JPH05264238A - Method and device for measuring surface of rotation - Google Patents

Method and device for measuring surface of rotation

Info

Publication number
JPH05264238A
JPH05264238A JP4060318A JP6031892A JPH05264238A JP H05264238 A JPH05264238 A JP H05264238A JP 4060318 A JP4060318 A JP 4060318A JP 6031892 A JP6031892 A JP 6031892A JP H05264238 A JPH05264238 A JP H05264238A
Authority
JP
Japan
Prior art keywords
interference fringe
inspected
section
interference
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4060318A
Other languages
Japanese (ja)
Inventor
Seizo Suzuki
清三 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP4060318A priority Critical patent/JPH05264238A/en
Publication of JPH05264238A publication Critical patent/JPH05264238A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To provide a method and a device capable of sampling data from images of interference fringes of always almost same size in measuring a surface of rotation by means of scanning along an axis of rotation, regardless of changes in the radius of curvature of a cross section to be measured due to scanning of the surface for measurement. CONSTITUTION:Coherent light is applied to a surface 7a for measurement and a reference plane 6a, and interference fringes are formed as to one cross section to be measured of the surface for measurement and are focused on a sensor 10. The surface for measurement is scanned parallel to an axis of rotation by a supporting block 13, and the images of the interference fringes are successively focosed on the sensor and are stored on interference fringe image data storage means 14. A lateral magnification computation means 15 computes the radius (r) of curvature of each cross section to be measured according to the designed value of the form of the surface for measurement, and calculates the lateral magnification (m) of each of the images of the interference fringes according to the radii, and a correction arithmetic means 16 multiplies the lateral magnification (m) by data about the interference fringes, and the data are stored on corrected data storage means 17 as data about the images of the interference fringes f the same size.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、トロイダル面等の回転
面の面形状や面精度を測定する技術に関し、特に、被検
面としての回転面の一測定断面について干渉縞を形成
し、この回転面を回転軸に沿って走査して次々と干渉縞
を形成し、各干渉縞をつなぎ合わせて回転面全体の面精
度や面形状を測定する際の、各干渉縞の大きさを補正す
る技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for measuring the surface shape and surface accuracy of a rotating surface such as a toroidal surface, and in particular, forming an interference fringe on one measurement cross section of the rotating surface as a surface to be inspected. Scan the rotating surface along the rotation axis to form interference fringes one after another, and correct the size of each interference fringe when connecting the interference fringes and measuring the surface accuracy and surface shape of the entire rotating surface. It is about technology.

【0002】[0002]

【従来の技術】トロイダル面は、頂点で直交する主径線
の曲率半径が相違するものであるが、このうち一方の主
径線を母線(以後「G主径線」という)とし、これを他
方の主径線(以後「R主径線」という)に沿って回転し
て形成したものである。または、G主径線(母線)を回
転軸回りに回転して形成したものとも言え、本明細書で
は、主としてトロイダル面を回転面の一形態として扱う
こととする。
2. Description of the Related Art Toroidal surfaces differ in the radius of curvature of main diameter lines that are orthogonal to each other at their vertices. One of these main diameter lines is a busbar (hereinafter referred to as "G main diameter line") It is formed by rotating along the other main diameter line (hereinafter referred to as "R main diameter line"). Alternatively, it can be said that the G main diameter line (bus line) is formed by rotating around the rotation axis, and in the present specification, the toroidal surface is mainly treated as one form of the rotation surface.

【0003】トロイダル面の面精度を波長以下の高精度
に測定できる技術として、本願の出願人は、特願平2−
126659号で、ドーナツ型又はノーマル型のトロイ
ダル面(以後「NTS」という)の測定方法を提案して
いる。ここでのトロイダル面は、一方のG主径線を他方
のR主径線に沿って回転して形成した面として扱ってい
る。
As a technique for measuring the surface accuracy of the toroidal surface with high accuracy below the wavelength, the applicant of the present application has filed Japanese Patent Application No.
No. 126659 proposes a method for measuring a toroidal surface of a donut type or a normal type (hereinafter referred to as “NTS”). The toroidal surface here is treated as a surface formed by rotating one G main diameter line along the other R main diameter line.

【0004】同じ出願人による先願の特願平3−050
104号では、G主径線が長くR主径線の短い樽型のト
ロイダル面(以後「BTS」という)または鞍型のトロ
イダル面(以後「KTS」という)の測定方法を提案し
ているが、これは、トロイダル面を回転面として扱った
ものと言える。図5(a) ,(b) によって、以下にこの説
明をする。
Japanese Patent Application No. 3-050 of the earlier application filed by the same applicant
No. 104 proposes a method for measuring a barrel-shaped toroidal surface (hereinafter referred to as "BTS") or a saddle-shaped toroidal surface (hereinafter referred to as "KTS") having a long G main diameter line and a short R main diameter line. , It can be said that the toroidal surface is treated as a rotating surface. This will be described below with reference to FIGS. 5 (a) and 5 (b).

【0005】同図において、1は光源で、可干渉性の高
いガスレーザ又は半導体レーザ等が使用される。2a,
2bはビームエクスパンダで、光源1からの狭い光束を
適当な大きさに拡げるためのものである。3は空間フィ
ルタで、ゴースト光や反射光等の不要な光をカットす
る。4は光アイソレータでビームスプリッタ4a、λ/
4板4b及び反射面4cを有する。
In the figure, reference numeral 1 denotes a light source, which is a gas laser or semiconductor laser having high coherence. 2a,
2b is a beam expander for expanding a narrow light beam from the light source 1 to an appropriate size. 3 is a spatial filter, which cuts off unnecessary light such as ghost light and reflected light. An optical isolator 4 is a beam splitter 4a, λ /
It has four plates 4b and a reflecting surface 4c.

【0006】ビームエクスパンダ2a,2bで拡大され
た光束は、対物レンズ6を経て、被検体7の被検面とし
てのトロイダル面7aに達する。このトロイダル面7a
は、前述したように、頂点で直交するR主径線AB,G
主径線CDのうち、R主径線を回転軸12の回りに回転
することにより形成される。
The light beams expanded by the beam expanders 2a and 2b pass through the objective lens 6 and reach the toroidal surface 7a as the surface to be examined of the subject 7. This toroidal surface 7a
Is, as described above, the R main radial lines AB and G which are orthogonal to each other at the vertex.
It is formed by rotating the R main radial line of the main radial line CD around the rotary shaft 12.

【0007】対物レンズ6の最終面は、半透鏡としての
参照面6aとなっており、その曲率中心は、上記の回転
軸12と一致している。また、この参照面6a又はトロ
イダル面7aは、x−z断面内で若干シフト及び/又は
チルト可能に配置される。そして、この参照面6aで対
物レンズ6に入射する光の一部が反射され、残りが透過
してトロイダル面7aを照射し、ここから反射される。
The final surface of the objective lens 6 is a reference surface 6a as a semi-transparent mirror, and the center of curvature thereof coincides with the rotation axis 12 described above. Further, the reference surface 6a or the toroidal surface 7a is arranged so as to be slightly shiftable and / or tiltable in the xz section. Then, a part of the light incident on the objective lens 6 is reflected by the reference surface 6a, and the rest is transmitted to irradiate the toroidal surface 7a, and is reflected from here.

【0008】13は被検体7を固定する支持台で、図示
しないリニアモータやリニアエアスライダ等によって駆
動され、トロイダル面7aを回転軸12と平行に走査で
きるものである。
Reference numeral 13 denotes a support base for fixing the subject 7, which is driven by a linear motor, a linear air slider or the like (not shown) and can scan the toroidal surface 7a in parallel with the rotary shaft 12.

【0009】参照面6a及びトロイダル面7aで反射さ
れた可干渉光は、来た光路を戻り重畳され、参照面6a
の球面とトロイダル面7aとがほぼ平行と見なせるR主
径線に平行な一測定断面について干渉を起こし、集束レ
ンズ9によってエリアセンサ10上に図6に示すような
干渉縞像11を結像する。
The coherent light reflected by the reference surface 6a and the toroidal surface 7a is returned along the optical path and is superimposed, and the reference surface 6a.
6 and the toroidal surface 7a interfere with each other on one measurement section parallel to the R main diameter line which can be regarded as substantially parallel, and the focusing lens 9 forms an interference fringe image 11 on the area sensor 10 as shown in FIG. ..

【0010】支持台13を、回転軸12に沿って走査す
ると、測定断面が移動して次々に干渉縞像が形成され、
これらをつなぐとトロイダル面7a全体について面形状
及び面精度の測定ができることになる。また、上記の装
置は、BTSに限定されることなく、全てのトロイダル
面やシリンドリカル面等の回転面全体について測定がで
きる。この場合、回転軸が立体的に曲がった回転面であ
っても、支持台が回転軸の曲がりに合わせて走査すれば
よいので、適用可能なことに留意されたい。
When the support base 13 is scanned along the rotary shaft 12, the measurement cross sections move to form interference fringe images one after another,
By connecting these, the surface shape and surface accuracy of the entire toroidal surface 7a can be measured. Further, the above-mentioned device is not limited to the BTS, and can measure all the rotating surfaces such as all toroidal surfaces and cylindrical surfaces. In this case, it should be noted that even if the rotation axis is a three-dimensionally curved rotation surface, the support base may scan in accordance with the bending of the rotation axis, and thus it is applicable.

【0011】図7は、BTS面を測定する状態を示す。
同図の7aは被検面としてのBTS(樽型トロイダル
面)である。Oは、G主径線AB(母線)の曲率中心を
示す。一方の参照面6a1 は、被検面7aの中央に位置
しており、他方の参照面6a2は、走査によって被検面
7aの中心から下方に移動した状態を示している。この
間、可干渉光は常に回転軸12上に集束するように参照
面6aと被検面7aとを照射している。また、被検体7
の幅l(図7(b) )は回転軸12方向について一定であ
る。
FIG. 7 shows a state in which the BTS plane is measured.
Reference numeral 7a in the figure is a BTS (barrel-shaped toroidal surface) as a surface to be inspected. O indicates the center of curvature of the G main diameter line AB (bus line). One reference surface 6a 1 is located at the center of the surface 7a to be inspected, and the other reference surface 6a 2 is in a state of being moved downward from the center of the surface 7a to be inspected by scanning. During this time, the coherent light irradiates the reference surface 6a and the test surface 7a so that the coherent light is always focused on the rotating shaft 12. Also, the subject 7
The width l (Fig. 7 (b)) is constant in the direction of the rotating shaft 12.

【0012】参照面が6a1 の位置に来れば、図7(a)
に示す参照面6a1 の中心で反射された参照波と、被検
面7aの中心の測定断面7a1 から反射された被検波と
が矢印に示すように重なって干渉縞を形成する。そのと
きの干渉縞の長さは図7(b)に示すようにwoである。
参照面6aが走査により移動して6a2 の位置に来る
と、参照面6a2 と被検面7aの双方に直角に入反射す
る参照波と被検波とが干渉を起こすので、測定断面7a
2 は、回転軸12上でΔhずれ、干渉縞像は回転軸6a
2 の光軸からはΔh′ずれて結像される。また、測定断
面7a2 は回転軸12に近づくので、干渉縞の長さはw
となり、woより長くなる。
When the reference surface comes to the position of 6a 1 , as shown in FIG.
The reference wave reflected at the center of the reference surface 6a 1 and the test wave reflected from the measurement cross section 7a 1 at the center of the test surface 7a are overlapped as shown by an arrow to form an interference fringe. The length of the interference fringe at that time is wo as shown in FIG.
When the reference surface 6a moves to the position of 6a 2 by scanning, the reference wave and the test wave incident and reflected at a right angle on both the reference surface 6a 2 and the test surface 7a interfere with each other.
2 is Δh shifted on the rotation axis 12, and the interference fringe image is the rotation axis 6a.
An image is deviated from the optical axis of 2 by Δh '. Further, since the measurement cross section 7a 2 approaches the rotation axis 12, the length of the interference fringe is w.
And becomes longer than wo.

【0013】図8は、エリアセンサ10上に結像した干
渉縞を示すが、図7で説明した理由により、干渉縞像の
長さはR主径線のある中心部ではwoと短くなり、R主
径線から離れるに従って長くなり、かつ中心からΔh′
ずれている。したがって、各干渉縞をFFT等により処
理して面精度や面形状を算出する場合に、データの長さ
が異なってしまい処理しにくくなってしまう。
FIG. 8 shows the interference fringes imaged on the area sensor 10. For the reason described in FIG. 7, the length of the interference fringe image becomes as short as wo at the central portion where the R main radius line is present. It becomes longer as it goes away from the R main radius line, and Δh 'from the center
Deviated. Therefore, when the interference fringes are processed by FFT or the like to calculate the surface accuracy and the surface shape, the data lengths are different, which makes the processing difficult.

【0014】[0014]

【発明が解決しようとする課題】本発明は、この問題の
解決を図ったもので、回転面を測定する際に、被検面の
走査に伴い測定断面の曲率半径が変化するにもかかわら
ず、ほぼ同じ大きさの干渉縞からデータを採ることがで
きる方法及び装置を提供することを目的としている。
SUMMARY OF THE INVENTION The present invention has been made to solve this problem, and when measuring a rotating surface, the radius of curvature of the measured cross section changes with the scanning of the surface to be inspected. It is an object of the present invention to provide a method and an apparatus capable of obtaining data from interference fringes having almost the same size.

【0015】[0015]

【課題を解決するための手段】上記の目的を達成するた
めに本発明の測定方法は、同一光源からの可干渉光を、
被検面としての回転面と基準になる参照面とに照射し、
これら両面から反射される参照波と被検波とを重畳して
被検面の一測定断面について干渉縞を作る工程と、該干
渉縞をセンサ上に結像させ、干渉縞像のデータを記憶す
る工程と、被検面を前記回転面の回転軸と平行に走査し
て各測定断面について連続的に前記干渉縞を形成する工
程と、被検面形状の設計値から各測定断面の曲率半径r
と測定断面長lを演算し、各測定断面における干渉縞像
の横倍率mを求める工程と、記憶された前記各干渉縞像
のデータに、横倍率mをかけ合わせることにより、走査
の際に生じる干渉縞像の大きさを補正する工程とからな
る構成を特徴としている。
In order to achieve the above object, the measuring method of the present invention uses coherent light from the same light source,
Irradiate the rotating surface as the surface to be inspected and the reference surface to be the reference,
A step of superposing the reference wave and the test wave reflected from both surfaces to form an interference fringe for one measurement cross section of the surface to be inspected, and forming the interference fringe on the sensor to store the data of the interference fringe image. A step of scanning the surface to be inspected in parallel with the rotation axis of the rotating surface to continuously form the interference fringes on each measurement section, and a radius of curvature r of each measurement section from a design value of the shape of the surface to be inspected.
And a measurement section length 1 to calculate the lateral magnification m of the interference fringe image at each measurement section, and the lateral magnification m is multiplied to the stored data of each interference fringe image to perform scanning. And a step of correcting the size of the resulting interference fringe image.

【0016】横倍率を求める方法を、各測定断面の干渉
縞像の大きさを測定することにより求める構成としても
よい。または、被検面の任意の測定断面を基準としてス
フェロメータ法により、該基準測定断面の曲率半径ro
を求め、回転軸方向の前記走査に伴いセンサ上を流れる
干渉縞像の縞本数をカウントすることにより被検面の母
線を求め、これら基準測定断面の曲率半径roと被検面
の母線とから被検面の形状を求めて横倍率mを求める方
法としてもよい。
The lateral magnification may be determined by measuring the size of the interference fringe image on each measurement cross section. Alternatively, the radius of curvature ro of the reference measurement section is measured by the spherometer method with reference to an arbitrary measurement section of the surface to be inspected.
Then, the generatrix of the test surface is obtained by counting the number of fringes of the interference fringe image flowing on the sensor in accordance with the scanning in the rotation axis direction, and from the curvature radius ro of these reference measurement cross sections and the bus bar of the test surface. A method of obtaining the lateral magnification m by obtaining the shape of the surface to be inspected may be used.

【0017】[0017]

【作用】可干渉光を回転面と参照面とに照射し、被検面
の一測定断面について干渉縞を形成してセンサ上に結像
させる。被検面を回転軸と平行に走査し、干渉縞像を連
続的にセンサ上に結像させ、各干渉縞像のデータを取り
出し記憶する。
The coherent light is applied to the rotating surface and the reference surface to form interference fringes on one measurement cross section of the surface to be inspected and form an image on the sensor. The surface to be inspected is scanned in parallel with the rotation axis, the interference fringe images are continuously formed on the sensor, and the data of each interference fringe image is extracted and stored.

【0018】一方、任意の測定断面を基準としてその曲
率半径r0 を求めるとともに、各測定断面についての曲
率半径rを求め、これらから各測定断面の干渉縞像の基
準干渉縞像に対する横倍率mを算出する。この横倍率m
を干渉縞のデータにかけ合わせると、各測定断面におけ
る干渉縞像の大小を補正し、常に基準測定断面の干渉縞
像とほぼ同じ大きさの干渉縞像として扱うことができ
る。
On the other hand, the radius of curvature r 0 is determined with reference to an arbitrary measurement section, and the radius of curvature r is determined for each measurement section. From these, the lateral magnification m of the interference fringe image of each measurement section with respect to the reference interference fringe image. To calculate. This lateral magnification m
Is multiplied by the interference fringe data, the size of the interference fringe image in each measurement cross section can be corrected and always treated as an interference fringe image of approximately the same size as the interference fringe image of the reference measurement cross section.

【0019】測定断面の曲率半径は、被検面の形状が既
知であればその設計値から求められる。また、被検面の
形状が未知の場合は、各測定断面の干渉縞像の長さを測
定し、各測定断面についてそれぞれ計算により横倍率m
を求めることもできる。さらに別の方法として、基準測
定断面についてスフェロメータ法によりその曲率半径r
oを求め、走査に基づきセンサ上に結像した干渉縞像の
縞模様が流れるのをカウントすることにより母線を求
め、これらから被検面の形状を知り、被検面の形状から
任意の測定断面の曲率半径r及び横倍率mを求めること
もできる。
The radius of curvature of the measured cross section can be obtained from the design value of the surface to be inspected if the shape is known. When the shape of the surface to be inspected is unknown, the length of the interference fringe image of each measurement section is measured, and the lateral magnification m is calculated for each measurement section.
You can also ask. As another method, the radius of curvature r of the reference measurement section is measured by the spherometer method.
o is obtained, the bus bar is obtained by counting the flow of the fringe pattern of the interference fringe image formed on the sensor based on the scanning, the shape of the test surface is known from these, and any measurement can be performed from the shape of the test surface. The radius of curvature r and the lateral magnification m of the cross section can also be obtained.

【0020】[0020]

【実施例】本発明の実施例を図面を用いて以下に説明す
る。図1は本発明による回転面測定装置の一実施例を示
すブロック図である。同図で点線で囲った部分は、図5
に示したものと同じ干渉光学系を示す。内部は、参照面
6a、被検面7a、エリアセンサ10及び支持台13の
みを示し、他は省略している。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of a rotating surface measuring apparatus according to the present invention. The part surrounded by the dotted line in FIG.
The same interference optical system as that shown in FIG. Inside, only the reference surface 6a, the surface 7a to be inspected, the area sensor 10 and the support base 13 are shown, and the others are omitted.

【0021】被検面7aからの被検波と参照面6aから
の参照波は重畳され、エリアセンサ10上に被検面の一
測定断面についての干渉縞像を結像する。エリアセンサ
としては、種々のセンサを使用することができ、このエ
リアセンサ10の出力は、一旦干渉縞データ記憶手段1
4のRAMやフロッピーディスク等に記憶される。被検
面7aは支持台13により回転軸に沿って走査され、走
査移動量は支持台13に設けられたリニアエンコーダに
より知ることができる。
The test wave from the test surface 7a and the reference wave from the reference surface 6a are superimposed, and an interference fringe image for one measurement cross section of the test surface is formed on the area sensor 10. Various sensors can be used as the area sensor, and the output of the area sensor 10 is temporarily stored as the interference fringe data storage means 1.
4 RAM, floppy disk or the like. The surface 7a to be inspected is scanned by the support base 13 along the rotation axis, and the scanning movement amount can be known by a linear encoder provided on the support base 13.

【0022】15は横倍率演算手段で、被検面の形状の
設計値から任意の測定断面についての横倍率mを算出す
る。すなわち、被検面の形状が既知であれば、任意の測
定断面における曲率半径rは、リニアエンコーダからの
走査量と、回転面の母線の方程式とから算出することが
でき、これから干渉縞像11の大きさ(長さ)の変化は
このrの値、被検面の幅、干渉光学系の定数等から予め
予測できる。たとえば、被検面7aがBTSの場合、
Reference numeral 15 is a lateral magnification calculating means for calculating the lateral magnification m for an arbitrary measurement section from the design value of the shape of the surface to be inspected. That is, if the shape of the surface to be inspected is known, the radius of curvature r in an arbitrary measurement cross section can be calculated from the scanning amount from the linear encoder and the equation of the generatrix of the rotating surface. The change in the size (length) can be predicted in advance from the value of r, the width of the surface to be inspected, the constant of the interference optical system, and the like. For example, when the surface to be inspected 7a is BTS,

【0023】 r=ro+R−√{R2 −(h+Δh)2 } (1) ここで、ro:BTSの中央部(基準測定断面)におけ
る短手曲率半径 r :任意の走査量における測定断面の短手曲率半径 R :BTSの中央部(基準測定断面)における長手曲
率半径 (G主径線又は母線の曲率半径) h :基準測定断面からの走査移動量 Δh:測定断面位置補正量(図7(a) 参照) 一方、参照レンズを再び通過した後の干渉縞像の大きさ
wは、 w=(r/l)×f (2) ここで、f :参照レンズ6の焦点距離 l :被検体7の短手幅(図7(b) ) このとき、各測定断面についてエリアセンサ10上に結
像される干渉縞像の横倍率mは、次式により求めること
ができる。 m=(wo/w)×mo (3) ここで、mo:干渉光学系の横倍率 wo:基準測定断面における干渉縞像の大きさ
R = ro + R−√ {R 2 − (h + Δh) 2 } (1) where, ro: short radius of curvature in the central portion (reference measurement section) of the BTS r: short measurement section at an arbitrary scanning amount Hand radius of curvature R: Longitudinal radius of curvature in the central portion of BTS (reference measurement section) (curvature radius of G main diameter line or generatrix) h: Scan movement amount from the reference measurement section Δh: Measurement section position correction amount (Fig. 7 ( On the other hand, the size w of the interference fringe image after passing through the reference lens again is: w = (r / l) × f (2) where f: focal length of the reference lens 6 l: subject 7 width (FIG. 7 (b)) At this time, the lateral magnification m of the interference fringe image formed on the area sensor 10 for each measurement cross section can be obtained by the following equation. m = (wo / w) × mo (3) where mo: lateral magnification of the interference optical system wo: size of the interference fringe image in the reference measurement section

【0024】つまり、(1) ,(2) 式より任意の測定断面
に対するwが求まり、エリアセンサ10上に結像する干
渉縞像11の長さを予想することができ、さらに(3) 式
によりそのときの横倍率mを算出できる。
That is, w for an arbitrary measurement cross section can be obtained from the equations (1) and (2), and the length of the interference fringe image 11 formed on the area sensor 10 can be predicted. Thus, the lateral magnification m at that time can be calculated.

【0025】したがって、補正演算手段16で、干渉縞
データ記憶手段14の干渉縞データに横倍率演算手段1
5からの上記横倍率mをかけ合わせれば、任意の走査移
動量hに対応する干渉縞像の大きさwを一定のものとし
て取り扱うことができることになる。こうして得られた
補正後の干渉縞データは、補正データ記憶手段17に記
憶される。補正データ記憶手段17は、干渉縞データ記
憶手段14と同様に、RAMやフロッピーディスク等か
らなっている。補正後の干渉縞データは面精度計算手段
18に入力され、ここで、前述の特願平3−05010
4号に記載されたFFT演算方法等によって処理され、
ディスプレイ等の出力部19に被検面の面精度や面形状
を表示する。
Therefore, in the correction calculation means 16, the lateral magnification calculation means 1 is added to the interference fringe data in the interference fringe data storage means 14.
If the lateral magnification m from 5 is multiplied, the size w of the interference fringe image corresponding to an arbitrary scanning movement amount h can be treated as a constant value. The corrected interference fringe data thus obtained is stored in the corrected data storage means 17. The correction data storage means 17, like the interference fringe data storage means 14, is composed of a RAM, a floppy disk, or the like. The corrected interference fringe data is input to the surface accuracy calculation means 18, and here, the above-mentioned Japanese Patent Application No. 3-05010.
Processed by the FFT calculation method described in No. 4,
The surface accuracy and surface shape of the surface to be inspected are displayed on the output unit 19 such as a display.

【0026】なお、上記の実施例においては、基準測定
断面をBTSの中央部としているが、基準測定断面をこ
こに決めなければならない必然的な理由はないので、任
意の測定断面を基準とすることができる。
In the above embodiment, the reference measurement cross section is the central portion of the BTS, but there is no inevitable reason for determining the reference measurement cross section here, so any reference measurement cross section is used as the reference. be able to.

【0027】図2は、本発明の第2の実施例を示すブロ
ック図である。第1の実施例が、被検体の形状が既知の
ものに適用されるのに対し、この実施例は、未知の回転
面に適用できるものである。干渉縞データ記憶手段14
で干渉縞データを記憶するところまでは図1の実施例と
同じである。しかし、この実施例では、横倍率演算手段
15は、設計値によらず、干渉縞データ記憶手段14に
記憶された各干渉縞像のwの値から、横倍率mを算出す
ることとしている。このとき、基準測定断面を任意の位
置にとり、woの値を決めておけばよい。
FIG. 2 is a block diagram showing a second embodiment of the present invention. While the first embodiment is applied to a known object shape, this embodiment is applicable to an unknown rotating surface. Interference fringe data storage means 14
The process up to the step of storing the interference fringe data is the same as in the embodiment of FIG. However, in this embodiment, the lateral magnification calculation means 15 calculates the lateral magnification m from the value of w of each interference fringe image stored in the interference fringe data storage means 14 regardless of the design value. At this time, the reference measurement cross section may be set at an arbitrary position and the value of wo may be determined.

【0028】図3,4は、本発明の第3の実施例を示
す。この実施例にあっても、干渉縞データ記憶手段14
で干渉縞データを記憶するところまでは図1の実施例と
同じである。しかし、この実施例の干渉光学系内には、
さらに、第2支持台13′があって被検面7aを光軸方
向に移動できるようになっている。この第2支持台1
3′は支持台13と比べると、基本的には走査方向が直
交する点だけが相違し、他は支持台13と同様の構成で
あり、支持台13と一体的に形成するのが望ましい。た
だし、光源1から参照面6aまでの干渉光学系を移動す
る構成としても勿論よい。そして、スフェロメータ方式
によって基準測定断面の短手方向曲率半径roを予め求
めておく。
3 and 4 show a third embodiment of the present invention. Also in this embodiment, the interference fringe data storage means 14
The process up to the step of storing the interference fringe data is the same as in the embodiment of FIG. However, in the interference optical system of this embodiment,
Further, there is a second support 13 'so that the surface 7a to be detected can be moved in the optical axis direction. This second support 1
3'is basically the same as the support table 13 except that the scanning directions are orthogonal to each other, and is preferably formed integrally with the support table 13. However, the interference optical system from the light source 1 to the reference surface 6a may of course be moved. Then, the short-side curvature radius ro of the reference measurement cross section is obtained in advance by the spherometer method.

【0029】スフェロメータ方式は、図4に示すよう
に、先ず参照面6aの曲率中心と被検面の曲率中心とを
一致させて干渉縞を生成し、できるだけ縞数を少なくし
た6a 3 の位置と、参照面6aの曲率中心と被検面7a
の表面とが一致してキャッツアイ干渉縞が形成される6
4 の位置とを求め、これら両者間の光軸上の移動量を
基準測定断面の曲率半径roとする方法である。上記移
動量は、支持台13′に設けられた光軸方向のリニアエ
ンコーダにより読み取られ、roの値として面形状演算
手段20に入力される。
The spherometer system is as shown in FIG.
First, the center of curvature of the reference surface 6a and the center of curvature of the surface to be inspected are
Match and generate interference fringes, and reduce the number of fringes as much as possible.
6a 3Position, the center of curvature of the reference surface 6a, and the surface 7a to be tested.
Cat's eye interference fringes are formed by matching with the surface of 6
aFourPosition and the amount of movement on the optical axis between them is calculated.
This is a method of setting the radius of curvature ro of the reference measurement cross section. Transfer above
The amount of movement is determined by the linear axis in the optical axis direction provided on the support base 13 '.
Read by the encoder and calculate the surface shape as the value of ro
It is input to the means 20.

【0030】一方、母線、すなわち長手方向の曲率半径
Rは、以下の方法によって求めるられる。被検面7aを
回転軸12に沿って支持台13で走査していくと、参照
面6aと被検面7a間の距離が変化するが、この変化は
エリアセンサ10上の干渉縞像における縞模様の流れと
して観測される。そこで、干渉縞像上に一点を定め、こ
の点を通過する縞の数をカウントすれば、被検面7aの
光軸方向の変位量を知ることができる。縞の流れは、上
記の点を構成するエリアセンサの素子の出力変化として
捉えることができるので、パルスカウンタ等からなるカ
ウント手段21でカウントすればよい。
On the other hand, the generatrix, that is, the radius of curvature R in the longitudinal direction is obtained by the following method. As the surface to be inspected 7a is scanned by the support base 13 along the rotation axis 12, the distance between the reference surface 6a and the surface to be inspected 7a changes, but this change is due to the stripes in the interference fringe image on the area sensor 10. Observed as a pattern flow. Therefore, if one point is set on the interference fringe image and the number of fringes passing through this point is counted, the displacement amount of the surface to be inspected 7a in the optical axis direction can be known. Since the flow of stripes can be grasped as a change in the output of the element of the area sensor that constitutes the above point, it may be counted by the counting means 21 such as a pulse counter.

【0031】カウント手段21でカウントした縞の数
は、一測定断面の光軸方向の座標を決定し、支持台13
のリニアエンコーダからの走査移動量の信号と共に母線
演算手段22に入力される。上記の内、縞の数は一測定
断面の光軸方向の座標を決定し、リニアエンコーダから
の信号は、光軸と直角方向の座標を決定するので、母線
演算手段22では、最小二乗法を適用することにより、
被検面7aの回転軸に沿った長手方向の曲率半径R、又
は回転面の母線の方程式を算出することができる。
The number of stripes counted by the counting means 21 determines the coordinates of one measurement section in the optical axis direction, and the support 13
The signal of the scanning movement amount from the linear encoder is input to the bus bar computing means 22. Of the above, the number of stripes determines the coordinates of one measurement cross section in the optical axis direction, and the signal from the linear encoder determines the coordinates in the direction perpendicular to the optical axis. Therefore, the busbar computing means 22 uses the least squares method. By applying
It is possible to calculate the radius of curvature R in the longitudinal direction along the rotation axis of the surface to be inspected 7a or the equation of the generatrix of the rotation surface.

【0032】母線演算手段22からのR信号と、第2支
持台13′からのro信号とは面形状演算手段20に入
力され、ここで、被検面7aの面形状が決定されること
となる。面形状が決まれば、後は、図1の実施例と同じ
流れにより横倍率演算手段15で横倍率mを算出し、ほ
ぼ同一の大きさの干渉縞像に換算して面精度や面形状を
求めることができる。
The R signal from the busbar calculating means 22 and the ro signal from the second supporting base 13 'are input to the surface shape calculating means 20, where the surface shape of the surface 7a to be tested is determined. Become. Once the surface shape is determined, the lateral magnification m is calculated by the lateral magnification calculation means 15 in the same flow as in the embodiment of FIG. 1 and converted into an interference fringe image of substantially the same size to determine the surface accuracy and surface shape. You can ask.

【0033】[0033]

【発明の効果】以上説明したように本発明によれば、回
転面の面形状や面精度の測定において、被検面の走査に
伴い測定断面の曲率半径が変化するにもかかわらず、ほ
ぼ同じ大きさの干渉縞からデータを採ることができる。
そして請求項1の発明によれば、設計形状が既知の被検
面の測定に適し、請求項2,3の発明によれば、形状が
未知の回転面の測定も可能である。
As described above, according to the present invention, in the measurement of the surface shape and surface accuracy of the rotating surface, it is almost the same even though the radius of curvature of the measurement cross section changes with the scanning of the surface to be inspected. Data can be obtained from the interference fringes of a size.
Further, according to the invention of claim 1, it is suitable for measurement of a test surface whose design shape is known, and according to the inventions of claims 2 and 3, it is possible to measure a rotating surface of unknown shape.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における回転面の測定装置の第一実施例
を示すブロック図である。
FIG. 1 is a block diagram showing a first embodiment of a rotating surface measuring apparatus according to the present invention.

【図2】同じく本発明の第二実施例を示すブロック図で
ある。
FIG. 2 is a block diagram showing a second embodiment of the present invention.

【図3】本発明の第三実施例を示すブロック図である。FIG. 3 is a block diagram showing a third embodiment of the present invention.

【図4】スフェロメータ法により測定断面の曲率半径を
求める方法を説明する図である。
FIG. 4 is a diagram illustrating a method of obtaining a radius of curvature of a measurement cross section by a spherometer method.

【図5】先願の例で、BTSのトロイダル面の測定装置
を示す図で、(a) はy−z面図、(b) はx−z面図であ
る。
FIG. 5 is a diagram showing an apparatus for measuring a toroidal surface of a BTS in the example of the prior application, (a) is a yz plane view, and (b) is an xz plane view.

【図6】図5の装置によりエリアセンサ上に結像された
干渉縞像を示す図である。
6 is a diagram showing an interference fringe image formed on an area sensor by the apparatus of FIG.

【図7】被検面と参照面との位置関係が回転軸方向の走
査により変化する状態を示す図で、(a) はy−z面図、
(b) はx−z面図である。
FIG. 7 is a diagram showing a state in which the positional relationship between the surface to be inspected and the reference surface is changed by scanning in the rotation axis direction, (a) is a yz plane view,
(b) is an xz view.

【図8】干渉縞像の大きさ(長さ)が走査に伴い変化す
る状態を示す図である。
FIG. 8 is a diagram showing a state in which the size (length) of an interference fringe image changes with scanning.

【符号の説明】 1 光源 6a 参照面 7a 被検面(回転面又はBTS) 9 集束光学系 12 回転軸 13 支持台 13′ 第2支持台 14 干渉縞データ記憶手段 15 横倍率演算手段 16 補正演算手段 17 補正データ記憶手段 20 面形状演算手段 21 カウント手段 22 母線演算手段[Description of Reference Signs] 1 light source 6a reference surface 7a surface to be measured (rotating surface or BTS) 9 focusing optical system 12 rotating shaft 13 support base 13 'second support base 14 interference fringe data storage means 15 lateral magnification calculation means 16 correction calculation Means 17 Correction data storage means 20 Surface shape calculation means 21 Counting means 22 Busbar calculation means

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 同一光源からの可干渉光を、被検面とし
ての回転面と基準になる参照面とに照射し、これら両面
から反射される参照波と被検波とを重畳して被検面の一
測定断面について干渉縞を作る工程と、 該干渉縞をセンサ上に結像させ、干渉縞像のデータを記
憶する工程と、 被検面を前記回転面の回転軸と平行に走査して各測定断
面について連続的に前記干渉縞を形成する工程と、 被検面形状の設計値から各測定断面の曲率半径rを演算
し、各測定断面における干渉縞像の横倍率mを求める工
程と、 記憶された前記各干渉縞像のデータに、横倍率mをかけ
合わせることにより、走査の際に生じる干渉縞像の大き
さを補正する工程とからなることを特徴とする回転面の
測定方法。
1. Coherent light from the same light source is applied to a rotating surface as a surface to be inspected and a reference surface as a reference, and the reference wave and the wave to be inspected reflected from both surfaces are superposed. A step of forming interference fringes on one measurement cross section of the surface; a step of forming the interference fringes on a sensor and storing data of the interference fringe image; and a surface to be inspected is scanned in parallel with the rotation axis of the rotating surface. And continuously forming the interference fringes for each measurement cross section, and calculating the radius of curvature r of each measurement cross section from the design value of the surface shape to be measured, and obtaining the lateral magnification m of the interference fringe image in each measurement cross section. And a step of correcting the size of the interference fringe image generated during scanning by multiplying the stored data of each interference fringe image by the lateral magnification m. Method.
【請求項2】 同一光源からの可干渉光を、被検面とし
ての回転面と基準になる参照面とに照射し、これら両面
から反射される参照波と被検波とを重畳して被検面の一
測定断面について干渉縞を作る工程と、 該干渉縞をセンサ上に結像させ、干渉縞像のデータを記
憶する工程と、 被検面を前記回転面の回転軸と平行に走査して各測定断
面について連続的に前記干渉縞を形成する工程と、 各測定断面の干渉縞像の大きさを測定して、各測定断面
の干渉縞像の横倍率mを求める工程と、 記憶された前記各干渉縞像のデータに、横倍率mをかけ
合わせることにより、走査の際に生じる干渉縞像の大き
さの変化を補正する工程とからなることを特徴とする回
転面の測定方法。
2. Coherent light from the same light source is applied to a rotating surface as a surface to be inspected and a reference surface serving as a reference, and the reference wave and the wave to be inspected reflected from both surfaces are superposed. A step of forming interference fringes on one measurement cross section of the surface; a step of forming the interference fringes on a sensor and storing data of the interference fringe image; and a surface to be inspected is scanned in parallel with the rotation axis of the rotating surface. And continuously forming the interference fringes on each measurement cross section, measuring the size of the interference fringe image on each measurement cross section, and obtaining the lateral magnification m of the interference fringe image on each measurement cross section. And a step of correcting the change in the size of the interference fringe image that occurs during scanning by multiplying the data of each of the interference fringe images by the lateral magnification m.
【請求項3】 同一光源からの可干渉光を、被検面とし
ての回転面と基準になる参照面とに照射し、これら両面
から反射される参照波と被検波とを重畳して被検面の一
測定断面について干渉縞を作る工程と、 被検面の任意の測定断面を基準としてスフェロメータ法
により、該基準測定断面の曲率半径roを求める工程
と、 前記干渉縞をセンサ上に結像させ、干渉縞像のデータを
記憶する工程と、 被検面を前記回転面の回転軸と平行に走査して各測定断
面について連続的に前記干渉縞を形成する工程と、 回転軸方向の前記走査に伴いセンサ上を流れる干渉縞像
の縞本数をカウントすることにより被検面の母線を求め
る工程と、 前記基準測定断面の曲率半径roと被検面の母線とから
被検面の形状を求める工程と、 被検面の形状から、各測定断面に対応する干渉縞像の、
基準測定断面の干渉縞像に対する横倍率mを求める工程
と、 記憶された前記各干渉縞像のデータに、横倍率mをかけ
合わせることにより、走査の際に生じる干渉縞像の大き
さの変化を補正する工程とからなることを特徴とする回
転面の測定方法。
3. Coherent light from the same light source is applied to a rotating surface as a surface to be inspected and a reference surface as a reference, and the reference wave and the wave to be inspected reflected from both surfaces are superposed. Forming an interference fringe for one measurement cross section of the surface, determining a radius of curvature ro of the reference measurement cross section by a spherometer method using an arbitrary measurement cross section of the surface to be measured as a reference, and forming the interference fringe on the sensor And storing the data of the interference fringe image; a step of scanning the surface to be inspected in parallel with the rotation axis of the rotation surface to continuously form the interference fringes on each measurement section; A step of obtaining a generatrix of the surface to be inspected by counting the number of fringes of the interference fringe image flowing on the sensor with scanning, and a shape of the surface to be inspected from the radius of curvature ro of the reference measurement cross section and the generatrix of the surface to be inspected. Based on the required process and the shape of the surface to be inspected, Of the interference fringe image corresponding to the surface,
The step of obtaining the lateral magnification m of the reference measurement cross section with respect to the interference fringe image, and the change in the size of the interference fringe image generated during scanning by multiplying the stored lateral fringe m by the stored data of the respective interference fringe images. A method of measuring a rotating surface, which comprises the step of:
【請求項4】 同一光源からの可干渉光を、被検面とし
ての回転面と基準になる参照面とに照射し、これら両面
から反射される参照波と被検波とを重畳して被検面の一
測定断面について干渉縞を作る装置と、 被検面を前記回転面の回転軸に沿って走査する支持台
と、 前記干渉縞を結像するセンサと、 センサに結像された干渉縞像のデータを記憶する干渉縞
データ記憶手段と、 被検面形状の設計値から被検面の各測定断面における曲
率半径rを知り、各測定断面における横倍率mを演算す
る横倍率演算手段と、 該横倍率mを前記干渉縞像のデータにかけ合わせて、干
渉縞データを補正する補正演算手段とからなることを特
徴とする回転面の測定装置。
4. Coherent light from the same light source is applied to a rotating surface as a surface to be inspected and a reference surface as a reference, and the reference wave and the wave to be inspected reflected from both surfaces are superposed. A device for forming interference fringes on one measurement cross section of a surface, a support for scanning the surface to be inspected along the rotation axis of the rotating surface, a sensor for imaging the interference fringes, and an interference fringe imaged on the sensor Interference fringe data storage means for storing image data, lateral magnification calculation means for knowing the radius of curvature r in each measurement section of the surface to be measured from the design value of the surface to be measured, and calculating the lateral magnification m in each measurement section. A measuring device for a rotating surface, comprising: a correction calculation means for correcting the interference fringe data by multiplying the lateral magnification m by the interference fringe image data.
【請求項5】 同一光源からの可干渉光を、被検面とし
ての回転面と基準になる参照面とに照射し、これら両面
から反射される参照波と被検波とを重畳して被検面の一
測定断面について干渉縞を作る装置と、 被検面を前記回転面の回転軸に沿って走査する支持台
と、 前記干渉縞を結像するセンサと、 センサに結像された干渉縞像のデータを記憶する干渉縞
データ記憶手段と、 該干渉縞のデータから各干渉縞の横倍率mを算出する横
倍率演算手段と、 該横倍率mを前記干渉縞像のデータにかけ合わせて、干
渉縞データを補正する補正演算手段とからなることを特
徴とする回転面の測定装置。
5. Coherent light from the same light source is applied to a rotating surface as a surface to be inspected and a reference surface serving as a reference, and the reference wave and the wave to be inspected reflected from both surfaces are superposed. A device for forming interference fringes on one measurement cross section of a surface, a support for scanning the surface to be inspected along the rotation axis of the rotating surface, a sensor for imaging the interference fringes, and an interference fringe imaged on the sensor Interference fringe data storage means for storing image data; lateral magnification calculation means for calculating a lateral magnification m of each interference fringe from the interference fringe data; and lateral magnification m for multiplying the interference fringe image data by A measuring device for a rotating surface, comprising: a correction calculation means for correcting interference fringe data.
【請求項6】 同一光源からの可干渉光を、被検面とし
ての回転面と基準になる参照面とに照射し、これら両面
から反射される参照波と被検波とを重畳して被検面の一
測定断面について干渉縞を作る装置と、 前記干渉縞を結像するセンサと、 被検面を回転軸に沿って走査する支持台と、 被検面と参照面との間に相対的な移動を与えるととも
に、移動量を測定できる第2支持台と、 前記回転軸に沿った走査に伴いセンサ上を流れる干渉縞
像の縞本数をカウントする手段と、 カウント手段の出力と前記支持台の走査量とから被検面
の母線を算出する母線演算手段と、 前記第2支持台によりスフェロメータ法により求めた基
準測定面の曲率半径roと、母線演算装置による母線か
ら被検面全体の形状を算出する面形状演算手段と、 該面形状演算手段の出力から各測定断面の横倍率mを算
出する横倍率演算手段と、 該横倍率mを前記干渉縞像のデータにかけ合わせて、干
渉縞データを補正する補正演算手段とからなることを特
徴とする回転面の測定装置。
6. A coherent light beam from the same light source is applied to a rotating surface as a surface to be inspected and a reference surface as a reference, and the reference wave and the wave to be inspected reflected from both surfaces are superposed. A device for forming interference fringes on one measurement cross section of a surface, a sensor for imaging the interference fringes, a support for scanning the surface to be inspected along a rotation axis, and a relative surface between the surface to be inspected and the reference surface. Second support table that can measure the amount of movement while giving various movements, a means for counting the number of fringes of the interference fringe image flowing on the sensor along with the scanning along the rotation axis, the output of the counting means and the support table. A busbar calculating means for calculating a busbar of the surface to be inspected from the scanning amount of the object, a radius of curvature ro of the reference measurement surface obtained by the spherometer method by the second support, and a shape of the entire surface to be inspected from the busbar by the busbar calculating device. And a surface shape calculation means for calculating It is comprised of lateral magnification calculating means for calculating the lateral magnification m of each measurement section from the output of the stage, and correction computing means for multiplying the lateral magnification m with the data of the interference fringe image to correct the interference fringe data. Measuring device for rotating surface.
JP4060318A 1992-03-17 1992-03-17 Method and device for measuring surface of rotation Withdrawn JPH05264238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4060318A JPH05264238A (en) 1992-03-17 1992-03-17 Method and device for measuring surface of rotation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4060318A JPH05264238A (en) 1992-03-17 1992-03-17 Method and device for measuring surface of rotation

Publications (1)

Publication Number Publication Date
JPH05264238A true JPH05264238A (en) 1993-10-12

Family

ID=13138712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4060318A Withdrawn JPH05264238A (en) 1992-03-17 1992-03-17 Method and device for measuring surface of rotation

Country Status (1)

Country Link
JP (1) JPH05264238A (en)

Similar Documents

Publication Publication Date Title
JP3946499B2 (en) Method for detecting posture of object to be observed and apparatus using the same
JP3162355B2 (en) Surface shape measurement method and device
JP2001235317A (en) Apparatus for measuring radius of curvature of optical spherical surface
JP3230536B2 (en) Optical performance measuring method and apparatus
JPH05264238A (en) Method and device for measuring surface of rotation
JP3146590B2 (en) Shape measuring method and shape measuring system
JPH08122210A (en) Method and device for measuring refrative index distribution of optical element
JPH07190734A (en) Circumferential surface profile measuring method
JPH02259510A (en) Method and instrument for measuring surface shape or the like
JP2951366B2 (en) Interferometer and alignment detection method thereof
JPH06313707A (en) Shape measuring method and apparatus
JPH08233513A (en) Interference system
JP2915599B2 (en) Method and apparatus for measuring toroidal surface
JPH0447242B2 (en)
JPH03276044A (en) Method and instrument for measuring radius of curvature of curved surface
JP3599921B2 (en) Method and apparatus for measuring refractive index distribution
JP3041063B2 (en) Method and apparatus for measuring toroidal surface
JPH0469510A (en) Method and instrument for measuring toroidal surface
JPH05264237A (en) Method and device for measuring surface of rotation
JPH05248833A (en) Method and apparatus for measuring surface of revolution
JP3192461B2 (en) Optical measuring device
JP2753545B2 (en) Shape measurement system
JPH04269608A (en) Method and apparatus for measuring toroidal surface
JPH051907A (en) Measuring method and device for troidal surface
JPH0727533A (en) Face shape measuring method for object plane and device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518