JPH07190734A - Circumferential surface profile measuring method - Google Patents

Circumferential surface profile measuring method

Info

Publication number
JPH07190734A
JPH07190734A JP33296693A JP33296693A JPH07190734A JP H07190734 A JPH07190734 A JP H07190734A JP 33296693 A JP33296693 A JP 33296693A JP 33296693 A JP33296693 A JP 33296693A JP H07190734 A JPH07190734 A JP H07190734A
Authority
JP
Japan
Prior art keywords
cylinder
outer cylinder
measured
measurement
interferometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33296693A
Other languages
Japanese (ja)
Other versions
JP3354675B2 (en
Inventor
Hajime Morokuma
肇 諸隈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP33296693A priority Critical patent/JP3354675B2/en
Publication of JPH07190734A publication Critical patent/JPH07190734A/en
Application granted granted Critical
Publication of JP3354675B2 publication Critical patent/JP3354675B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To provide a device which can make measurement with high accuracy with the number of measurements lessened as much as possible in a profile measurement for the inner surface of an outer cylinder and the like. CONSTITUTION:The profiles of cylindrical surfaces 3 and 5 are computed based on a space distribution between the cylindrical surfaces 3 and 5 when the outer and inner cylinders 2 and 3 are coaxially disposed, a space distribution between the cylindrical surfaces 3 and 5 when the outer cylinder 2 or the inner cylinder 4 is rotated by 180 deg., and the inner diameter distribution of the outer cylinder 2 or the outer diameter distribution of the inner cylinder 4. For example, a space between the inner surface 3 of the outer cylinder and the outer surface 5 of the inner cylinder is measured by a space measuring interferometer 1 so as to allow a measured value to be obtained, and the same measurement is performed after the outer cylinder 2 has been rotated by 180 deg. so as to allow a measured value to be obtained. A measured value for the inner surface diameter of the outer cylinder 2 can be obtained by the interferometer with the inner cylinder 4 removed. The profile of each cylindrical surface can be accurately measured by computing the profile of a measured cylindrical surface with the aid of a space measuring means making use of the space measuring interferometer and the like based on measured values for the three kinds of cylindrical surface spaces for two cylinders, that is, a combination of the outer cylinder 2 and the inner cylinder 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、円周面形状測定法、特
に高精度で円筒面を正確に測定するのに用いて好適な測
定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a circumferential surface shape measuring method, and more particularly to a measuring method suitable for highly accurately measuring a cylindrical surface.

【0002】[0002]

【従来の技術】円筒面形状の絶対測定については、円筒
面測定器で被測定物である円筒面を測定し、次に被測定
物を測定器に対して一定角度回転した状態で測定を行
い、以下順次同様な手順で一連の測定を行い、得られた
測定値から形状誤差を測定する方法がある。
2. Description of the Related Art For absolute measurement of the shape of a cylindrical surface, the cylindrical surface measuring device measures the cylindrical surface of the object to be measured, and then the object to be measured is rotated at a constant angle with respect to the measuring device. Then, there is a method in which a series of measurements are sequentially performed in the same procedure and the shape error is measured from the obtained measurement values.

【0003】[0003]

【発明が解決しようとする課題】しかし、この方法では
多くの測定回数が必要であり、測定および解析に長い時
間がかかる。
However, this method requires a large number of measurement times, and the measurement and analysis take a long time.

【0004】本発明は、従って、できるだけ少ない測定
回数で精度高く測定する方法を提供しようというもので
ある。
The present invention therefore seeks to provide a method for measuring with high accuracy and with as few measurements as possible.

【0005】[0005]

【課題を解決するための手段】本発明測定方法は、外筒
と該外筒の内円周面の径より小さな径の外円周面を有す
る内側部材を共軸になるように配置したときの両円周面
の間隔分布、外筒または内側部材を軸のまわりに180
度回転した状態での両円周面の間隔分布、及び外筒の内
径または内側部材の外径の分布から円周面の形状を算出
することを特徴とするものである。
According to the measuring method of the present invention, an outer cylinder and an inner member having an outer peripheral surface having a diameter smaller than that of the inner peripheral surface of the outer cylinder are coaxially arranged. The space distribution on both circumferential surfaces of the outer cylinder or inner member 180
It is characterized in that the shape of the circumferential surface is calculated from the distribution of the intervals between the two circumferential surfaces in the state of being rotated by one degree and the distribution of the inner diameter of the outer cylinder or the outer diameter of the inner member.

【0006】[0006]

【作用】上記本発明による形状測定方法においては、円
周面の形状を測定するにあたって、面と面との間隔を測
定することを基本的とする。その両円周面の間隔分布、
180度回転した状態での両円周面の間隔分布、及び外
筒の内径等の分布を求めるときでも、面間隔測定で行え
る。間隔測定用干渉計あるいは電気マイクロメータなど
を利用した間隔測定によって外筒と内側部材を組み合わ
せたときの3種類の面間隔の測定値から被測定円周面の
形状を算出することにより円周面形状を精度よく測定す
る。
In the above-described shape measuring method according to the present invention, when measuring the shape of the circumferential surface, the distance between the surfaces is basically measured. The distribution of the intervals on both circumferential surfaces,
Even when obtaining the space distribution of both circumferential surfaces in the state of being rotated by 180 degrees, and the distribution of the inner diameter of the outer cylinder and the like, it is possible to measure the surface distance. The circumferential surface is calculated by calculating the shape of the circumferential surface to be measured from the measured values of the three types of surface spacing when the outer cylinder and the inner member are combined by distance measurement using an interferometer for distance measurement or an electric micrometer. Accurately measure the shape.

【0007】[0007]

【実施例】以下、本発明の実施例を図面に基づき説明す
る。図1及び図2は、本発明の一実施例を示す。図中、
1は間隔測定器を示し、これには、例えば後記でその例
を示す間隔測定用干渉計を好適に用いることができる。
あるいは、そのほか電気マイクロメータなどを用いても
よい。また、2は外筒、4は外筒3の内径より小さな径
の外円周面を有する例えば内筒をそれぞれ示す。
Embodiments of the present invention will be described below with reference to the drawings. 1 and 2 show an embodiment of the present invention. In the figure,
Reference numeral 1 denotes an interval measuring device, and for this, for example, an interval measuring interferometer whose example is described later can be preferably used.
Alternatively, an electric micrometer or the like may be used. Further, 2 denotes an outer cylinder, and 4 denotes, for example, an inner cylinder having an outer circumferential surface having a diameter smaller than the inner diameter of the outer cylinder 3.

【0008】間隔測定器1は、図1では、同図に示すよ
うに、外筒2の内面3(内円周面)と内筒4の外面5
(外円周面)の間に配して、これら外筒内面3と内筒外
面5の間隔を測定するのに供する。間隔測定器1は、本
実施例では、図1及び図2の各測定態様で使用される
が、いずれの場合も、面と面との間の間隔を測定するも
のである。本測定方法は、そのように2つの面間の間隔
を測定することを基本とする。
As shown in FIG. 1, the gap measuring device 1 includes an inner surface 3 (inner circumferential surface) of an outer cylinder 2 and an outer surface 5 of an inner cylinder 4 as shown in FIG.
The outer cylinder inner surface 3 and the inner cylinder outer surface 5 are arranged by being arranged between (outer circumferential surfaces). In this embodiment, the distance measuring device 1 is used in each of the measurement modes of FIGS. 1 and 2, but in any case, it measures the distance between the surfaces. The present measuring method is based on measuring the distance between the two surfaces as described above.

【0009】ここに、図1に示すように、外筒2と内筒
4は、外筒2と内筒4を共軸になるように配置されてあ
る。また、外筒2または内筒4は、軸まわりに回転可能
とし、ここでは、外筒2の方を回転可能としてあるもの
とする。
As shown in FIG. 1, the outer cylinder 2 and the inner cylinder 4 are arranged so that the outer cylinder 2 and the inner cylinder 4 are coaxial with each other. Further, the outer cylinder 2 or the inner cylinder 4 is rotatable around an axis, and here, the outer cylinder 2 is rotatable.

【0010】本例においては、外筒2と内筒4を共軸に
なるように配置した状態での両円筒面の間隔分布を、間
隔測定器1により測定して求める。
In the present example, the distance distribution between the two cylindrical surfaces with the outer cylinder 2 and the inner cylinder 4 arranged coaxially is measured by the distance measuring device 1.

【0011】今、外筒内面3及び内筒外面5の面形状を
それぞれe1(z,θ) 、e2(z,θ) とする。ここで、座標
については、円筒軸(図1及び2において紙面と垂直な
方向)をzとし、また、図1,2に示す如くに動径の角
をθで表すものとする。x,y平面は、そのz軸に直交
する面である。
Now, the surface shapes of the outer cylinder inner surface 3 and the inner cylinder outer surface 5 are e 1 (z, θ) and e 2 (z, θ), respectively. Here, regarding the coordinates, the cylindrical axis (the direction perpendicular to the paper surface in FIGS. 1 and 2) is z, and the angle of the radius vector is represented by θ as shown in FIGS. The x and y planes are the planes orthogonal to the z axis.

【0012】間隔分布を得るには、図1のように間隔測
定器1を外筒2と内筒4間に配した態様で、例えば、間
隔測定器1の方を、同じz 座標位置上で、ぐるっと軸ま
わりに1周(360度)回転させて(走査して)間隔測
定をし、また、これを、z を変えるようz 座標方向へ間
隔測定器1を動かして(走査して)行うことでなすこと
ができる。このときは、本例では、外筒2と内筒4は、
かかる走査中は動かさない。従って、この間、円周方
向、及び軸方向の両者のその相対対向位置は変わらな
い。
To obtain the distance distribution, the distance measuring device 1 is arranged between the outer cylinder 2 and the inner cylinder 4 as shown in FIG. 1, and for example, the distance measuring device 1 is placed on the same z coordinate position. , Rotate around the axis once (360 degrees) (scan) to measure the distance, and also move (scan) the distance measuring instrument 1 in the z coordinate direction to change z. You can do that. At this time, in this example, the outer cylinder 2 and the inner cylinder 4 are
Do not move during such a scan. Therefore, during this period, the relative opposing positions in both the circumferential direction and the axial direction do not change.

【0013】こうした間隔分布についての測定は、誤差
を少なくするよう、外筒2と内筒4の任意の対向位置で
1回行うとともに、外筒2と内筒4とを相対的に180
度回転させた状態、即ち本例では内筒4はそのままの位
置で外筒2の方だけを軸まわりに一旦180度回転さ
せ、両者の対向位置を丁度半回転分ズラした状態にした
あとで、更にもう1回行う。従って、計2回行えばよ
い。
The distance distribution is measured once at an arbitrary opposed position of the outer cylinder 2 and the inner cylinder 4 so as to reduce the error, and the outer cylinder 2 and the inner cylinder 4 are relatively moved 180 degrees.
After being rotated by 180 degrees, that is, in this example, the inner cylinder 4 is left at the same position and only the outer cylinder 2 is once rotated about the axis by 180 degrees, and the opposing positions of both are shifted by half a rotation. , Do it one more time. Therefore, it may be performed twice in total.

【0014】以下、式を用いて説明するに、上記のよう
に、座標z、動径角θとして、外筒2と内筒4との或る
対向位置での両円筒面の間隔の測定値をW1(x,y)とする
と、次の関係が成り立つ。
As will be described below using equations, as described above, the measured value of the distance between the outer cylinder 2 and the inner cylinder 4 at a certain opposing position, where the coordinate z and the radial angle θ are as described above. Let W 1 (x, y) be the following relationship.

【0015】[0015]

【数1】 [Equation 1]

【0016】また、外筒2をその状態から180度(=
π)回転した(θ+π)後で同様の測定を行い、得られ
た測定値をW2(x,y)とすると、次の関係が成り立つ。
Further, the outer cylinder 2 is rotated 180 degrees (=
When the same measurement is performed after (π) rotation (θ + π) and the obtained measured value is W 2 (x, y), the following relationship holds.

【0017】[0017]

【数2】 [Equation 2]

【0018】ここで、上記(1)式及び(2)式に関
し、εi (i=1または2) 、θε i (i=1または
2)(なお、ここの「θεi 」なる表記中の「ε」部分
は添字表示である)は、円筒の相対的偏芯を表し、εi
は偏芯量、θεi は偏芯の方向をそれぞれ示す。また、
i (i=1または2)、θki (i=1または2)
(なお、ここの「θki 」なる表記中の「k」部分は添
字表示である)は、円筒の相対的傾きを表し、ki は傾
きの係数、θki は傾きの方向をそれぞれ示す。これら
の値は、それぞれ未知である。なお、偏芯や傾きは小さ
いものとし、これに起因する相対する円筒面のずれによ
る測定誤差は無視できるものとする。
Here, regarding the above equations (1) and (2),
Then εi(I = 1 or 2) , Θε i(I = 1 or
2) (Note that "θεi”In the notation
Represents the relative eccentricity of the cylinder, and εi
Is the amount of eccentricity, θεiIndicates the direction of eccentricity. Also,
ki(I = 1 or 2), θki(I = 1 or 2)
(Here, "θkiThe "k" part in the notation
Represents the relative inclination of the cylinder, kiIs inclined
Mushroom coefficient, θkiIndicates the direction of inclination. these
The value of each is unknown. Eccentricity and inclination are small
Due to the displacement of the opposing cylindrical surfaces due to this
The measurement error due to the above shall be negligible.

【0019】このようにして、上記W1(x,y)とW2(x,y)
との2種類のものを得るものであり、外筒2と内筒4を
共軸になるように配置したときの両円筒面の間隔分布、
同じく共軸配置で外筒2を軸のまわりに180度回転し
た状態での両円筒面の間隔分布につき、これらは図1の
ような測定態様で間隔測定器1を利用して求めることが
できる。
Thus, the above W 1 (x, y) and W 2 (x, y)
And the outer cylinder 2 and the inner cylinder 4 are arranged so as to be coaxial with each other.
Similarly, with respect to the spacing distribution of both cylindrical surfaces when the outer cylinder 2 is rotated by 180 degrees around the axis in the coaxial arrangement, these can be obtained by using the spacing measuring device 1 in the measurement mode as shown in FIG. .

【0020】本測定法では、更にもう一種類、円筒面間
隔の測定を行って、被測定円筒面の形状の算出の基礎と
する。これは外筒2の内径または内筒4の外径の分布を
求めることで行えるが、本実施例では、外筒2の内径測
定を行うものとする。この場合も、面と面との間隔を測
定することになる。図2が、その場合において外筒2の
内径分布を測定する例を示している。
In this measuring method, another type, that is, the distance between the cylindrical surfaces is measured and used as the basis for calculating the shape of the cylindrical surface to be measured. This can be done by obtaining the distribution of the inner diameter of the outer cylinder 2 or the outer diameter of the inner cylinder 4, but in this embodiment, the inner diameter of the outer cylinder 2 is measured. Also in this case, the distance between the surfaces is measured. FIG. 2 shows an example of measuring the inner diameter distribution of the outer cylinder 2 in that case.

【0021】同図では、図1と異なり、外筒2内部から
内筒4が取り除かれており、測定はこの状態で行う。間
隔測定器1については、これを軸まわりに走査し、z 座
標方向へ走査することは前記のものと同様である。図2
の配置において、外筒2の内面直径の測定値をW3(x,y)
とすれば、次式の関係が得られる。
In this figure, unlike FIG. 1, the inner cylinder 4 is removed from the inside of the outer cylinder 2, and the measurement is performed in this state. With respect to the distance measuring instrument 1, scanning this around the axis and scanning in the z coordinate direction is the same as that described above. Figure 2
, The measured value of the inner surface diameter of the outer cylinder 2 is W 3 (x, y)
Then, the relation of the following equation is obtained.

【0022】[0022]

【数3】 [Equation 3]

【0023】こうして、上記測定値W3(x,y)を得るもの
であり、これもやはり間隔測定器1を利用して図2のよ
うな測定態様で求めることができる。
In this way, the measured value W 3 (x, y) is obtained, which can also be obtained by using the interval measuring device 1 in the measuring manner as shown in FIG.

【0024】かくして、上記の(1)式、(2)式、
(3)式より、次式(4)、(5)がが得られる。
Thus, the above equations (1), (2),
From the equation (3), the following equations (4) and (5) are obtained.

【0025】[0025]

【数4】 [Equation 4]

【0026】[0026]

【数5】 [Equation 5]

【0027】上記は測定値W1(x,y),W2(x,y),W3(x,
y)に基づき、面形状のe1(z,θ) 、e2(z,θ) を算出す
ることができることを意味する。なお、ここで、(4)
式,(5)式中のε、ε′は前述の偏芯量から、k、
k′は前述の傾きの係数から導き出された量であるが、
円筒面の形状誤差とは無関係の量であり、最終的に形状
を表示するときに適当に定めればよい。
The above are measured values W 1 (x, y), W 2 (x, y), W 3 (x,
It means that the surface shapes e 1 (z, θ) and e 2 (z, θ) can be calculated based on y). Here, (4)
In the equation (5), ε and ε'are k,
k'is a quantity derived from the above-mentioned slope coefficient,
It is an amount irrelevant to the shape error of the cylindrical surface, and may be appropriately determined when the shape is finally displayed.

【0028】こうして、本実施例による形状測定方法で
は、間隔測定用干渉計などを利用した間隔測定装置によ
る面と面との間隔測定という方法によって、2つの円筒
即ち外筒2と内筒4を組み合わせたときの3種類の円筒
面間隔の測定値W1(x,y),W 2(x,y),W3(x,y)を得、こ
れらから、上記(4)式,(5)式に従い被測定円筒面
の形状を算出することができ、このようにして算出する
ことにより円筒面形状を精度よく測定することができ
る。できるだけ少ない測定回数で精度高く測定をなし得
る本測定方法は、簡単に行え、また時間も少なくて済
み、実用的である。
Thus, the shape measuring method according to the present embodiment
Is measured by a distance measuring device that uses an interferometer for distance measurement.
Two cylinders by the method of measuring the distance between the surfaces
That is, three types of cylinders when the outer cylinder 2 and the inner cylinder 4 are combined
Measured value of surface spacing W1(x, y), W 2(x, y), W3get (x, y)
From these, the cylindrical surface to be measured according to the above equations (4) and (5)
Can be calculated, and calculated in this way
This makes it possible to measure the cylindrical surface shape with high accuracy.
It Highly accurate measurements can be made with the fewest number of measurements
This measurement method is simple and requires less time.
It is practical.

【0029】次に、本発明の他の実施例を説明する。図
1及び図2による前記実施例では、外筒内面3の直径を
測定し、他の2種類の測定値W1(x,y),W2(x,y)とこれ
を用いて円筒面の形状を求めたが、その外筒内面に対す
る測定に代えて、内筒外面5の直径を測定してもよいこ
とはいうまでもない。
Next, another embodiment of the present invention will be described. In the embodiment according to FIGS. 1 and 2, the diameter of the inner surface 3 of the outer cylinder is measured, and the other two measurement values W 1 (x, y) and W 2 (x, y) and the cylindrical surface are used. However, it goes without saying that the diameter of the outer surface 5 of the inner cylinder may be measured instead of the measurement on the inner surface of the outer cylinder.

【0030】本実施例は、内筒4の外径の分布を測定す
るものであり、図3は、かかる内筒測定のための一例を
示している。図中、130,131,132,133は
それぞれ反射鏡を示し、これらは間隔測定器としての間
隔測定用干渉計1の光路が内筒4の一直径を通るように
回転台134の上に配置されている。また、詳細は省略
するが、回転台134自体は、内筒4の軸のまわりに回
転するように構成されている。従って、かかる回転台1
34を回転させることにより、内筒4の直径分布を測定
することができる。この場合も、面と面との間隔を測定
することになる。内筒4の外径については、このように
して測定することもできる。形状分布を算定するために
は、前記の実施例において、外筒内面の形状と内筒外面
の形状を入れ換えればよいことは、容易に理解しうるこ
とである。本発明は、このようにして実施してもよい。
The present embodiment measures the distribution of the outer diameter of the inner cylinder 4, and FIG. 3 shows an example for measuring the inner cylinder. In the figure, reference numerals 130, 131, 132 and 133 denote reflecting mirrors, respectively, which are arranged on the turntable 134 so that the optical path of the distance measuring interferometer 1 as a distance measuring device passes through one diameter of the inner cylinder 4. Has been done. Although not described in detail, the rotary table 134 itself is configured to rotate around the axis of the inner cylinder 4. Therefore, such a turntable 1
By rotating 34, the diameter distribution of the inner cylinder 4 can be measured. Also in this case, the distance between the surfaces is measured. The outer diameter of the inner cylinder 4 can also be measured in this way. It can be easily understood that in order to calculate the shape distribution, the shape of the inner surface of the outer cylinder and the shape of the outer surface of the inner cylinder in the above embodiment may be interchanged. The present invention may be implemented in this manner.

【0031】なお、上記各実施例では、円筒面の間隔分
布、外筒内径または内筒外径の分布測定にあたっては、
即ちW1(x,y),W2(x,y)の測定値や、W3(x,y)の測定値
を得るにあたっては、走査のし方としては、円筒を固定
し、間隔測定器1の方を軸のまわりに回転させるように
しており、そのようにして測定してもよいし、あるいは
それとは逆に、走査にあたって間隔測定器の方を固定し
て円筒側の方を軸のまわりに回転させてもよい。
In each of the above embodiments, in measuring the space distribution of the cylindrical surface, the outer cylinder inner diameter or the inner cylinder outer diameter distribution,
That is, in obtaining the measured values of W 1 (x, y) and W 2 (x, y) and the measured values of W 3 (x, y), the scanning method is fixed cylinder and the interval measurement. The instrument 1 is rotated around the axis, and the measurement may be performed in that way, or, conversely, the interval measuring instrument is fixed for scanning and the cylinder side is the axis. It may be rotated around.

【0032】次に、前記各実施例において、間隔測定器
として用いることのできる、好適な間隔測定用の干渉計
の構成例を示す。図4は、面間隔を測定する間隔測定用
干渉計の一実施例であり、本発明者の案出に係るもので
あるが、他の形式の干渉計を用い得ることはいうまでも
ない。以下、図4に示す構成に従って、この干渉計の作
用を併せて説明する。同図は外筒内面3及び内面外面5
の両円筒面間の面間隔を測定する場合の状態が示され、
干渉計1は、光源(不図示)、偏光プリズム101、1
/4波長板102,103、偏光板104、受光素子9
等から構成される。1個の偏光プリズム101、受光素
子105は、それぞれこの順で光源側から図示の如くに
配置してある。
Next, an example of the configuration of a suitable interferometer for measuring the distance, which can be used as the distance measuring device in each of the above embodiments, will be shown. FIG. 4 shows an embodiment of the interferometer for measuring the distance for measuring the surface distance, which was devised by the present inventor, but it goes without saying that other types of interferometers can be used. Hereinafter, the operation of the interferometer will be described together with the configuration shown in FIG. The figure shows the inner surface 3 of the outer cylinder and the outer surface 5 of the inner surface.
The state when measuring the surface spacing between both cylindrical surfaces of is shown,
The interferometer 1 includes a light source (not shown), polarization prisms 101, and 1.
/ 4 wavelength plates 102, 103, polarizing plate 104, light receiving element 9
Etc. One polarization prism 101 and one light receiving element 105 are arranged in this order from the light source side as shown.

【0033】偏光プリズム101は、偏光膜を1面有す
るとともに、円筒面3,円筒面5と対向する各面側には
偏光面を回転するための1/4波長板102,103
が、また受光素子105と対向する面側には偏光板10
4が、それぞれ偏光プリズム101と一体に設けてあ
る。1/4波長板102,103は、偏光プリズム10
1と円筒面3,5の間の位置にあり、偏光板104は、
偏光プリズム101から受光素子105に至る光路中に
ある。各1/4波長板102,103は、それぞれ透過
する偏光成分の偏光面を回転させるよう、外筒の円筒面
3と対向する1/4波長板102は結晶軸が紙面に対し
て45度の方位に、また内筒の円筒面5と対向する1/
4波長板103は結晶軸が紙面に対して45度の方位
に、それぞれ選定され、偏光板104については、その
偏光軸が紙面とそれに垂直な面以外の面内に選定されて
いる。
The polarizing prism 101 has one polarizing film, and quarter-wave plates 102 and 103 for rotating the plane of polarization on each side facing the cylindrical surface 3 and the cylindrical surface 5.
However, the polarizing plate 10 is provided on the side facing the light receiving element 105.
4 are provided integrally with the polarization prism 101, respectively. The quarter-wave plates 102 and 103 are used for the polarization prism 10.
1 and the cylindrical surfaces 3 and 5, the polarizing plate 104 is
It is in the optical path from the polarizing prism 101 to the light receiving element 105. Each of the quarter-wave plates 102 and 103 faces the cylindrical surface 3 of the outer cylinder so that the polarization plane of the transmitted polarization component is rotated. In the azimuth direction and facing the cylindrical surface 5 of the inner cylinder 1 /
The four-wavelength plate 103 is selected such that the crystal axis thereof is in the direction of 45 degrees with respect to the paper surface, and the polarization axis of the four-wavelength plate 103 is selected in the plane other than the paper surface and the plane perpendicular thereto.

【0034】偏光プリズム101には、光源側から細径
のレーザ光束が入射する。測定の分解能は光束の大きさ
で決まるので、光束はでき得る限り小さい方がよい。ま
た、測定のサンプル点の数を合わせるという理由では、
この入射光束は円筒レンズを用いてz方向には平行で図
示のように半径方向には円筒軸に収束させることが望ま
しい。ここに、レーザ光束は紙面内に周波数f1で振動
するp偏光と紙面に垂直に周波数f2で振動するs偏光
を有する2周波数レーザからの光束である。
A small-diameter laser light beam enters the polarizing prism 101 from the light source side. Since the resolution of measurement is determined by the size of the light flux, the light flux should be as small as possible. Also, because the number of sample points for measurement is adjusted,
It is desirable that this incident light beam be parallel to the z direction by using a cylindrical lens and be converged on the cylindrical axis in the radial direction as shown in the drawing. Here, the laser light beam is a light beam from a two-frequency laser having p-polarized light that vibrates at a frequency f1 in the paper surface and s-polarized light that vibrates at a frequency f2 perpendicularly to the paper surface.

【0035】上記構成において、2周波数レーザからの
p偏光及びs偏光のうちのs偏光成分を、円筒面3及び
円筒面5の間を往復させる測定光束として、またp偏光
成分を参照光束として使用し、下記するようにして測定
を行う。この場合において、分割されるs偏光成分の測
定光束の方は、円筒面3と円筒面5の間の間隔に対応す
る光路長差をもって、p偏光成分の参照光束と結合し、
それら面間隔がこの光路差に反映することになる。
In the above structure, the s-polarized light component of the p-polarized light and the s-polarized light from the two-frequency laser is used as the measurement light beam that reciprocates between the cylindrical surface 3 and the cylindrical surface 5, and the p-polarized light component is used as the reference light beam. Then, the measurement is performed as described below. In this case, the split measurement light flux of the s-polarized light component is combined with the reference light flux of the p-polarized light component with an optical path length difference corresponding to the distance between the cylindrical surfaces 3 and 5.
These surface distances will be reflected in this optical path difference.

【0036】今、上述のレーザから光束が入射すると、
偏光プリズム101への入射s偏光成分は、偏光プリズ
ム101の偏光膜で反射し、1/4波長板102を通っ
て円筒面3に至り、円筒面3で反射される。かくして反
射した光は、再び1/4波長板102を透過する。ここ
で偏光はp偏光に変わるので、今度は偏光プリズム10
1の偏光膜を透過して内筒側へ向かい、もう一つの1/
4波長板103を通ってその内筒面5で反射する。そし
て、これは反射した後、再び1/4波長板103を通る
が、上記の過程でs偏光になる結果、偏光プリズム10
1の偏光膜501で反射し、偏光軸が紙面とそれに垂直
な面以外の面内にある偏光板104を通って受光素子1
05に入る。このようにして、測定光束のs偏光成分が
両円筒面の間の光路を往復するようなす。
Now, when a light beam is incident from the above laser,
The s-polarized component incident on the polarizing prism 101 is reflected by the polarizing film of the polarizing prism 101, passes through the quarter-wave plate 102, reaches the cylindrical surface 3, and is reflected by the cylindrical surface 3. The light thus reflected again passes through the quarter-wave plate 102. Here, the polarized light changes to p-polarized light, so this time the polarizing prism 10
It passes through the polarizing film of No. 1 and goes to the inner cylinder side.
The light passes through the four-wave plate 103 and is reflected by the inner cylindrical surface 5. After passing through the quarter-wave plate 103 again after being reflected, it becomes s-polarized light in the above process, and as a result, the polarization prism 10
The light receiving element 1 is reflected by the polarizing film 501 of No. 1 and passes through the polarizing plate 104 in the plane other than the plane of the paper and the plane perpendicular to it.
Enter 05. In this way, the s-polarized light component of the measurement light beam reciprocates in the optical path between the cylindrical surfaces.

【0037】一方、参照光束のp偏光の方は、同光路を
通らないで受光素子9に至る。即ち、入射p偏光は、偏
光プリズム101と偏光板104を透過して受光素子1
05に入り、円筒面3と円筒面5の間を往復した上述の
s偏光と干渉し、2つの周波数f1,f2の差に等しい
ビート信号を得る。本干渉計を予め定められた経路に沿
ってxy面内で軸のまわりに回転させるよう動かしたと
き、良く知られているように、このビート信号の位相変
化を測定することにより移動に伴う光路長変化を測定す
ることができる。この測定法はヘテロダイン干渉測定法
として公知であるのでこれ以上の説明は省略するが、上
述のような走査時のビート信号の位相変化を2つの円筒
面3,5間の間隔変化として測定することができる。
On the other hand, the p-polarized light of the reference light flux reaches the light receiving element 9 without passing through the same optical path. That is, the incident p-polarized light passes through the polarizing prism 101 and the polarizing plate 104, and the light receiving element 1
05, and interferes with the above-mentioned s-polarized light that reciprocates between the cylindrical surface 3 and the cylindrical surface 5, and obtains a beat signal equal to the difference between the two frequencies f1 and f2. As is well known, when the interferometer is moved so as to rotate about an axis in the xy plane along a predetermined path, the optical path accompanying the movement is measured by measuring the phase change of this beat signal. The change in length can be measured. Since this measurement method is known as the heterodyne interferometry method, further explanation is omitted, but the phase change of the beat signal during scanning as described above is measured as the change in the distance between the two cylindrical surfaces 3 and 5. You can

【0038】このように円筒面3と5の両面間にわたる
光路を往復する測定光束と同光路を通らない参照光束を
有する本構成の干渉計により面間隔を精度よく測定する
ことができ、従って、かかる干渉計を使用するときは、
前述の3種類の各測定値もそれだけ正確なものとして得
られ、結果、円筒面形状をより高精度で測定できる利点
がある。また、干渉計自体も小型であり、製作も容易で
ある。本円筒面形状測定法は、円筒面の形状を測定する
際、面と面の間隔を測定することを基本とするものであ
り、この場合、本発明者の先の開発に係る上記の間隔測
定用干渉計1は、面間隔を測定するのに好適な干渉計を
提供し得、精密長さ測定の実用化に大いに効果を発揮す
る。円筒面の形状を精度高く測定する必要性は高くなっ
てきており、ナノメータオーダーの保証が簡易にできる
測定法が要求されているが、上記間隔測定用干渉計1を
利用する円筒面形状測定法は、そのような精度で円筒面
を正確に測定する方法を容易に実現させることもでき
る。小型な干渉計は、これを動かし走査して形状の測定
をする場合も、小型であるほど有利で、容易に適切な走
査を可能とするのにも役立つ。
As described above, the interplanar distance can be accurately measured by the interferometer of the present structure having the measurement light beam that reciprocates the optical path extending between the cylindrical surfaces 3 and 5 and the reference light beam that does not pass through the optical path. When using such an interferometer,
Each of the above-mentioned three types of measured values can be obtained as such, and as a result, there is an advantage that the cylindrical surface shape can be measured with higher accuracy. Also, the interferometer itself is small and easy to manufacture. This cylindrical surface shape measuring method is based on measuring the distance between the surfaces when measuring the shape of the cylindrical surface, and in this case, the above-mentioned distance measurement according to the previous development of the present inventor. The interferometer 1 for use can provide an interferometer suitable for measuring the interplanar distance, and is very effective for practical application of precision length measurement. The need to measure the shape of the cylindrical surface with high accuracy is increasing, and a measurement method that can easily guarantee the order of nanometers is required. However, the cylindrical surface shape measuring method using the interferometer 1 for measuring the interval is required. Can easily realize a method of accurately measuring a cylindrical surface with such accuracy. The small interferometer is advantageous in that the smaller the interferometer is when it is moved and scanned to measure the shape, and it is also useful for easily enabling proper scanning.

【0039】なお、本干渉計の方を動かすよう走査をす
る場合において、測定にはレーザの部分及びその他の干
渉計構成部分を一体にして動かすか、またはレーザは固
定してその他の干渉計構成部分のみを動かすかの二つの
方法が考えられ、そのどちらであってもよい。いずれに
せよ、測定系をどのように構成するかは、必要に応じ当
業者には容易にできるところである。
When scanning is performed by moving the interferometer, the laser part and other interferometer components are moved integrally for measurement, or the laser is fixed and other interferometer components are used. There are two possible ways to move only the part, whichever is possible. In any case, those skilled in the art can easily determine how to configure the measurement system, if necessary.

【0040】図5は、面間隔を測定する間隔測定用干渉
計1として使用して好適な他の実施例である。図4の場
合のものと異なる点は、光束を外筒及び内筒のそれぞれ
の円筒面3,5上に集光するレンズ106とレンズ10
7が挿入されていることである。本構成による干渉計1
を使用すると、上記の利点等に加え、更に、光束が集束
されるために集束された光スポットの大きさに対応した
高い分解能を得ることができる。なお、2つのレンズの
焦点距離を等しくする必要はない。
FIG. 5 shows another embodiment which is suitable for use as the interferometer 1 for measuring the distance for measuring the surface distance. The difference from the case of FIG. 4 is that the lens 106 and the lens 10 that collect the light flux on the cylindrical surfaces 3 and 5 of the outer cylinder and the inner cylinder, respectively.
7 has been inserted. Interferometer 1 with this configuration
In addition to the above-mentioned advantages, the use of can provide high resolution corresponding to the size of the focused light spot because the light flux is focused. The focal lengths of the two lenses need not be equal.

【0041】これら図4及び5の干渉計1を間隔測定器
として用いる場合も、上述のように、走査では、円筒側
を固定し、干渉計1を軸のまわりに回転させて測定して
もよいし、干渉計1を固定して円筒(図4,5の測定態
様の場合には、内筒も外筒も)を軸のまわりに回転させ
て走査するようにしてもよい。
Even when the interferometer 1 of FIGS. 4 and 5 is used as a distance measuring device, as described above, in scanning, the cylindrical side is fixed and the interferometer 1 is rotated about the axis for measurement. Alternatively, the interferometer 1 may be fixed and the cylinders (both the inner cylinder and the outer cylinder in the case of the measurement modes of FIGS. 4 and 5) may be rotated around the axis for scanning.

【0042】次に、本測定法を実施するに好適な円筒面
測定装置の全体構成について、説明する。図6は、円筒
面を鉛直方向に設置したときの測定装置の一実施例であ
る。また、このものの場合は、走査は、間隔測定用干渉
計の方を軸まわりに回転させる例でもある。
Next, the overall structure of the cylindrical surface measuring apparatus suitable for carrying out the present measuring method will be described. FIG. 6 shows an embodiment of the measuring device when the cylindrical surface is installed in the vertical direction. In this case, the scanning is also an example in which the distance measuring interferometer is rotated around the axis.

【0043】同図において、装置はレーザ6を備える。
レーザ6は、既述したような2周波数レーザであってよ
い。レーザ6からの光束は反射鏡7,8,9及びレンズ
108を経て間隔測定用干渉計1の偏光プリズム101
を含む本体部に入射する。ここに、図示の干渉計1は、
レンズ106,107を有する前記図5で述べた態様の
ものである。なお、使用干渉計1としては、前記図4で
説明した態様のものを用いるようにしてもよい。
In the figure, the device comprises a laser 6.
The laser 6 may be a dual frequency laser as described above. The light flux from the laser 6 passes through the reflecting mirrors 7, 8, 9 and the lens 108, and the polarization prism 101 of the interferometer 1 for measuring the distance.
Is incident on the main body including. Here, the illustrated interferometer 1 is
It is of the embodiment described in FIG. 5 with lenses 106 and 107. The interferometer 1 used may be of the type described with reference to FIG.

【0044】間隔測定用干渉計1は、外筒2及び内筒4
の2つの円筒の作る空間に挿入可能な保持アーム10の
先端部に固定されている。ここに、外筒2と内筒4を共
軸になるように配置するものである。また、かかる間隔
測定用干渉計のための保持アーム10は、公知の回転角
測定装置(図示せず)のついた精密な回転体11にその
基部が固定されている。
The interval measuring interferometer 1 includes an outer cylinder 2 and an inner cylinder 4.
It is fixed to the tip of the holding arm 10 that can be inserted into the space formed by the two cylinders. Here, the outer cylinder 2 and the inner cylinder 4 are arranged coaxially. The base of the holding arm 10 for the distance measuring interferometer is fixed to a precise rotating body 11 equipped with a known rotation angle measuring device (not shown).

【0045】この回転体11の軸受けは、支柱12に対
してZ軸方向(図6での上下方向で、鉛直方向である)
にスライドする移動台13に固定されている。支柱12
と移動台13の相対的な移動量は、公知の方法による測
定器(図示せず)により精度高く測定できるものとす
る。なお、支柱12はベース14に固定されている。ま
た、被測定物である円筒2(外筒)及び/又は4(内
筒)については、公知の装着方法によりベース14の上
に装着されている。
The bearing of the rotating body 11 is in the Z-axis direction with respect to the column 12 (the vertical direction in FIG. 6, which is the vertical direction).
It is fixed to a moving table 13 that slides into the. Stanchion 12
The relative movement amount of the moving table 13 and the moving table 13 can be measured with high accuracy by a measuring device (not shown) according to a known method. The column 12 is fixed to the base 14. The cylinders 2 (outer cylinder) and / or 4 (inner cylinder) that are the objects to be measured are mounted on the base 14 by a known mounting method.

【0046】このような装置によって間隔測定用干渉計
1を回転かつZ軸方向に移動させながら外筒2の円筒面
3と内筒4の円筒面5の間隔を測定することができる。
外筒2と内筒4の任意の対向位置でこれを行ったら、次
に外筒2または内筒4を軸のまわりに180度回転した
状態で、同様の測定を行うことができる。そして、例え
ば前記図2のようにして外筒2の内面直径の方を測定す
るなら、内筒4はこれを取り外し、外筒2だけの状態で
それを行えばよい。外筒2と内筒4を共軸になるように
配置したときの両円筒面3,5の間隔分布、外筒2また
は内筒4を軸のまわりに180度回転した状態での両円
筒面3,5の間隔分布、及び外筒2の内径または内筒4
の外径の分布から円筒面の形状を算出する本測定方法
は、上記のような測定装置でも実施できる。
With such a device, the distance between the cylindrical surface 3 of the outer cylinder 2 and the cylindrical surface 5 of the inner cylinder 4 can be measured while rotating the distance measuring interferometer 1 and moving it in the Z-axis direction.
If this is done at an arbitrary position where the outer cylinder 2 and the inner cylinder 4 face each other, then the same measurement can be performed with the outer cylinder 2 or the inner cylinder 4 rotated by 180 degrees around the axis. Then, for example, when the inner diameter of the outer cylinder 2 is measured as shown in FIG. 2, the inner cylinder 4 may be removed and the outer cylinder 2 alone may be used. Spatial distribution of the cylindrical surfaces 3 and 5 when the outer cylinder 2 and the inner cylinder 4 are coaxially arranged, and both cylindrical surfaces when the outer cylinder 2 or the inner cylinder 4 is rotated by 180 degrees around the axis 3 and 5 spacing distribution, and inner diameter of outer cylinder 2 or inner cylinder 4
The present measuring method for calculating the shape of the cylindrical surface from the distribution of the outer diameter can also be carried out by the above-described measuring device.

【0047】以上の測定方法は、円筒の軸が鉛直方向に
合致しているとき正しい形状の測定結果が得られ、実用
的でもあり、円筒面形状測定において十分効果を発揮し
得る。
The above-mentioned measuring method is practical in that the measurement result of the correct shape can be obtained when the axis of the cylinder is aligned with the vertical direction, and can sufficiently exert the effect on the cylindrical surface shape measurement.

【0048】次に、図7のものについて説明する。いま
までの説明では、被測定円筒が鉛直の面内にある場合を
述べてきた。ところで、上記に対し、鉛直以外のときは
円筒を回転すると形状が変わってしまう場合があり、こ
の点では、正確な測定が期待通りにはできなくなる場合
も生ずることから、これに対する対策を講ずることは有
用なものとなる。
Next, FIG. 7 will be described. In the description so far, the case where the cylinder to be measured is in the vertical plane has been described. By the way, in contrast to the above, the shape may change when the cylinder is rotated except when it is vertical, and in this respect, accurate measurement may not be performed as expected, so take measures against this. Will be useful.

【0049】具体的にいえば、測定面が水平面内にある
ときには重力による変形を含んだ形で測定がなされ、こ
れを考えるときは、形状を正確に測定しているとはいい
難いことになる。特に、変形しやすいのもの場合、変形
しにくいものに比し、その測定結果は、かかる重力変形
による影響を受けやすくなる。これはまた、水平鉛直以
外の任意の方向を向いた場合も同様にいえることであ
る。被測定円筒面を鉛直以外の方向にしたときには被測
定円筒面を180度回転したときの形状が変化しないと
いう保証はない。従って、次に例をもって説明するもの
の他の一つの目的は、そのように被測定面が鉛直以外の
面内にあるときでも、正確に測定ができる方法を提供し
ようというものである。
Specifically, when the measurement surface is in the horizontal plane, the measurement is performed in a form including deformation due to gravity, and when considering this, it is difficult to say that the shape is accurately measured. . In particular, in the case of a material that is easily deformed, the measurement result is more likely to be affected by the gravity deformation than that of a material that is not easily deformed. This is also the case when facing in any direction other than horizontal vertical. There is no guarantee that the shape of the measured cylindrical surface will not change when the measured cylindrical surface is rotated 180 degrees when the measured cylindrical surface is oriented in a direction other than the vertical direction. Therefore, another object of the present invention described below is to provide a method capable of performing accurate measurement even when the surface to be measured is in a plane other than the vertical plane.

【0050】図7が、円筒が水平方向に設置された場合
の円筒面測定装置の例を示す図である。これは、次のよ
うな点に着想を得て、上記目的を実現せんとする。即
ち、上述のように、円筒の軸が鉛直以外のときは円筒を
回転すると、形状が変わってしまうと正確な測定がしに
くくなるが、しかし、内筒については両端をVブロック
あるいはエッジ等公知の支持装置で支持したとき中心部
の形状は変化していないと考えられることから、これを
利用しようするのが本例のものであって、図7のような
方法で円筒内面の形状を測定することができる。なお、
本例は、円筒が水平に置かれた場合であるが、水平以外
に置かれた場合でも同様に測定することができる。
FIG. 7 is a diagram showing an example of a cylindrical surface measuring device when the cylinder is installed horizontally. This is intended to realize the above-mentioned purpose, with the following points in mind. That is, as described above, when the axis of the cylinder is not vertical, rotating the cylinder makes it difficult to perform accurate measurement if the shape changes, but for the inner cylinder, both ends are known as V blocks or edges. Since it is considered that the shape of the central part does not change when supported by the supporting device of this example, this example is used, and the shape of the inner surface of the cylinder is measured by the method shown in FIG. can do. In addition,
In this example, the cylinder is placed horizontally, but the same measurement can be performed when the cylinder is placed other than horizontal.

【0051】以下、要部を説明すると、本例による測定
の内容、手順等は、次の通りである。図7においては、
前述の方法で形状が既知の円筒4は、ベース14に固定
された支持装置15、16を介してベース14に固定さ
れている。また、ここでは、被測定円筒面3を有する外
筒2(外面の形状は円である必要はない)の方は、図中
左右方向(X方向)、従って水平方向に移動可能な移動
台13に固定されている。
The main parts will be described below. The contents of measurement, procedures and the like according to this example are as follows. In FIG. 7,
The cylinder 4 whose shape is known by the above-mentioned method is fixed to the base 14 via the supporting devices 15 and 16 fixed to the base 14. Further, here, the outer cylinder 2 having the measured cylindrical surface 3 (the shape of the outer surface does not need to be circular) is movable in the left-right direction (X direction) in the figure, and thus in the horizontal direction. It is fixed to.

【0052】間隔測定器である例えば前記図4または図
5に示した間隔測定用干渉計1(本体部)は、保持アー
ム10に固定され、該保持アーム10は回転体11に固
定されている。また、その回転体11の軸受け17は上
記移動台13に固定されている。移動台13は、公知の
方法によりX軸方向にスライドすることができるように
なす。反射鏡18は、既知の形状の反射面19を有する
X軸に平行に置かれた反射鏡であって、図示しない適宜
の固定部材を介してベース14に固定されている。
An interferometer for interval measurement 1 (main body) shown in FIG. 4 or FIG. 5, which is an interval measuring device, is fixed to a holding arm 10, and the holding arm 10 is fixed to a rotating body 11. . The bearing 17 of the rotating body 11 is fixed to the movable table 13. The movable table 13 is slidable in the X-axis direction by a known method. The reflecting mirror 18 is a reflecting mirror having a reflecting surface 19 of a known shape and placed in parallel with the X axis, and is fixed to the base 14 via an appropriate fixing member (not shown).

【0053】外筒2に固定された干渉計20によって、
移動台13が移動したとき、そのZ方向(図中上下方
向)の動きzを測定する。図示していないが、同様に移
動台13のY方向の動きyを干渉計によって測定する。
また、上記回転体11に関しては、前記図6のもので
は、その回転体11の内孔はレーザからの光束を通せば
よいので、それに足る小さい直径のものでよかったが、
図7の場合の装置では、図示の如くに当該回転体11は
円筒4(内筒)が貫通できるように、充分大きな内孔を
有する。装置のベース14にはまた、台21が固定さ
れ、その固定された台21の上に設置されたレーザ6
(例えば、既述の2周波数レーザ等)からの光束は、上
記回転体11に連動して回転するもう一つの回転体22
に取り付けられた反射鏡7、8により間隔測定用干渉計
1へ導かれるようになっている。なお、図中、23は回
転体22の軸受を示す。
By the interferometer 20 fixed to the outer cylinder 2,
When the movable table 13 moves, its movement z in the Z direction (vertical direction in the figure) is measured. Although not shown, the movement y of the movable table 13 in the Y direction is similarly measured by an interferometer.
Further, regarding the rotating body 11, in the one shown in FIG. 6, the inner hole of the rotating body 11 only needs to pass the light beam from the laser, so that the diameter thereof is sufficient.
In the apparatus in the case of FIG. 7, the rotating body 11 has a sufficiently large inner hole so that the cylinder 4 (inner cylinder) can pass therethrough, as shown in the drawing. A base 21 is also fixed to the base 14 of the apparatus, and the laser 6 installed on the fixed base 21 is fixed.
A light beam from (for example, the above-mentioned two-frequency laser or the like) is rotated by another rotating body 22 that is interlocked with the rotating body 11.
The reflecting mirrors 7 and 8 attached to the are used to guide the interferometer 1 for distance measurement. In the figure, reference numeral 23 denotes a bearing of the rotating body 22.

【0054】本装置においては、円筒4の中心部分を利
用して測定を行い、移動台13の位置x、Z方向の動き
z、Y方向の動きy、及び間隔測定用干渉計1の測定値
から外筒内面3の形状を測定することができる。このよ
うにして外筒2の内面形状が知れると、これを基準にし
て円筒の外面形状を測定することができる。即ち、形状
既知の円筒の代わりに被測定物である円筒を設置し、同
じ手順で測定を行えばよい。
In the present apparatus, measurement is performed using the central portion of the cylinder 4, and the position x of the movable base 13, the movement z in the Z direction, the movement y in the Y direction, and the measurement value of the interferometer 1 for measuring the distance are measured. Thus, the shape of the inner surface 3 of the outer cylinder can be measured. When the inner surface shape of the outer cylinder 2 is known in this way, the outer surface shape of the cylinder can be measured with reference to this. That is, instead of a cylinder of known shape, a cylinder to be measured may be installed and the measurement may be performed in the same procedure.

【0055】本実施例は、円筒を鉛直に保持したときの
形状が円筒を水平に両端部で保持したとき、その中央部
分では形状が変化していないことを利用したのであり、
外筒の基準平面に対するY,Z方向への動きの測定を干
渉計で行うことは本質でなく、他の計測手段を利用でき
ることはいうまでもない。
This embodiment utilizes the fact that when the cylinder is held vertically, the shape does not change at the center when the cylinder is held horizontally at both ends.
It goes without saying that it is not essential to measure the movement of the outer cylinder in the Y and Z directions with respect to the reference plane, and other measuring means can be used.

【0056】次に、図8を参照し、間隔測定の他の実施
例について述べる。これまで説明してきた実施例におい
ては、円筒面の間隔測定に図4または図5に示した干渉
計を用いたが、他の間隔測定の方法も利用することがで
きる。
Next, another embodiment of the distance measurement will be described with reference to FIG. In the embodiments described so far, the interferometer shown in FIG. 4 or 5 is used for measuring the distance between the cylindrical surfaces, but other distance measuring methods can be used.

【0057】図8は、その一つであって、原子間力顕微
鏡のカンチレバー118,119と例えば前記図5の間
隔測定用干渉計1を組み合わせた例であり、この場合は
外筒と内筒の両円筒面間の間隔の測定は、カンチレバー
118,119の各端部のチップ120,121背面間
の間隔を干渉計1により求めることで行うことになる。
FIG. 8 shows one of them, which is an example in which the cantilevers 118 and 119 of the atomic force microscope are combined with the interferometer 1 for measuring the interval shown in FIG. 5, for example, and in this case, the outer cylinder and the inner cylinder. The distance between the two cylindrical surfaces of the cantilever 118, 119 is measured by obtaining the distance between the back surfaces of the tips 120, 121 of each end of the cantilevers 118, 119 by the interferometer 1.

【0058】本例においては、各カンチレバー118,
119におけるチップ120,121部分の背面は鏡面
になっている。一方のチップ120の先端と円筒表面3
との間隔、他方のチップ121の先端と円筒表面5の間
隔については、通常それぞれチップ背面に平行光束12
2,123を照射し、反射鏡124,125を経てそこ
から離れた位置で反射光の位置をポジションセンサ12
6、127により検出させ、このように反射光の位置を
検出するポジションセンサ126,127と各チップ1
20,121の位置を変化させるアクチュエータ12
8,129の組み合わせで、それぞれ原子間力が一定に
なるよう制御することにより一定に保たれる。円筒表面
とチップ先端の間隔が一定になったときのチップ背面の
位置変化を干渉計1を用いて測定する。
In this example, each cantilever 118,
The back surface of the chips 120 and 121 in 119 is a mirror surface. Tip of one tip 120 and cylindrical surface 3
And the distance between the tip of the other tip 121 and the cylindrical surface 5 are usually parallel to the back surface of the tip.
2, 123, and the position sensor 12 detects the position of the reflected light at a position away from the mirrors 124, 125 through the reflecting mirrors 124, 125.
6, 127 and position sensors 126 and 127 for detecting the position of the reflected light in this way and each chip 1
Actuator 12 for changing the position of 20, 121
With a combination of 8,129, the interatomic force is controlled to be constant, so that it is kept constant. The interferometer 1 is used to measure the positional change of the back surface of the chip when the distance between the cylindrical surface and the tip of the chip is constant.

【0059】このように原子間力顕微鏡のカンチレバー
118,119と間隔測定用干渉計1を組み合わせた本
実施例では、横分解能は各カンチレバー118,119
の端部にあるチップ120,121の大きさで決まるの
で、ナノメータ以下にすることもできる。前記図5の実
施例のものに比較すると、その干渉計1自体だけとした
なら実現できない程度の高い横分解能も容易に得ること
ができ、より一層高精度の結果が得られる。
In this embodiment in which the cantilevers 118 and 119 of the atomic force microscope and the interferometer 1 for measuring the distance are combined as described above, the lateral resolution is the respective cantilevers 118 and 119.
Since it is determined by the size of the chips 120 and 121 at the end of the, it can be set to a nanometer or less. Compared with the embodiment shown in FIG. 5, it is possible to easily obtain a high lateral resolution that cannot be realized by using only the interferometer 1 itself, and a more highly accurate result can be obtained.

【0060】なお、上記のように円筒表面とチップ先端
の間隔が一定になったときのチップ背面の位置変化を図
のように組み合わせた干渉計1を用いて測定することも
できるが、電気容量変化を検出する方式など他の手段に
よって測定することもできるものである。従って、その
ような手段を用いることも妨げない。本発明は、以上の
ような間隔測定の方法を利用して実施することもでき
る。
The position change of the back surface of the chip when the distance between the cylindrical surface and the tip of the chip becomes constant as described above can be measured by using the interferometer 1 combined as shown in FIG. It can also be measured by other means such as a method of detecting a change. Therefore, the use of such means is not hindered. The present invention can also be implemented using the above-described method of measuring the distance.

【0061】[0061]

【発明の効果】本発明方法によれば、間隔測定用干渉計
あるいは電気マイクロメータなどを利用した間隔測定装
置によって外筒と内側部材を組み合わせたときの3種類
の面間隔の測定値から被測定面の形状を算出することに
より円筒面形状等を精度よく測定することができる。形
状測定のため本方法に従って求められる3種類のいずれ
の分布も、面と面との間隔を測定することによって得る
ことができ、できるだけ少ない測定回数で精度高く測定
を可能にし、簡単に行え、かつ時間も少なくて済み、実
用的である。
According to the method of the present invention, it is possible to measure from three measured values of the surface distance when the outer cylinder and the inner member are combined by the distance measuring device using the distance measuring interferometer or the electric micrometer. By calculating the surface shape, it is possible to accurately measure the cylindrical surface shape and the like. Any of the three types of distributions obtained according to this method for shape measurement can be obtained by measuring the distance between the surfaces, which enables accurate measurement with the fewest number of measurements, and can be performed easily. It is practical and requires less time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すもので、外筒と内筒の
面間隔測定の説明に供する図である。
FIG. 1 shows an embodiment of the present invention, and is a diagram for explaining measurement of a surface distance between an outer cylinder and an inner cylinder.

【図2】同じく、外筒の直径測定の説明に供する図であ
る。
FIG. 2 is also a diagram for explaining the diameter measurement of the outer cylinder.

【図3】本発明の他の実施例方法において適用できる、
内筒の直径測定をする場合の一例を示す図である。
FIG. 3 is applicable in a method according to another embodiment of the present invention,
It is a figure which shows an example at the time of measuring the diameter of an inner cylinder.

【図4】間隔測定器として適用できる間隔測定用干渉計
の構成の一例を示す図である。
FIG. 4 is a diagram showing an example of a configuration of an interval measuring interferometer applicable as an interval measuring device.

【図5】同じく、間隔測定用干渉計の構成の他の例を示
す図である。
FIG. 5 is a diagram similarly showing another example of the configuration of the interferometer for measuring the interval.

【図6】測定装置の全体図にして、鉛直方向に設置され
た円筒面測定装置の例を示す図である。
FIG. 6 is a general view of the measuring device, showing an example of a cylindrical surface measuring device installed in the vertical direction.

【図7】同じく、水平方向に設置された円筒面測定装置
の例を示す図である。
FIG. 7 is a diagram showing an example of a cylindrical surface measuring device installed in the horizontal direction similarly.

【図8】間隔測定の他の例の説明に供する図である。FIG. 8 is a diagram for explaining another example of interval measurement.

【符号の説明】[Explanation of symbols]

1 間隔測定器(間隔測定用干渉計) 2 外筒 3 外筒の内面 4 内筒 5 内筒の外面 6 レーザ 7,8,9 反射鏡 10 間隔測定用干渉計の保持アーム 11 回転体 12 支柱 13 移動台 14 ベース 15,16 支持装置 17 軸受 18 反射鏡 19 反射面 20 干渉計 21 台 22 回転体 101 偏光プリズム 102,103 1/4波長板 104 偏光板 105 受光素子 106,107,108 レンズ 118,119 原子間力顕微鏡のカンチレバー 120,121 カンチレバーのチップ 122,123 入射平行光束 124,125 反射鏡 126,127 ポジションセンサ 1 Interval measuring device (interferometer for interval measurement) 2 Outer cylinder 3 Inner surface of outer cylinder 4 Inner cylinder 5 Outer surface of inner cylinder 6 Laser 7, 8, 9 Reflector 10 Holding arm of interferometer for distance measurement 11 Rotating body 12 Strut 13 Moving Base 14 Bases 15 and 16 Supporting Device 17 Bearing 18 Reflecting Mirror 19 Reflecting Surface 20 Interferometer 21 Unit 22 Rotating Body 101 Polarizing Prism 102, 103 ¼ Wave Plate 104 Polarizing Plate 105 Photosensitive Element 106, 107, 108 Lens 118 , 119 Atomic force microscope cantilever 120, 121 Cantilever tip 122, 123 Incident parallel luminous flux 124, 125 Reflector 126, 127 Position sensor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 外筒と該外筒の内円周面の径より小さな
径の外円周面を有する内側部材を共軸になるように配置
したときの両円周面の間隔分布、外筒または内側部材を
軸のまわりに180度回転した状態での両円周面の間隔
分布、及び外筒の内径または内側部材の外径の分布から
円周面の形状を算出することを特徴とする円周面形状測
定方法。
1. A space distribution between both outer circumferential surfaces of an outer cylinder and an inner member having an outer circumferential surface having a diameter smaller than that of the inner circumferential surface of the outer cylinder, when the two members are coaxially arranged. A shape of the circumferential surface is calculated from a space distribution of both circumferential surfaces in a state where the cylinder or the inner member is rotated about the axis by 180 degrees, and a distribution of the inner diameter of the outer cylinder or the outer diameter of the inner member. Measuring method of circumferential surface shape.
JP33296693A 1993-12-27 1993-12-27 Circumferential surface shape measurement method Expired - Fee Related JP3354675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33296693A JP3354675B2 (en) 1993-12-27 1993-12-27 Circumferential surface shape measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33296693A JP3354675B2 (en) 1993-12-27 1993-12-27 Circumferential surface shape measurement method

Publications (2)

Publication Number Publication Date
JPH07190734A true JPH07190734A (en) 1995-07-28
JP3354675B2 JP3354675B2 (en) 2002-12-09

Family

ID=18260813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33296693A Expired - Fee Related JP3354675B2 (en) 1993-12-27 1993-12-27 Circumferential surface shape measurement method

Country Status (1)

Country Link
JP (1) JP3354675B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11230714A (en) * 1998-02-10 1999-08-27 Matsushita Electric Ind Co Ltd Cylindrical shape measuring equipment
EP1018631A2 (en) * 1998-12-23 2000-07-12 Joh. & Ernst Link GmbH & Co. KG Device to measure dimensions of objects and procedure to use same device
JP2004501368A (en) * 2000-06-21 2004-01-15 ヨー ウント エルンスト リンク ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Measuring device for detecting sample size
JP2006030010A (en) * 2004-07-16 2006-02-02 Soatec Inc Optical measurement apparatus
JP2008309645A (en) * 2007-06-14 2008-12-25 National Institute Of Advanced Industrial & Technology Inner diameter measuring device
JP2008309655A (en) * 2007-06-14 2008-12-25 National Institute Of Advanced Industrial & Technology Inner diameter measuring device
JP2009180712A (en) * 2008-02-01 2009-08-13 National Institute Of Advanced Industrial & Technology Inner diameter measuring device
JP2017009336A (en) * 2015-06-18 2017-01-12 浩毅 花岡 Measuring method, and measuring device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11230714A (en) * 1998-02-10 1999-08-27 Matsushita Electric Ind Co Ltd Cylindrical shape measuring equipment
EP1018631A2 (en) * 1998-12-23 2000-07-12 Joh. & Ernst Link GmbH & Co. KG Device to measure dimensions of objects and procedure to use same device
EP1018631A3 (en) * 1998-12-23 2001-06-27 Joh. & Ernst Link GmbH & Co. KG Device to measure dimensions of objects and procedure to use same device
JP2004501368A (en) * 2000-06-21 2004-01-15 ヨー ウント エルンスト リンク ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Measuring device for detecting sample size
JP2006030010A (en) * 2004-07-16 2006-02-02 Soatec Inc Optical measurement apparatus
JP2008309645A (en) * 2007-06-14 2008-12-25 National Institute Of Advanced Industrial & Technology Inner diameter measuring device
JP2008309655A (en) * 2007-06-14 2008-12-25 National Institute Of Advanced Industrial & Technology Inner diameter measuring device
JP2009180712A (en) * 2008-02-01 2009-08-13 National Institute Of Advanced Industrial & Technology Inner diameter measuring device
JP2017009336A (en) * 2015-06-18 2017-01-12 浩毅 花岡 Measuring method, and measuring device

Also Published As

Publication number Publication date
JP3354675B2 (en) 2002-12-09

Similar Documents

Publication Publication Date Title
Schwenke et al. Optical methods for dimensional metrology in production engineering
JP2752003B2 (en) Inspection interferometer with scanning function
US6721094B1 (en) Long working distance interference microscope
JP5627610B2 (en) Method and apparatus for measuring substrate shape or thickness information
EP2163906B1 (en) Method of detecting a movement of a measuring probe and measuring instrument
CN101666630B (en) Method and device for detecting precision wafer based on parallel optical flat splitting polarized beam and phase-shifting interferometry
Yu et al. Development of a compact, fiber-coupled, six degree-of-freedom measurement system for precision linear stage metrology
JPH0455243B2 (en)
JP3354675B2 (en) Circumferential surface shape measurement method
TW200804757A (en) Measuring error method for high precision and nano-scale rotation axis and the apparatus thereof
Li et al. Measurement of x-ray telescope mirrors using a vertical scanning long trace profiler
Jin et al. A heterodyne interferometer for simultaneous measurement of roll and straightness
JP2002257523A (en) Ultraprecise shape measuring method and its device
JP2018059733A (en) Three-dimentional shape measurement system
Qian et al. Multiple functions long trace profiler (LTP-MF) for National Synchrotron Radiation Laboratory of China
KR101379677B1 (en) Eccentricity measurement for aspheric lens using the interferometer producing spherical wave
JP4536873B2 (en) Three-dimensional shape measuring method and apparatus
Franks The Metrology of X‐ray Optical Components
JP2004279075A (en) Lens eccentricity measuring method and measuring device
JP2001056213A (en) Surface shape measuring device and measuring method
JP2000205998A (en) Reflection eccentricity measuring apparatus
JP2672718B2 (en) Refractive index measuring method and apparatus
JP3393910B2 (en) Surface shape measurement method
JP2753545B2 (en) Shape measurement system
JP3064614B2 (en) High precision coordinate measuring device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080927

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080927

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090927

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees