher than that of the conventional one as well as useful for the miniaturizing and thinning of bimetals and temp. compensating parts. CONSTITUTION:The objective high strength and high thermal expansion Fe-Ni alloy contains, by weight, <=0.05% C, <=0.03% N, 0.01 to 2.0% Si, 0.01 to 3.0% Mn, 25 to 45% Ni, 0.01 to l.0% Cr, 1.0 to 5.0% Ti and <=0.01% S or furthermore contains total 0.1 to 3.0% of one or >= two kinds among Al, V, Zr, Nb, Ta, Hf and Be, and the balance Fe with inevitable impurities; and the manufacture of the objective high strength and high thermal expansion Fe-Ni alloy in which the alloy having this compsn. is subjected to plastic working, heat treatment or the like, is thereafter subjected to solid solution treatment at 900 to 1100 deg.C and is subjected to aging treatment at 500 to 800 deg.C is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、平均熱膨張係数が大き
くかつ硬度等の強度が高くて、バイメタル機能を持つ部
材を形成するのに用いるのに適し、電気製品に広く使用
することができる、高強度高熱膨張Fe−Ni合金及び
その製造方法に関する。
INDUSTRIAL APPLICABILITY The present invention has a large average coefficient of thermal expansion and a high strength such as hardness and is suitable for use in forming a member having a bimetal function, and can be widely used in electric products. , A high strength and high thermal expansion Fe-Ni alloy and a method for producing the same.

【0002】[0002]

【従来の技術】高熱膨張合金は、Fe−Ni系のいわゆ
るアンバー型低熱膨張合金や普通鋼、ステンレス鋼等と
機械的接合或いは溶接接合等により複合部材を構成し、
そのバイメタル機能を利用して温度センサーや温度補償
部品として電気製品等に大量に使用されている。
2. Description of the Related Art A high thermal expansion alloy constitutes a composite member by mechanically welding or welding with an Fe-Ni-based so-called amber type low thermal expansion alloy, ordinary steel, stainless steel or the like,
Utilizing its bimetal function, it is widely used in electrical products as temperature sensors and temperature compensation components.

【0003】従来、バイメタルにおいては、通常高い熱
膨張材として21%Ni−6%Cr−Fe合金や22%
Ni−3%Cr−Fe合金などが用いられ、低熱膨張材
としてアンバー(36%Ni−Fe)を用いたもので構
成されている。しかし、上記高熱膨張材は、固溶化処理
状態で硬さ100〜130Hv、0.2%耐力20〜2
5kg/mm2 程度であって、十分な強度を得ることが
できなかった。
Conventionally, in a bimetal, a 21% Ni-6% Cr-Fe alloy or 22% is usually used as a high thermal expansion material.
A Ni-3% Cr-Fe alloy or the like is used, and the low thermal expansion material is amber (36% Ni-Fe). However, the high thermal expansion material has a hardness of 100 to 130 Hv and a 0.2% proof stress of 20 to 2 in the solution treatment state.
It was about 5 kg / mm 2 , and sufficient strength could not be obtained.

【0004】前記のアンバー及びそれに類似した組成の
ニッケル鋼は、アンバー型合金として知られているが、
その低熱膨張性から、使用時と常温との温度差が大きい
LNG(液化天然ガス)用タンク、LNG海上輸送用船
舶のメイブレンタンク用材料として盛んに用いられてい
る。それらの一例である、優れた耐銹性を有するFe−
Ni系低熱膨張アンバー型合金として、Ni:30〜4
5%、C:≦0.04%、Si:0.05〜0.25
%、Mn:0.10〜0.40%のほかにCo:0.0
1〜1.50%を含み、必要に応じ、Ca:0.005
〜0.100%、Cr:0.50〜3.00%、Cu:
0.50〜3.00%、Ti:0.01〜0.50%、
Zr:0.01〜0.50%のうちの1種又は2種以上
含有し、残部はFe及び不可避的不純物から成るものが
知られている(特開昭57−207160号公報)。
The above-mentioned amber and nickel steel having a similar composition are known as amber-type alloys.
Due to its low thermal expansion property, it is widely used as a material for LNG (liquefied natural gas) tanks, which have a large temperature difference between the time of use and normal temperature, and a material for Maybren tanks of LNG marine transportation ships. An example of them is Fe-, which has excellent rust resistance.
As a Ni-based low thermal expansion amber alloy, Ni: 30 to 4
5%, C: 0.04%, Si: 0.05 to 0.25
%, Mn: 0.10 to 0.40%, and Co: 0.0
1 to 1.50%, if necessary, Ca: 0.005
~ 0.100%, Cr: 0.50 to 3.00%, Cu:
0.50 to 3.00%, Ti: 0.01 to 0.50%,
Zr: It is known that one or more of 0.01 to 0.50% is contained, and the balance consists of Fe and inevitable impurities (JP-A-57-207160).

【0005】最近、通信機械や電気製品、或いは計測用
精密機械の小型、薄型化による温度センサーや温度補償
部品も小型化ないし薄板化が要求されている。この要求
に対応するため、100℃以上の温度までこの種の材料
としての機能を果たすには、その複合材料の一方の材料
が高熱膨張率であると同時に、高強度であることが必須
条件となる。
Recently, there has been a demand for downsizing and thinning of temperature sensors and temperature compensating components by downsizing and downsizing of communication machines, electrical products, and precision measuring machines. In order to meet this requirement, in order to function as this kind of material up to a temperature of 100 ° C. or higher, it is essential that one material of the composite material has a high coefficient of thermal expansion and high strength at the same time. Become.

【0006】[0006]

【発明が解決しようとする課題】本発明は、従来からの
業界の要望に沿って、高熱膨張率であると同時に、高強
度であるFe−Ni合金及びその製造方法を提供しよう
とするものであって、従来からの使用例などから、使用
上の条件を充分満足できる、少なくとも30〜100℃
の温度範囲、好ましくは30〜450℃の温度範囲にお
ける平均熱膨張係数が10×10-6/℃以上であり、硬
さが260Hv以上であるFe−Ni合金及びその製造
方法を提供することを目的とするものである。
SUMMARY OF THE INVENTION The present invention aims to provide an Fe-Ni alloy having a high coefficient of thermal expansion and high strength, and a method for producing the same, in accordance with the conventional demands of the industry. Therefore, from the conventional usage examples, at least 30 to 100 ° C that can sufficiently satisfy the usage conditions.
To provide an Fe-Ni alloy having an average thermal expansion coefficient of 10 × 10 −6 / ° C. or more and a hardness of 260 Hv or more in a temperature range of 30 to 450 ° C., and a manufacturing method thereof. It is intended.

【0007】[0007]

【課題を解決するための手段】本発明者らは、従来の低
熱膨張性のアンバー合金(Fe−36Ni、熱膨張係数
が1.5×10-6/℃、硬さ130〜150Hv)を基
本組成にして、これに対して種々の添加元素や熱処理の
影響を詳細に調査した結果、前記特開昭57−2071
60号公報のアンバー型合金において、熱膨張係数を低
めるために特定量を添加されているTiについて、従来
のアンバー合金では入れられていないような多い量を添
加したところ、意外にも熱膨張率が高いとともに強度が
高い合金が得られることを発見し、その知見を基にして
研究を進めて本発明に到達した。そして、その合金の製
造にさいしては、目的の形状になるまで塑性加工と熱処
理を施し、最終塑性加工後に、900〜1100℃の温
度領域に固溶化処理を行ったものは、強度がかなり高い
ものが得られる。また、その固溶化処理を行ったもの
に、更に500〜800℃で時効処理を行うと、強度が
より高いFe−Ni合金が得られることが判った。
The inventors of the present invention basically use a conventional low thermal expansion amber alloy (Fe-36Ni, thermal expansion coefficient of 1.5 × 10 −6 / ° C., hardness of 130 to 150 Hv). As a result of detailed investigation on the effect of various added elements and heat treatment on the composition, the above-mentioned JP-A-57-2071
In the amber type alloy disclosed in Japanese Patent No. 60, when Ti is added in a specific amount in order to lower the coefficient of thermal expansion, a large amount that is not included in the conventional amber alloy is added, and the coefficient of thermal expansion is unexpectedly increased. It was discovered that an alloy with high strength and high strength can be obtained, and based on the findings, research was advanced to arrive at the present invention. In the production of the alloy, plastic working and heat treatment are performed until a desired shape is obtained, and after the final plastic working, a solution treatment in a temperature range of 900 to 1100 ° C. has a considerably high strength. You get something. Further, it was found that a Fe-Ni alloy having higher strength can be obtained by subjecting the solution-treated solution to an aging treatment at 500 to 800 ° C.

【0008】すなわち、本発明は、次の手段によって、
前記の目的を達成した。 (1) 重量%にて C :0.05%以下 N :0.03%以下 Si:0.01〜2.0% Mn:0.01〜3.0% Ni:25〜45% Cr:0.01〜1.0% Ti:1.0〜5.0% S :0.01%以下 を含有し、残部がFe及び不可避的不純物からなる高強
度高熱膨張Fe−Ni合金。 (2) 更に、重量%にて、Al≦1.5%、V≦2.
0%、Zr≦0.5%、Nb≦3.0%、Ta≦3.0
%、Hf≦3.0%、Be≦2.0%、のうち1種また
は2種以上を総量で0.1〜3.0%含むことを特徴と
する前記(1)項記載の高強度高熱膨張Fe−Ni合
金。 (3) 重量%にて C :0.05%以下 N :0.03%以下 Si:0.01〜2.0% Mn:0.01〜3.0% Ni:25〜45% Cr:0.01〜1.0% Ti:1.0〜5.0% B :0.0005〜0.01% S :0.01%以下 を含有し、残部がFe及び不可避的不純物からなる高強
度高熱膨張Fe−Ni合金。 (4) 更に、重量%にて、Al≦1.5%、V≦2.
0%、Zr≦0.5%、Nb≦3.0%、Ta≦3.0
%、Hf≦3.0%、Be≦2.0%、のうち1種また
は2種以上を総量で0.1〜3.0%含むことを特徴と
する前記(3)項記載の高強度高熱膨張Fe−Ni合
金。 (5) 重量%にて C :0.05%以下 N :0.03%以下 Si:0.01〜2.0% Mn:0.01〜3.0% Ni:25〜45% Cr:0.01〜1.0% Ti:1.0〜5.0% S :0.01%以下 を含有し、またはそれに加えてB:0.0005〜0.
01%を含有するか、或いはこれらのいずれかに、更に
重量%にて、Al≦1.5%、V≦2.0%、Zr≦
0.5%、Nb≦3.0%、Ta≦3.0%、Hf≦
3.0%、Be≦2.0%、のうち1種または2種以上
を総量で0.1〜3.0%含有し、残部がFe及び不可
避的不純物からなる合金を、目的の形状になるまで塑性
加工と熱処理を施し、最終塑性加工後に、900〜11
00℃の温度領域で固溶化処理を行い、かつ500〜8
00℃の温度範囲において時効処理を行うことを特徴と
する高強度高熱膨張Fe−Ni合金の製造方法。
That is, the present invention provides the following means.
The above objective was achieved. (1) In% by weight C: 0.05% or less N: 0.03% or less Si: 0.01 to 2.0% Mn: 0.01 to 3.0% Ni: 25 to 45% Cr: 0 0.01 to 1.0% Ti: 1.0 to 5.0% S: 0.01% or less, a high strength and high thermal expansion Fe-Ni alloy containing the balance Fe and inevitable impurities. (2) Further, in weight%, Al ≦ 1.5%, V ≦ 2.
0%, Zr ≦ 0.5%, Nb ≦ 3.0%, Ta ≦ 3.0
%, Hf ≦ 3.0%, Be ≦ 2.0%, and one or more kinds are contained in a total amount of 0.1 to 3.0%, the high strength according to the above item (1). High thermal expansion Fe-Ni alloy. (3) In% by weight C: 0.05% or less N: 0.03% or less Si: 0.01 to 2.0% Mn: 0.01 to 3.0% Ni: 25 to 45% Cr: 0 0.01 to 1.0% Ti: 1.0 to 5.0% B: 0.0005 to 0.01% S: 0.01% or less with the balance being Fe and inevitable impurities Expanded Fe-Ni alloy. (4) Further, in weight%, Al ≦ 1.5% and V ≦ 2.
0%, Zr ≦ 0.5%, Nb ≦ 3.0%, Ta ≦ 3.0
%, Hf ≦ 3.0%, Be ≦ 2.0%, and one or more of them is contained in a total amount of 0.1 to 3.0%. High thermal expansion Fe-Ni alloy. (5) In% by weight C: 0.05% or less N: 0.03% or less Si: 0.01 to 2.0% Mn: 0.01 to 3.0% Ni: 25 to 45% Cr: 0 0.01 to 1.0% Ti: 1.0 to 5.0% S: 0.01% or less, or B: 0.0005 to 0.
01% or any of these, and further by weight%, Al ≦ 1.5%, V ≦ 2.0%, Zr ≦
0.5%, Nb ≦ 3.0%, Ta ≦ 3.0%, Hf ≦
3.0%, Be ≦ 2.0%, one or more of 0.1% to 3.0% in total, with the balance being Fe and unavoidable impurities, the desired shape 900 ~ 11 after the final plastic working
Solid solution treatment is performed in the temperature range of 00 ° C., and 500 to 8
A method for producing a high-strength and high-thermal expansion Fe-Ni alloy, which comprises performing an aging treatment in a temperature range of 00 ° C.

【0009】本発明のFe−Ni合金は、30〜100
℃の温度範囲における平均熱膨張係数が10×10-6
℃以上であり、硬さは260Hv以上の高熱膨張、高硬
度を有するが、第3発明(請求項3の発明)のようにB
を含有すると、熱間加工性が向上し、また第2発明(請
求項2の発明)或いは第4発明(請求項4の発明)のよ
うにAl等の添加元素を更に含有すると、一層その強度
が高くなる。また、本発明の合金は、前記の固溶化処理
まで行うことによりよい合金組織が得られ、強度が高く
なるが、更に固溶化処理の後に前記の時効処理を行うと
著しく高い強度を持った合金を得ることができ、それは
硬度が300Hv以上のものである。
The Fe-Ni alloy of the present invention is 30-100
Average thermal expansion coefficient in the temperature range of ℃ is 10 × 10 -6 /
It has a high thermal expansion of 260 Hv or higher and a high hardness, but it has a B value as in the third invention (the invention of claim 3).
If it contains Al, the hot workability is improved, and if an additional element such as Al is further contained as in the second invention (the invention of claim 2) or the fourth invention (the invention of claim 4), the strength is further improved. Becomes higher. Further, the alloy of the present invention, a good alloy structure can be obtained by performing up to the solution treatment, the strength is increased, but an alloy having a remarkably high strength if the aging treatment is further performed after the solution treatment. Can be obtained, which has a hardness of 300 Hv or more.

【0010】前記の固溶化処理の条件は、900〜11
00℃の温度範囲であるが、900℃未満であると、固
溶強化元素を十分固溶させることができず、1100℃
を越えると、結晶粒の粗大化が生じ、強度が低下する。
また、時効処理条件は、500〜800℃の温度範囲で
あるが、500℃未満では時効硬化が起こらず、800
℃を超えると熱膨張係数が低下する。
The conditions for the solution treatment are 900 to 11
Although it is in the temperature range of 00 ° C, if it is less than 900 ° C, the solid solution strengthening element cannot be sufficiently dissolved to form a solid solution at 1100 ° C.
If it exceeds, the crystal grains are coarsened and the strength is lowered.
Moreover, the aging treatment condition is a temperature range of 500 to 800 ° C., but if it is less than 500 ° C., age hardening does not occur, and
If it exceeds ℃, the coefficient of thermal expansion decreases.

【0011】[0011]

【作用】本発明の合金の組成を上記のように定めた理由
は、次の通りである。 C:0.05%以下;Cは、固溶強化及び加工硬化によ
る材質強化に寄与する。0.05%を超えると電気抵抗
を増加させて、導電性を悪くするとともに、炭化物が多
く析出して熱間加工性、靱性及び打ち抜き性を悪くす
る。そのためその含有量の上限を0.05%とする。
The reason why the composition of the alloy of the present invention is determined as described above is as follows. C: 0.05% or less; C contributes to solid solution strengthening and material hardening by work hardening. If it exceeds 0.05%, the electrical resistance is increased to deteriorate the conductivity, and a large amount of carbide is deposited to deteriorate the hot workability, toughness and punchability. Therefore, the upper limit of the content is set to 0.05%.

【0012】N:0.03%以下;Nは、その量が多い
と窒化物が多く析出して、靱性及び打ち抜き性を悪くす
る。また、Nは、B添加を基本とした合金においては、
Bと容易に結合してBNを形成するため有効B量が低下
し、しかもその形成したBNは合金中の含有量が多くな
ると悪影響を及ぼす。そして、N量が0.03%を越え
ると前記の悪影響が大きくなるので、その上限を0.0
3%とした。
[0012] N: 0.03% or less; When the amount of N is large, a large amount of nitride precipitates, which deteriorates the toughness and punchability. Further, N is an alloy based on B addition,
Since it is easily combined with B to form BN, the amount of effective B decreases, and the formed BN adversely affects when the content in the alloy increases. If the N content exceeds 0.03%, the above-mentioned adverse effect becomes large, so the upper limit is set to 0.0
It was set to 3%.

【0013】Si:0.01〜2.0%;Siは、合金
の精錬に際して、脱酸剤として0.01%以上が必要で
あるが、2.0%を越えて存在すると熱間加工性が劣化
するので、0.01〜2.0%の範囲に限定する。 Mn:0.01〜3.0%;Mnは固溶強化でき、更に
合金の精錬に際して、脱酸剤として0.01%以上は必
要であるが、3.0%を越えて存在しても脱酸効果には
変わりはなく、原価的に不利となる。また、Mnの含有
量を高めると、製造時の熱間加工性が本質的に低くなる
という製造上の問題点を有しているので、0.01〜
3.0%の範囲に限定する。
Si: 0.01 to 2.0%; Si needs 0.01% or more as a deoxidizing agent in refining an alloy, but if it exceeds 2.0%, hot workability is present. Is deteriorated, so the range is limited to 0.01 to 2.0%. Mn: 0.01 to 3.0%; Mn can be solid solution strengthened, and when refining the alloy, 0.01% or more is required as a deoxidizing agent, but even if it exceeds 3.0% There is no change in deoxidizing effect, which is a cost disadvantage. Further, if the content of Mn is increased, there is a manufacturing problem that the hot workability at the time of manufacturing is essentially lowered, so 0.01 to 0.01
It is limited to the range of 3.0%.

【0014】Ni:25〜45%;Niは25%未満で
あると、焼鈍状態でもマルテンサイトが形成され、磁性
特性、熱膨張、強度、その他の物理的特性が損なわれて
好ましくないので、25%以上が必要となる。但し、こ
のNiは45%を越えて含有すると、靱性が劣化し、飽
和磁束密度、電気抵抗が減少し、原価的にも不利になる
ので、上限は45%とする。
Ni: 25-45%; When Ni is less than 25%, martensite is formed even in the annealed state, and magnetic properties, thermal expansion, strength, and other physical properties are impaired, which is not preferable. % Or more is required. However, if Ni exceeds 45%, the toughness deteriorates, the saturation magnetic flux density and the electric resistance decrease, which is disadvantageous in terms of cost. Therefore, the upper limit is 45%.

【0015】Cr:0.01〜1.0%;Crは0.2
%耐力を著しく低下させ、プレス成形性を向上させる元
素であって、その効果を生ずるには0.01%以上含有
することが必要である。しかし、1%以上では0.2%
耐力の低下が著しくなる。 Ti:1.0〜5.0%;Tiは、本合金を特徴づける
元素であり、本合金に時効硬化による高強度を付与し、
また高熱膨張特性を付与するには少なくとも1.0%以
上の添加が必要である。しかし、5.0%を越えて含有
させると、靱性や溶接性を低下させ、コストの上昇をき
たすので、1.0〜5.0%の範囲に限定する。好まし
くは、1.0〜4.0%が良い。
Cr: 0.01-1.0%; Cr is 0.2
% It is an element that significantly lowers the proof stress and improves the press formability, and it is necessary to contain 0.01% or more in order to produce the effect. However, 0.2% above 1%
The yield strength is significantly reduced. Ti: 1.0 to 5.0%; Ti is an element that characterizes the present alloy, and imparts high strength due to age hardening to the present alloy,
Further, addition of at least 1.0% is necessary to impart high thermal expansion characteristics. However, if the content exceeds 5.0%, the toughness and weldability are deteriorated and the cost is increased, so the content is limited to the range of 1.0 to 5.0%. It is preferably 1.0 to 4.0%.

【0016】B:0.0005〜0.01%;熱間加工
性を向上させるために用いるが、0.01%を越えると
多量のほう素化合物を析出させ、熱間加工性と材料の靱
性とも劣化するので、上限を0.01%とする。 S:0.01%以下;Sは0.01%を越えると熱間加
工性が損なわれるので、上限を0.01%とした。
B: 0.0005 to 0.01%; used to improve hot workability, but if it exceeds 0.01%, a large amount of boron compound is precipitated, resulting in hot workability and toughness of material. Both deteriorate, so the upper limit is made 0.01%. S: 0.01% or less; If S exceeds 0.01%, hot workability is impaired, so the upper limit was made 0.01%.

【0017】Al≦1.5%、V≦2.0%、Zr≦
0.5%、Nb≦3.0%、Ta≦3.0%、Hf≦
3.0%、Be≦2.0%、のうち1種または2種以上
を総量で0.1〜3.0%;これらの元素はそれ自体の
固溶強化作用と時効硬化によって合金の強度を一層向上
させるとともに、熱膨張係数を高めるのに役立つ。一
方、多すぎると靱性が劣化する。
Al ≦ 1.5%, V ≦ 2.0%, Zr ≦
0.5%, Nb ≦ 3.0%, Ta ≦ 3.0%, Hf ≦
3.0%, Be ≦ 2.0%, and one or more of them in total amount of 0.1 to 3.0%; these elements are the strength of the alloy due to their solid solution strengthening action and age hardening. And further helps increase the coefficient of thermal expansion. On the other hand, if the amount is too large, the toughness deteriorates.

【0018】特に、これらのうち、Nb単独の添加、或
いは更にNbとZrとの複合添加により、結晶粒度を著
しく微細化し、靱性及び打ち抜き性を高く保ち、更に焼
鈍状態で固溶強化により硬さが25%以上増加する。ま
た、それらにより、圧延によって転位密度が高く、加工
硬化によって強度が更に大きくなる。本発明合金に対し
て時効処理を施すと、高熱膨張性を損なうことなく硬
さ、引張強さ、弾性限、及び疲労強さを効果的に向上さ
せることができる。
Particularly, of these, the addition of Nb alone or the combined addition of Nb and Zr makes the grain size extremely fine, maintains high toughness and punchability, and further hardens by solid solution strengthening in the annealed state. Is increased by 25% or more. Further, due to them, the dislocation density is increased by rolling and the strength is further increased by work hardening. By subjecting the alloy of the present invention to aging treatment, the hardness, tensile strength, elastic limit, and fatigue strength can be effectively improved without impairing the high thermal expansion property.

【0019】[0019]

【実施例】以下、実施例により本発明を具体的に説明す
る。但し、本発明はこの実施例のみに限定されるもので
はない。 実施例 後記する第1表の組成になるように、各々原材料を配合
し、各配合物を10Kg大気誘導炉で加熱溶解してイン
ゴットとし、次いでこのインゴットに1000〜115
0℃で熱間鍛造加工を施し、次に950℃に加熱後に徐
冷する焼鈍処理と圧下率90%で行う冷間圧延とを繰り
返し行い、最終冷間圧延加工を圧下率80%で行って圧
延加工を終了し、厚さ0.1mmの板状体を得た。次い
で各温度1時間の固溶化処理を行った後急冷し、各温度
1時間の時効処理を行った。これらの固溶化処理及び時
効処理条件を第2表に示す。
EXAMPLES The present invention will be specifically described below with reference to examples. However, the present invention is not limited to this embodiment. Example Raw materials were blended so as to have the composition shown in Table 1 below, and each blend was heated and melted in an air induction furnace at 10 kg to obtain an ingot.
A hot forging process is performed at 0 ° C., then an annealing process of heating at 950 ° C. and then slowly cooling and a cold rolling process at a reduction rate of 90% are repeated, and a final cold rolling process is performed at a reduction rate of 80%. The rolling process was completed to obtain a plate-shaped body having a thickness of 0.1 mm. Then, after performing a solution treatment at each temperature for 1 hour, the solution was rapidly cooled, and an aging treatment at each temperature for 1 hour was performed. The conditions of the solution treatment and the aging treatment are shown in Table 2.

【0020】これらの板状体について、熱膨張試験を行
い、常温から300℃までの温度範囲で熱膨張係数を測
定し、30〜100℃の平均熱膨張係数を求め、また引
張試験により0.2%耐力を測定し、硬度試験により硬
さ(ビッカース硬さ数)を測定した。それらの測定結果
を第3表に示す。
A thermal expansion test was conducted on these plate-like bodies, the thermal expansion coefficient was measured in the temperature range from room temperature to 300 ° C., an average thermal expansion coefficient of 30 to 100 ° C. was obtained, and a tensile test was conducted to obtain a value of 0. The 2% proof stress was measured, and the hardness (Vickers hardness number) was measured by the hardness test. The measurement results are shown in Table 3.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】[0023]

【表3】 [Table 3]

【0024】第1表は、本発明合金の実施例と比較合金
の比較例との成分と組成割合を示し、第2表はそれらの
熱処理条件を示すものである。また、第3表は、第1表
に掲げる本発明合金と比較合金の各例についての熱膨張
係数と機械的性質を示したものである。第3表から明ら
かなように、本発明合金は高い熱膨張係数と高い硬さ及
び耐力とを有するもので、高熱膨張性と合わせて高い強
度を有していると言える。
Table 1 shows the components and composition ratios of Examples of the present invention alloy and Comparative Example of the comparative alloy, and Table 2 shows the heat treatment conditions thereof. In addition, Table 3 shows the thermal expansion coefficient and mechanical properties of the examples of the alloy of the present invention and the comparative alloy shown in Table 1. As is clear from Table 3, the alloy of the present invention has a high coefficient of thermal expansion, high hardness and proof stress, and can be said to have high strength in combination with high thermal expansion.

【0025】[0025]

【発明の効果】本発明の合金は、実施例から判るよう
に、高い熱膨張性を有するとともに高い強度を有してい
る。特に、固溶化処理の後に時効処理を行ったものは、
300Hv以上の高い硬度を有していて、高強度のもの
であり、且つ30〜100℃の温度範囲において10×
10-6/℃以上の高熱膨張係数をもつ高熱膨張性の合金
である。このように、本発明のFe−Ni合金或いは本
発明の製造方法によって得られるFe−Ni合金は、従
来にない高強度高熱膨張性の合金であるので、温度セン
サーや温度補償部品などに用いるのに好適である。
As can be seen from the examples, the alloy of the present invention has high thermal expansion and high strength. In particular, those subjected to aging treatment after solution treatment,
It has high hardness of 300 Hv or more, high strength, and 10 × in the temperature range of 30 to 100 ° C.
It is a high thermal expansion alloy having a high thermal expansion coefficient of 10 -6 / ° C or higher. As described above, the Fe-Ni alloy of the present invention or the Fe-Ni alloy obtained by the manufacturing method of the present invention is an alloy having high strength and high thermal expansion which has never been obtained, and therefore, it is used for a temperature sensor, a temperature compensating component or the like. Suitable for

フロントページの続き (72)発明者 峠 竹弥 神奈川県川崎市川崎区小島町4番2号 日 本冶金工業株式会社研究開発本部技術研究 所内Front page continued (72) Inventor Takeya Toge 4-2 Kojima-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa Nihon Metallurgical Industry Co., Ltd. Technical Research Center

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 重量%にて C :0.05%以下 N :0.03%以下 Si:0.01〜2.0% Mn:0.01〜3.0% Ni:25〜45% Cr:0.01〜1.0% Ti:1.0〜5.0% S :0.01%以下 を含有し、残部がFe及び不可避的不純物からなる高強
度高熱膨張Fe−Ni合金。
1. C .: 0.05% or less N: 0.03% or less Si: 0.01 to 2.0% Mn: 0.01 to 3.0% Ni: 25 to 45% Cr : 0.01 to 1.0% Ti: 1.0 to 5.0% S: 0.01% or less, and a high strength and high thermal expansion Fe-Ni alloy containing the balance of Fe and inevitable impurities.
【請求項2】 更に、重量%にて、Al≦1.5%、V
≦2.0%、Zr≦0.5%、Nb≦3.0%、Ta≦
3.0%、Hf≦3.0%、Be≦2.0%、のうち1
種または2種以上を総量で0.1〜3.0%含むことを
特徴とする請求項1記載の高強度高熱膨張Fe−Ni合
金。
2. Further, in weight%, Al ≦ 1.5%, V
≦ 2.0%, Zr ≦ 0.5%, Nb ≦ 3.0%, Ta ≦
3.0%, Hf ≦ 3.0%, Be ≦ 2.0%, 1
The high-strength and high-thermal expansion Fe-Ni alloy according to claim 1, characterized in that the total content of one or more kinds is 0.1 to 3.0%.
【請求項3】 重量%にて C :0.05%以下 N :0.03%以下 Si:0.01〜2.0% Mn:0.01〜3.0% Ni:25〜45% Cr:0.01〜1.0% Ti:1.0〜5.0% B :0.0005〜0.01% S :0.01%以下 を含有し、残部がFe及び不可避的不純物からなる高強
度高熱膨張Fe−Ni合金。
3. In% by weight C: 0.05% or less N: 0.03% or less Si: 0.01 to 2.0% Mn: 0.01 to 3.0% Ni: 25 to 45% Cr : 0.01 to 1.0% Ti: 1.0 to 5.0% B: 0.0005 to 0.01% S: 0.01% or less, with the balance being Fe and inevitable impurities. High strength and high thermal expansion Fe-Ni alloy.
【請求項4】 更に、重量%にて、Al≦1.5%、V
≦2.0%、Zr≦0.5%、Nb≦3.0%、Ta≦
3.0%、Hf≦3.0%、Be≦2.0%、のうち1
種または2種以上を総量で0.1〜3.0%含むことを
特徴とする請求項3記載の高強度高熱膨張Fe−Ni合
金。
4. Further, in weight%, Al ≦ 1.5%, V
≦ 2.0%, Zr ≦ 0.5%, Nb ≦ 3.0%, Ta ≦
3.0%, Hf ≦ 3.0%, Be ≦ 2.0%, 1
The high-strength and high-thermal-expansion Fe-Ni alloy according to claim 3, which contains 0.1 to 3.0% of the total amount of one or more kinds.
【請求項5】 重量%にて C :0.05%以下 N :0.03%以下 Si:0.01〜2.0% Mn:0.01〜3.0% Ni:25〜45% Cr:0.01〜1.0% Ti:1.0〜5.0% S :0.01%以下 を含有し、またはそれに加えてB:0.0005〜0.
01%を含有するか、或いはこれらのいずれかに、更に
重量%にて、Al≦1.5%、V≦2.0%、Zr≦
0.5%、Nb≦3.0%、Ta≦3.0%、Hf≦
3.0%、Be≦2.0%、のうち1種または2種以上
を総量で0.1〜3.0%含有し、残部がFe及び不可
避的不純物からなる合金を、目的の形状になるまで塑性
加工と熱処理を施し、最終塑性加工後に、900〜11
00℃の温度領域で固溶化処理を行い、かつ500〜8
00℃の温度範囲において時効処理を行うことを特徴と
する高強度高熱膨張Fe−Ni合金の製造方法。
5. In% by weight C: 0.05% or less N: 0.03% or less Si: 0.01 to 2.0% Mn: 0.01 to 3.0% Ni: 25 to 45% Cr : 0.01-1.0% Ti: 1.0-5.0% S: 0.01% or less, or in addition to that, B: 0.0005-0.
01% or any of these, and further by weight%, Al ≦ 1.5%, V ≦ 2.0%, Zr ≦
0.5%, Nb ≦ 3.0%, Ta ≦ 3.0%, Hf ≦
3.0%, Be ≦ 2.0%, one or more of 0.1% to 3.0% in total, with the balance being Fe and unavoidable impurities, the desired shape 900 ~ 11 after the final plastic working
Solid solution treatment is performed in the temperature range of 00 ° C., and 500 to 8
A method for producing a high-strength and high-thermal expansion Fe-Ni alloy, which comprises performing an aging treatment in a temperature range of 00 ° C.
JP04096048A 1992-03-24 1992-03-24 High strength and high thermal expansion Fe-Ni alloy and method for producing the same Expired - Fee Related JP3112199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04096048A JP3112199B2 (en) 1992-03-24 1992-03-24 High strength and high thermal expansion Fe-Ni alloy and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04096048A JP3112199B2 (en) 1992-03-24 1992-03-24 High strength and high thermal expansion Fe-Ni alloy and method for producing the same

Publications (2)

Publication Number Publication Date
JPH05271877A true JPH05271877A (en) 1993-10-19
JP3112199B2 JP3112199B2 (en) 2000-11-27

Family

ID=14154589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04096048A Expired - Fee Related JP3112199B2 (en) 1992-03-24 1992-03-24 High strength and high thermal expansion Fe-Ni alloy and method for producing the same

Country Status (1)

Country Link
JP (1) JP3112199B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6592810B2 (en) 2000-03-17 2003-07-15 Hitachi Metals, Ltd. Fe-ni alloy having high strength and low thermal expansion, a shadow mask made of the alloy, a braun tube with the shadow mask, a lead frame made of the alloy and a semiconductor element with lead frame
CN108220832A (en) * 2018-01-05 2018-06-29 广东电网有限责任公司电力科学研究院 A kind of fibre reinforced alloy composite material and preparation method thereof
CN116396094A (en) * 2023-03-24 2023-07-07 中铝郑州有色金属研究院有限公司 Connection method of nickel ferrite-based ceramic inert anode and metal conductive block

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6592810B2 (en) 2000-03-17 2003-07-15 Hitachi Metals, Ltd. Fe-ni alloy having high strength and low thermal expansion, a shadow mask made of the alloy, a braun tube with the shadow mask, a lead frame made of the alloy and a semiconductor element with lead frame
CN108220832A (en) * 2018-01-05 2018-06-29 广东电网有限责任公司电力科学研究院 A kind of fibre reinforced alloy composite material and preparation method thereof
CN116396094A (en) * 2023-03-24 2023-07-07 中铝郑州有色金属研究院有限公司 Connection method of nickel ferrite-based ceramic inert anode and metal conductive block
CN116396094B (en) * 2023-03-24 2024-03-01 中铝郑州有色金属研究院有限公司 Connection method of nickel ferrite-based ceramic inert anode and metal conductive block

Also Published As

Publication number Publication date
JP3112199B2 (en) 2000-11-27

Similar Documents

Publication Publication Date Title
EP1734143B1 (en) Ferritic stainless steel sheet excellent in formability and method for production thereof
US8808475B2 (en) Iron-nickel alloy
US4261739A (en) Ferritic steel alloy with improved high temperature properties
JPH06505535A (en) Austenitic high manganese steel with excellent formability, strength and weldability, and its manufacturing method
EP0024124B1 (en) Ferritic stainless steel and process for producing it
KR102054735B1 (en) Transformation Induced Plasticity High Entropy Alloy and Manufacturing Method for the Same
JP3308090B2 (en) Fe-based super heat-resistant alloy
US6623569B2 (en) Duplex stainless steels
KR101536402B1 (en) Titanium alloy product having high strength and excellent cold rolling property
JP2003514990A (en) Manufacturing method of automobile parts and new application of age hardening type martensite stainless steel
EP0544836B1 (en) Controlled thermal expansion alloy and article made therefrom
US6692585B2 (en) Ferritic Fe-Cr-Ni-Al alloy having exellent oxidation resistance and high strength and a plate made of the alloy
US20010045246A1 (en) Iron-nickel alloy having a low coefficient of expansion
JP4173609B2 (en) Austenitic stainless steel and steel plate for press forming with excellent formability and hot workability
JPH03166340A (en) High strength lead frame material and its manufacture
KR101952015B1 (en) High Entropy Alloy Based Cobalt, Copper, Nickle and Manganese
WO1997034020A1 (en) Ferritic stainless steel for exhaust system equipment of vehicle
JPH05271877A (en) High strength and high thermal expansion fe-ni alloy and its manufacture
US5116570A (en) Stainless maraging steel having high strength, high toughness and high corrosion resistance and it&#39;s manufacturing process
JP6798297B2 (en) Stainless steel
JP2661875B2 (en) Superplastic duplex stainless steel with low deformation resistance and excellent elongation properties
JP2614395B2 (en) Method for producing thin sheet of Fe-Ni-based electronic material having excellent shrink resistance
JP4102224B2 (en) High strength, high ductility β-type titanium alloy
JP2002235157A (en) HIGH STRENGTH Fe-Cr-Ni-Al BASED FERRITIC ALLOY HAVING EXCELLENT OXIDATION RESISTANCE AND ALLOY SHEET USING THE ALLOY
JP2002194508A (en) Ferritic stainless steel sheet superior in workability and production method for the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20090922

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees