JPH0447242B2 - - Google Patents
Info
- Publication number
- JPH0447242B2 JPH0447242B2 JP5707882A JP5707882A JPH0447242B2 JP H0447242 B2 JPH0447242 B2 JP H0447242B2 JP 5707882 A JP5707882 A JP 5707882A JP 5707882 A JP5707882 A JP 5707882A JP H0447242 B2 JPH0447242 B2 JP H0447242B2
- Authority
- JP
- Japan
- Prior art keywords
- measurement
- measured
- shape
- interferometer
- generatrix
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000005259 measurement Methods 0.000 claims description 49
- 238000000034 method Methods 0.000 claims description 24
- 230000003287 optical effect Effects 0.000 claims description 13
- 238000010586 diagram Methods 0.000 description 7
- 238000003384 imaging method Methods 0.000 description 4
- 230000010363 phase shift Effects 0.000 description 4
- 230000004907 flux Effects 0.000 description 3
- 238000012937 correction Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000005304 joining Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000004441 surface measurement Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
- G01B11/2441—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Description
【発明の詳細な説明】
本発明は、平面や曲面の面状態を測定する方法
であり、特にトロイダル面、シリンドリカル面等
の曲面を効果的に測定する面形状測定方法に関す
るものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the surface condition of a flat or curved surface, and particularly to a surface shape measuring method for effectively measuring curved surfaces such as toroidal surfaces and cylindrical surfaces.
従来から、レンズ、ミラー等の光学的研摩面の
形状を測定するには、ニユートン原器や各種干渉
計等の干渉現象を利用した測定手段が用いられて
いる。これらの手段は、主に平面や球面の形状測
定を対象としており、被測定面が回転曲面のよう
に母線と子線で異なる曲率を有する場合には測定
が不可能か、或いは著しい制約を受けることにな
る。例えば、トロイダル面の形状を従来のニユー
トン原器を用いて測定する場合には、通常は球面
又はシリンドリカル面を有するニユートン原器を
用いて、トロイダル面の子線方向の断面の複数個
所を検査する代用的な方法が用いられる。この方
法は、一時に1個の断面しか検査できず、測定個
所を変えるたびにニユートン原器を当て直したと
すると、ニユートン原器の参照面と被測定面であ
るトロイダル面の間の光路長は前回の測定個所と
無関係になる。従つて、子線方向断面のニユート
ンリングを写真等によつて順次記録し、これらの
写真を継ぎ合わせたとしても、第1図に示すよう
にニユートンリングの縞1の位相は互いに不連続
であつて、トロイダル面の二次元的な形状を知る
ことは困難である。ニユートン原器の代りにトワ
イマン、フイゾー等の干渉計を使用しても全く同
様な問題が生ずることは避けられない。 BACKGROUND ART Conventionally, in order to measure the shape of an optically polished surface of a lens, mirror, etc., measurement means that utilize interference phenomena, such as a Newton prototype or various interferometers, have been used. These methods are mainly aimed at measuring the shape of planes and spherical surfaces, and if the surface to be measured has different curvatures for the generatrix and sagittal line, such as a rotating curved surface, measurement is impossible or is subject to significant limitations. It turns out. For example, when measuring the shape of a toroidal surface using a conventional Newton prototype, a Newton prototype with a spherical or cylindrical surface is usually used to inspect multiple locations on the cross section of the toroidal surface in the sagittal direction. Alternative methods are used. With this method, only one cross section can be inspected at a time, and if the Newton prototype is reapplied each time the measurement location is changed, the optical path length between the reference surface of the Newton prototype and the toroidal surface that is the surface to be measured is becomes unrelated to the previous measurement location. Therefore, even if the Newton rings in the sagittal direction cross section are recorded sequentially using photographs, etc., and these photographs are stitched together, the phases of the stripes 1 of the Newton rings are discontinuous with each other, as shown in Figure 1. However, it is difficult to know the two-dimensional shape of the toroidal surface. Even if interferometers such as those of Twyman and Fizeau are used in place of Newton's prototype, the same problem will inevitably occur.
このような問題を解決する1つの手段として、
先ず母線方向中央部の断面形状を干渉計で測定し
ておき、それと直交する断面、即ち子線方向の断
面形状を二次元的に継ぎ合わせる際に、前記母線
方向の断面形状を基準にして干渉縞の位相ずれを
補正する方法が考えられる。しかし、この方法は
母線方向と子線方向の両方向の測定が不可欠であ
り、かつ干渉縞の位相ずれの補正も必要である。
更に、被測定範囲の母線方向断面の開口数が大き
くて一時に測定できない場合には、母線方向の断
面内における干渉縞同志の継ぎ合わせが困難とな
り、結果として二次元的な形状を正しく測定する
ことができないことになる。 One way to solve such problems is to
First, the cross-sectional shape of the central part in the generatrix direction is measured with an interferometer, and when the cross-section orthogonal to it, that is, the cross-sectional shape in the sagittal direction, is two-dimensionally joined, the interference is calculated based on the cross-sectional shape in the generatrix direction. One possible method is to correct the phase shift of the fringes. However, this method requires measurement in both the generatrix direction and the sagittal direction, and also requires correction of the phase shift of the interference fringes.
Furthermore, if the numerical aperture of the cross section in the generatrix direction of the measurement range is large and cannot be measured all at once, it becomes difficult to join interference fringes within the cross section in the generatrix direction, resulting in accurate measurement of the two-dimensional shape. You will not be able to do that.
また他の手段として、トロイダル面をその回転
対称軸の廻りに回転し得るように、例えばターン
テーブル上に配置し、このターンテーブルを回転
させながら干渉計でトロイダル面の子線断面を連
続して測定すれば、二次元的な形状を知ることが
できる。しかしながら、この方法では各断面の干
渉縞の位相を連続的に保つために、測定中の間は
干渉計の参照面と被測定面間の光路長差を、光の
波長よりも十分に小さい範囲内で一定に保持しな
ければならず、ターンテーブルの軸受や測定装置
全体の防震、空気の揺らぎの防止等のために精密
で高価な機構が必要になる。 As another method, the toroidal surface is placed on a turntable so as to be able to rotate around its axis of rotational symmetry, and while the turntable is rotated, the sagittal cross sections of the toroidal surface are successively measured using an interferometer. By measuring it, you can find out its two-dimensional shape. However, in this method, in order to keep the phase of the interference fringes in each cross section continuous, the optical path length difference between the reference surface of the interferometer and the measured surface is kept within a range sufficiently smaller than the wavelength of the light during measurement. It must be held constant, and a precise and expensive mechanism is required to protect the turntable's bearings and the entire measuring device from vibrations, and to prevent air fluctuations.
更に他の手段として、トロイダル面を有するニ
ユートン原器を使用するか、或いは干渉計中にト
ロイダル参照波面を発生させるアナモフイツク光
学系を使用するか、或いはホログラムによつてト
ロイダル参照波面を発生させる等の方法により、
トロイダル面全体を二次元的に測定することが考
えられる。しかしこの方法もニユートン原器、ア
ナモフイツク光学系、ホログラム等の製作が困難
であり、特に被測定面の開口数が大きくなると困
難さが倍増し、ニユートン原器等に汎用性が無く
なるという欠点がある。 Still other means include using a Newtonian prototype having a toroidal surface, using an anamorphic optical system that generates a toroidal reference wavefront in an interferometer, or generating a toroidal reference wavefront with a hologram. Depending on the method,
It is conceivable to measure the entire toroidal surface two-dimensionally. However, this method also has the disadvantage that it is difficult to manufacture the Newton prototype, anamorphic optical system, hologram, etc., and the difficulty doubles when the numerical aperture of the surface to be measured becomes large, making the Newton prototype etc. less versatile. .
本発明の目的は、上述の従来例の欠点を解決
し、干渉計を用いて連続平面のみならず、トロイ
ダル面、シリンドリカル面等の回転連続曲面の二
次元的形状を正確に測定し、従来の光学系では原
理的に測定できないほど被測定面の開口数が大き
い回転曲面の形状をも測定可能とする面形状測定
方法を提供することにあり、その要旨は、レーザ
ー光源からの測定光をビームスプリツタにより第
1と第2の光束に分離し、第1の光束を分割光学
系によつて2分割して被測定面内の所定の測定部
位の2つの被測定位置にそれぞれ入射させ、該被
測定位置それぞれからの光束を参照用の光路を経
由した第2光束と重ね合わせて干渉計を形成し、
該干渉計によつて前記測定部位の形状測定を行
い、被測定面内で分割光束の被測定面上間隔に対
応した所定量だけ測定部位を被測定面内方向に変
位させながら該形状測定を繰り返し、各部位の形
状測定の際に同一被測定位置が異なる分割光束に
よつて同様に照明される形で少なくとも測定部位
の一部被測定位置が異なる測定部位の一部被測定
位置と重複するようにし、該重複被測定位置につ
いて得られた本来同一であるべき測定値同志を比
較して、これらの測定値間のずれ量を求め、一方
の測定部位の測定値を、該ずれ量を参照して補正
し、補正して得られた各測定部位の形状を継ぎ合
わせることにより、前記被測定面の全体的な形状
の情報を得ることを特徴とする面形状測定方法で
ある。 The purpose of the present invention is to solve the above-mentioned drawbacks of the conventional example, and to accurately measure the two-dimensional shape of not only continuous planes but also rotating continuous curved surfaces such as toroidal surfaces and cylindrical surfaces using an interferometer, and to The purpose is to provide a surface shape measurement method that can measure the shape of a rotating curved surface with a large numerical aperture of the surface to be measured, which cannot be measured in principle with an optical system. The splitter separates the first light beam into a first and second light beam, and the first light beam is divided into two by a splitting optical system and is made incident on two measured positions of a predetermined measurement region within the surface to be measured. forming an interferometer by superimposing the light beams from each of the measured positions with a second light beam passing through a reference optical path;
The shape of the measurement area is measured using the interferometer, and the shape measurement is performed while displacing the measurement area in the direction within the measurement surface by a predetermined amount corresponding to the interval on the measurement surface of the divided light beams within the measurement surface. Repeatedly, when measuring the shape of each part, the same measured position is illuminated in the same way by different divided light beams, so that at least part of the measured position of the measured part overlaps with part of the measured position of the different measured part. Then, compare the measured values obtained for the duplicated measurement positions that should be the same, find the amount of deviation between these measured values, and refer to the amount of deviation for the measured value of one measurement site. This surface shape measuring method is characterized in that information on the overall shape of the surface to be measured is obtained by correcting the shape of the surface to be measured and joining the shapes of the respective measurement parts obtained by the correction.
次に本発明を図示の実施例に基づいて詳細に説
明する。 Next, the present invention will be explained in detail based on illustrated embodiments.
第2図は本発明に係る方法を実現するための装
置であり、トロイダル面Stを有する試料Sを測定
する場合の平面構成図、第3図はその測定構成図
である。試料Sはレンズ又はミラーとし、X−Y
ステージとあおり機構を有する載物台10上に載
置する。更に、この載物台10をターンテーブル
20上に固定し、載物台10がターンテーブル2
0の中心軸lの廻りに回転し得るようにする。試
料Sに対向してトワイマン型の干渉計30を設置
し、その側面の観測窓には干渉縞を検地するため
の撮像素子40を取付ける。この撮像素子40の
出力線を、干渉縞の強度分布を記憶するためのメ
モリ回路50に接続し、更にメモリ回路50の出
力を装置全体の制御及び演算を行う制御演算回路
60に入力する。そして、制御演算回路60の一
つの出力をステツピングモータ70に送信し、ス
テツピングモータ70により前記ターンテーブル
20を任意の位置に回転するようにする。 FIG. 2 shows an apparatus for implementing the method according to the present invention, and is a plan configuration diagram when measuring a sample S having a toroidal surface St, and FIG. 3 is a diagram showing the measurement configuration. Sample S is a lens or mirror, and
It is placed on a stage 10 having a stage and a tilting mechanism. Furthermore, this stage 10 is fixed on the turntable 20, and the stage 10 is connected to the turntable 2.
It is possible to rotate around the central axis l of 0. A Twyman interferometer 30 is installed facing the sample S, and an imaging device 40 for detecting interference fringes is attached to an observation window on its side. The output line of the image sensor 40 is connected to a memory circuit 50 for storing the intensity distribution of interference fringes, and the output of the memory circuit 50 is further input to a control calculation circuit 60 that controls and calculates the entire apparatus. Then, one output of the control calculation circuit 60 is sent to the stepping motor 70, so that the stepping motor 70 rotates the turntable 20 to an arbitrary position.
測定に先立ち、試料Sが有するトロイダル面St
の回転対称軸qは、ターンテーブル20の回転軸
lと合致するように、載物台10のX−Yステー
ジ及びあおり機構によつて調整するものとする。
但し、トロイダル面Stが回転研摩によつて加工さ
れ、加工雇から外さずそのまま加工時の回転軸を
使つて回転できる場合には、上述の調整は省略で
きる。干渉計30において、レーザー光源31か
ら射出する平行光束Lは、ビームエクスパンダ3
2によつて光束幅を広げた後に、ハーフミラー3
3により、ここを反射する光束Laと透過する光
束Lbとに分けられる。このハーフミラー33を
透過した光束Lbは、複プリズム34によつて互
いに角度を有する2つの平行光束L1及びL2と
なつて対物レンズ35に入射する。そこで、対物
レンズ35を通過した2つの光束L1,L2の集
光位置が、トロイダル面Stの子線の曲率中心群を
連ねてできる円弧p上となるように、干渉計30
とトロイダル面St間の距離を調整する。但し、ト
ロイダル面Stと載物台10、ターンテーブル20
同志間の相対的位置は、前記の距離調整の際に不
変に保持するものとする。次に、複プリズム34
を対物レンズ35の光軸方向に移動させることに
よつて、対物レンズ35を射出後の2つの光束L
1,L2の結像位置を変えることなく、光束L
1,L2の主光線の向きを変えて該主光線の交差
する点をターンテーブル20の回転軸l上に重ね
る。 Prior to measurement, the toroidal surface St of the sample S is
The axis of rotational symmetry q is adjusted by the XY stage and tilting mechanism of the stage 10 so that it coincides with the axis of rotation l of the turntable 20.
However, if the toroidal surface St is processed by rotary polishing and can be rotated using the rotation axis during processing without removing it from the processing machine, the above adjustment can be omitted. In the interferometer 30, the parallel light beam L emitted from the laser light source 31 passes through the beam expander 3.
After widening the beam width by 2, half mirror 3
3, it is divided into a reflected light flux La and a transmitted light flux Lb. The light beam Lb transmitted through the half mirror 33 becomes two parallel light beams L1 and L2 at angles to each other by the double prism 34 and enters the objective lens 35. Therefore, the interferometer 30
Adjust the distance between and the toroidal surface St. However, toroidal surface St, stage 10, turntable 20
It is assumed that the relative positions between the comrades remain unchanged during the distance adjustment described above. Next, the double prism 34
By moving in the optical axis direction of the objective lens 35, the two light beams L after exiting the objective lens 35 are
1, without changing the imaging position of L2, the luminous flux L
The directions of the chief rays 1 and L2 are changed so that the intersection point of the chief rays is placed on the rotation axis l of the turntable 20.
以上の手順により、トロイダル面Stに入射した
2つの光束L1,L2は、その集光方向がトロイ
ダル面Stの子線の曲率中心pに向かい、かつ2つ
の光束L1,L2の主光線はそれぞれトロイダル
面Stの母線の曲率中心qに向かうことになる。従
つて、トロイダル面Stで反射された光束は、第2
図の平面内、即ちトロイダル面Stの母線を含む平
面内においては、主光線のみが元と同じ光路を逆
に進み、ハーフミラー33及び結像レンズ36を
経て撮像素子40の受光面に達する。一方、第3
図の平面内、即ちターンテーブル20の回転軸l
を含む平面内においては、トロイダル面Stで反射
された全ての光束が元と同じ光路を逆に進み、ハ
ーフミラー33で反射され撮像素子40の受光面
に達することになる。レーザー光源31から出射
後にハーフミラー33で反射した光束Laは、参
照ミラー37で反射した後にハーフミラー33を
透過して、トロイダル面Stから反射してきた前述
の主光線と重ね合わされて干渉する。従つて、撮
像素子40の受光面に相当する位置には、第4図
に示すように2つの光束L1,L2に対して、ト
ロイダル面St上の2つの子線断面U,Vの形状を
表す干渉縞u,vが現れる。この状態において、
ステツピングモータ70を駆動してターンテーブ
ル20を回転すれば、トロイダル面St上の任意の
子線断面の形状が測定できる。良く知られている
ようにトワイマン型干渉計による干渉縞は、光の
波長の1/2を単位とする波面の等高線を表してい
るので、この干渉縞の等高線を数えることによつ
て波面の形状、即ちトロイダル面Stの子線断面の
形状が判ることになる。しかし、このままではタ
ーンテーブル20の回転に伴う振動、或いは外乱
による干渉縞の位相の不連続が生ずるために、以
下の手順を採ればよい。 Through the above procedure, the two light beams L1 and L2 incident on the toroidal surface St have their condensing directions directed toward the center of curvature p of the sagittal line of the toroidal surface St, and the principal rays of the two light beams L1 and L2 are each toroidal. It is directed toward the center of curvature q of the generatrix of the surface St. Therefore, the light beam reflected by the toroidal surface St is the second
In the plane of the figure, that is, in the plane including the generatrix of the toroidal surface St, only the principal ray travels in the opposite direction along the same optical path as the original, passes through the half mirror 33 and the imaging lens 36, and reaches the light-receiving surface of the image sensor 40. On the other hand, the third
In the plane of the figure, that is, the rotation axis l of the turntable 20
In the plane including the toroidal surface St, all the light beams reflected by the toroidal surface St travel in the opposite direction along the same optical path as before, are reflected by the half mirror 33, and reach the light receiving surface of the image sensor 40. A light beam La reflected by a half mirror 33 after being emitted from a laser light source 31 is reflected by a reference mirror 37, transmits through the half mirror 33, and is superimposed and interferes with the aforementioned principal ray reflected from the toroidal surface St. Therefore, as shown in FIG. 4, at a position corresponding to the light-receiving surface of the image sensor 40, the shapes of the two sagittal cross sections U and V on the toroidal surface St are represented for the two light beams L1 and L2. Interference fringes u and v appear. In this state,
By driving the stepping motor 70 and rotating the turntable 20, the shape of an arbitrary sagittal cross section on the toroidal surface St can be measured. As is well known, the interference fringes produced by a Twyman interferometer represent the contour lines of a wavefront in units of 1/2 of the wavelength of light, so by counting the contours of these interference fringes, the shape of the wavefront can be determined. , that is, the shape of the sagittal cross section of the toroidal surface St is known. However, if this continues as it is, discontinuity in the phase of the interference fringes will occur due to vibrations accompanying the rotation of the turntable 20 or disturbances, so the following procedure may be adopted.
第5図において、aに示す或る時点でトロイダ
ル面St上の2つの子線断面H,Iでの干渉縞h,
iの強度分布がメモリ回路50に記憶されたとす
る。次に、ターンテーブル20を回転して測定位
置を変えて再度測定をする。このとき、一方の測
定位置は前回測定した位置Iと同じ位置になるよ
うにターンテーブル20の回転角を制御し、I,
Jの2つの子線断面を測定し、第5図bに示すよ
うに干渉縞i′,jを得る。ここで干渉縞i,i′と
は同一個所Iを測定しているにも拘らず同一パタ
ーンを有する干渉縞ではなく、前述したターンテ
ーブル20の回転に伴う振動や、外乱による干渉
縞の位相ずれのために横ずれが生じているのが通
常である。ここで第6図は横軸を子線方向位置、
縦軸を高さ位置を表した各測定位置の断面形状で
あり、干渉縞iとi′とはΔ1のずれを生じているも
のとする。位置IとJは同時に1しているので、
干渉縞i,jのずれも同じ量であり、従つて干渉
縞iとi′との比較によつて得られたずれ量Δ1の分
だけ干渉縞jの断面形状を補正して新たな断面形
状干渉縞j0とすれば、この干渉縞j0は振動や外乱
の影響が除去されたものになる。再び、ターンテ
ーブル20を回転させて、同様にして位置Jと新
たな測定位置Kによる干渉縞j′とkとを第5図c
に示すように測定し、iとi′との場合と同様の比
較を実施し、そのずれ量Δ2を求めて補正を行え
ば、位置Kについても連続性を持つた形状k0が得
られる。これらの補正された干渉縞はメモリ回路
50に記憶され、必要に応じて表示装置、記録装
置に出力される。以上の操作を繰返すことによつ
て、トロイダル面St全面に渡つて各子線断面の形
状が第7図に示すように連続性をもつて継ぎ合わ
せられ、結果としてトロイダル面Stの二次元的な
形状を知ることができ、従来の干渉計で球面や平
面の干渉縞を二次元的に観察すると同様の観察が
可能となる。 In FIG. 5, at a certain point in time shown in a, the interference fringes h,
It is assumed that the intensity distribution of i is stored in the memory circuit 50. Next, the turntable 20 is rotated to change the measurement position and the measurement is performed again. At this time, the rotation angle of the turntable 20 is controlled so that one measurement position is the same as the previously measured position I, and
Two sagittal cross sections of J are measured to obtain interference fringes i' and j as shown in FIG. 5b. Here, the interference fringes i and i' are interference fringes that do not have the same pattern even though the same location I is measured, but are caused by vibrations due to the rotation of the turntable 20 mentioned above and a phase shift of the interference fringes due to disturbances. Normally, lateral slippage occurs because of this. Here, in Fig. 6, the horizontal axis is the position in the sagittal direction,
It is assumed that the vertical axis represents the cross-sectional shape of each measurement position and the height position, and that the interference fringes i and i' are shifted by Δ 1 . Since positions I and J are 1 at the same time,
The deviations of interference fringes i and j are the same amount, so the cross-sectional shape of interference fringe j is corrected by the deviation amount Δ 1 obtained by comparing interference fringes i and i′, and a new cross-section is created. If the shape interference fringe j 0 is used, this interference fringe j 0 is one in which the effects of vibration and disturbance have been removed. Rotate the turntable 20 again and similarly measure the interference fringes j' and k at the position J and the new measurement position K as shown in Fig. 5c.
By measuring as shown in , performing the same comparison as in the case of i and i′, and correcting by finding the amount of deviation Δ 2 , a shape k 0 with continuity can be obtained for the position K as well. . These corrected interference fringes are stored in the memory circuit 50 and output to a display device or a recording device as required. By repeating the above operations, the shapes of the cross sections of each sagittal wire are seamlessly joined over the entire toroidal surface St as shown in Figure 7, and as a result, the two-dimensional shape of the toroidal surface St is The shape can be known, and similar observations can be made by observing spherical or flat interference fringes two-dimensionally using a conventional interferometer.
なお、同一場所における2つの測定値から干渉
縞の位相ずれ又は断面形状の横ずれ量を求めるに
は、制御演算回路60において、例えば2つの測
定値をそれぞれフーリエ変換してその位相項を比
較する等の手段を採用すればよい。また、上述の
測定におけるトロイダル面Stの母線方向の測定間
隔は、第2図における2つの光束L1,L2の主
光線のなす角αで定まるので、測定間隔を更に密
にするには第2図における複プリズム34の角度
を小さくして、前記の角αを小さくすればよい。
更には、ターンテーブル20の回転角ピツチα/
n(nは整数)と小さくして、n回目の回転毎に
同一個所が重複して測定されるようにすれば、測
定間隔をn倍に密とすることができる。 In order to obtain the phase shift of the interference fringes or the amount of lateral shift of the cross-sectional shape from two measured values at the same location, the control calculation circuit 60 performs a Fourier transform on each of the two measured values and compares the phase terms. You can use the following methods. In addition, since the measurement interval in the generatrix direction of the toroidal surface St in the above measurement is determined by the angle α formed by the principal rays of the two light beams L1 and L2 in FIG. The angle α of the double prism 34 may be made small to make the angle α small.
Furthermore, the rotation angle pitch α/ of the turntable 20 is
If n is set to a small number (n is an integer) and the same location is repeatedly measured every nth rotation, the measurement interval can be made n times closer.
上述の実施例においては、干渉計30をトワイ
マン型とし、また2つの光束L1,L2を発生さ
せるために複プリズム34を使用したが、必ずし
もこれらに限定される必要はなく、例えば第8図
に示すようにフイゾー型の干渉計を使用すること
もできるし、複プリズム34を使用する代りに第
9図に示すように、2組の干渉計を組合わせる
等、種々の変形例が可能であることは言うまでも
ない。なお、これらの第8図、第9図において
は、第2図、第3図と同一の符号は同一の部材を
示している。 In the above embodiment, the interferometer 30 is of the Twyman type, and the double prism 34 is used to generate the two light beams L1 and L2, but it is not necessarily limited to these, and for example, as shown in FIG. A Fizeau type interferometer can be used as shown, and various modifications are possible, such as combining two sets of interferometers as shown in FIG. 9 instead of using the double prism 34. Needless to say. In addition, in these FIGS. 8 and 9, the same reference numerals as in FIGS. 2 and 3 indicate the same members.
本発明の応用はトロイダル面、シリンダ面等の
ように回転対称軸を唯一つしか有しない回転曲面
の測定にとどまらない。例えば平面ミラー、或い
は球レンズ等のように従来の光学系では開口数の
限界から原理的に前面同時測定が不可能な面に対
しても本発明の有効性が発揮される。また、実施
例においては、一回に2つの断面を測定するよう
にしたが、同時に3個所以上を測定してもよい。
更には、測定値同志の比較を1組の測定値同志で
はなく、複数組の測定値同志を比較してずれ量を
正確に求めるようにすことも考えられる。また、
実施例ではずれ量を求めるための測定値同志の比
較を、1回の測定が終了した都度行うようにした
が、測定値をそのまま全てメモリ回路50に記憶
し、測定が終了した後に逐次的に測定値を制御演
算回路60で補正して正しい断面形状を得るよう
にしてもよい。 Applications of the present invention are not limited to the measurement of curved surfaces of revolution that have only one axis of rotational symmetry, such as toroidal surfaces and cylindrical surfaces. For example, the effectiveness of the present invention is demonstrated even for surfaces such as plane mirrors or spherical lenses for which simultaneous front surface measurement is impossible in principle due to the numerical aperture limit of conventional optical systems. Further, in the embodiment, two cross sections are measured at one time, but three or more locations may be measured at the same time.
Furthermore, it is also conceivable to compare the measured values not with one set of measured values but with a plurality of sets of measured values to accurately determine the amount of deviation. Also,
In the embodiment, the comparison of measured values to determine the amount of deviation is performed every time one measurement is completed, but all measured values are stored as they are in the memory circuit 50, and the comparison is performed sequentially after the measurement is completed. The measured value may be corrected by the control calculation circuit 60 to obtain a correct cross-sectional shape.
また、試料Sがシリンダ面を有する形状である
場合の測定では、シリンダ面の回転対称軸の廻り
にシリンダ面を回転し得るようなターンテーブル
によつて、シリンダ面を回転させながら母線断面
の形状を前述の方法と同様に測定すればよい。或
いは、シリンダ面の母線と平行な方向にシリンダ
面を直線的に移動可能な載物台を使つてシリンダ
面を直線運動させながら、子線断面の形状を測定
することも可能である。 In addition, in the measurement when the sample S has a shape with a cylinder surface, the shape of the generatrix cross section is may be measured in the same manner as described above. Alternatively, it is also possible to measure the shape of the sagittal line cross section while linearly moving the cylinder surface using a stage that can linearly move the cylinder surface in a direction parallel to the generatrix of the cylinder surface.
以上説明したように本発明に係る面形状測定方
法は、各回ごとの測定値同志のずれ量を求め、こ
のずれ量を補正した干渉縞を継ぎ合わせるので正
確な断面形状が得られる。これは特に母線と子線
とから形成される曲面においては、従来は殆ど不
可能であつた測定が可能になるなど、その効果は
極めて大きい。 As explained above, the surface shape measuring method according to the present invention obtains the amount of deviation between the measured values each time, and stitches the interference fringes corrected for this amount of deviation, so that an accurate cross-sectional shape can be obtained. This has an extremely large effect, especially on curved surfaces formed by generatrix lines and sagittal lines, as it enables measurements that were almost impossible in the past.
第1図は不連続を補正しない方法により得られ
た干渉縞の集合から成る被測定面の正面図、第2
図以下は本発明に係る面形状測定方法の実施例を
示し、第2図はこの方法を実現するための装置の
平面構成図、第3図はその側面構成図、第4図は
測定される干渉縞の説明図、第5図a,b,c及
び第6図は測定値の不連続を補正する手順の説明
図、第7図は不連続を補正して得られた干渉縞の
集合から成る被測定面の正面図、第8図、第9図
は本発明による方法を実現するための他の実施例
の構成図である。
符号10はX−Yステージ、20はターンテー
ブル、30は干渉計、31はレーザー光源、32
はビームエクスパンダ、33はハーフミラー、3
4は複プリズム、35は対物レンズ、36は結像
レンズ、37は参照ミラー、40は撮像素子、5
0はメモリ回路、60は制御演算回路、70はス
テツピングモータ、Sは試料、Stはトロイダル面
である。
Figure 1 is a front view of the surface to be measured consisting of a set of interference fringes obtained by a method that does not correct for discontinuities;
The following figures show an embodiment of the surface shape measuring method according to the present invention, FIG. 2 is a plan configuration diagram of an apparatus for realizing this method, FIG. 3 is a side configuration diagram thereof, and FIG. 4 is a measurement method. Explanatory diagrams of interference fringes; Figures 5a, b, c, and 6 are explanatory diagrams of the procedure for correcting discontinuities in measured values; Figure 7 is an illustration of a set of interference fringes obtained by correcting discontinuities. 8 and 9 are configuration diagrams of other embodiments for implementing the method according to the present invention. 10 is an X-Y stage, 20 is a turntable, 30 is an interferometer, 31 is a laser light source, 32
is a beam expander, 33 is a half mirror, 3
4 is a double prism, 35 is an objective lens, 36 is an imaging lens, 37 is a reference mirror, 40 is an image sensor, 5
0 is a memory circuit, 60 is a control calculation circuit, 70 is a stepping motor, S is a sample, and St is a toroidal surface.
Claims (1)
タにより第1と第2の光束に分離し、第1の光束
を分割光学系によつて2分割して被測定面内の所
定の測定部位の2つの被測定位置にそれぞれ入射
させ、該被測定位置それぞれからの光束を参照用
の光路を経由した第2光束と重ね合わせて干渉計
を形成し、該干渉計によつて前記測定部位の形状
測定を行い、被測定面内で分割光束の被測定面上
間隔に対応した所定量だけ測定部位を被測定面内
方向に変位させながら該形状測定を繰り返し、各
部位の形状測定の際に同一被測定位置が異なる分
割光束によつて同様に照明される形で少なくとも
測定部位の一部被測定位置が異なる測定部位の一
部被測定位置と重複するようにし、該重複被測定
位置について得られた本来同一であるべき測定値
同志を比較して、これらの測定値間のずれ量を求
め、一方の測定部位の測定値を、該ずれ量を参照
して補正し、補正して得られた各測定部位の形状
を継ぎ合わせることにより、前記被測定面の全体
的な形状の情報を得ることを特徴とする面形状測
定方法。 2 前記被測定面が母線と子線とから形成される
曲面である場合に、干渉計から射出する光束の主
光線を母線の曲率中心線に合わせ、光束の焦点位
置を了線の曲率中心位置に合わせ、被測定面を母
線の曲率中心点を軸にして回転移動するようにし
て測定部位を変えるようにした特許請求の範囲第
1項記載の面形状測定方法。[Claims] 1. A beam splitter separates the measurement light from a laser light source into a first and a second beam, and a splitting optical system divides the first beam into two to produce a predetermined beam on a surface to be measured. The light beams from each of the measurement positions are superimposed on the second light beam that has passed through the reference optical path to form an interferometer, and the interferometer is used to Measure the shape of the measurement site, repeat the shape measurement while displacing the measurement site in the direction of the measurement surface by a predetermined amount corresponding to the interval of the split light beams on the measurement surface, and measure the shape of each site. In this case, at least a part of the measurement position of the measurement part overlaps with a part of the measurement part of the different measurement part in such a way that the same measurement position is illuminated in the same way by different divided light beams, and the overlapped measurement part is Compare the measured values obtained for the positions that should be the same, find the amount of deviation between these measured values, and correct the measured value of one measurement site by referring to the amount of deviation. A method for measuring a surface shape, characterized in that information on the overall shape of the surface to be measured is obtained by piecing together the shapes of the respective measurement sites obtained. 2. When the surface to be measured is a curved surface formed by a generatrix and a sagittal line, the principal ray of the light beam emitted from the interferometer is aligned with the center line of curvature of the generatrix, and the focal position of the light beam is set at the center of curvature of the line. 2. The surface shape measuring method according to claim 1, wherein the measurement site is changed by rotating the surface to be measured about the center of curvature of the generatrix.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5707882A JPS58173423A (en) | 1982-04-05 | 1982-04-05 | Measuring method of face shape |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5707882A JPS58173423A (en) | 1982-04-05 | 1982-04-05 | Measuring method of face shape |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58173423A JPS58173423A (en) | 1983-10-12 |
JPH0447242B2 true JPH0447242B2 (en) | 1992-08-03 |
Family
ID=13045430
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5707882A Granted JPS58173423A (en) | 1982-04-05 | 1982-04-05 | Measuring method of face shape |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58173423A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6097205A (en) * | 1983-11-01 | 1985-05-31 | Olympus Optical Co Ltd | Planar face measuring device |
US4750141A (en) * | 1985-11-26 | 1988-06-07 | Ade Corporation | Method and apparatus for separating fixture-induced error from measured object characteristics and for compensating the measured object characteristic with the error, and a bow/warp station implementing same |
CN105466354A (en) * | 2015-12-21 | 2016-04-06 | 中国科学院长春光学精密机械与物理研究所 | Optical element thermal stress assessment system in vacuum environment |
US20240191986A1 (en) * | 2021-04-20 | 2024-06-13 | Nikon Corporation | Systems and methods for measuring height properties of surfaces |
-
1982
- 1982-04-05 JP JP5707882A patent/JPS58173423A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS58173423A (en) | 1983-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4743117A (en) | Device for optically measuring aspheric surface | |
JP3162355B2 (en) | Surface shape measurement method and device | |
JPH0666537A (en) | System error measuring method and shape measuring device using it | |
CN114440789B (en) | Synchronous interferometry method and system for speed, distance and three-dimensional morphology of rotating body | |
CN105890543A (en) | Detection method and device for concave cylindrical surface and cylindrical surface diverging mirror | |
JPS61178635A (en) | Interference apparatus for measuring wave front aberration | |
JPH0447242B2 (en) | ||
CN109612405A (en) | Large-caliber convex axicon lens surface testing system and detection method | |
JP3146590B2 (en) | Shape measuring method and shape measuring system | |
JPS58173416A (en) | Measuring method of face shape | |
JPH02259510A (en) | Method and instrument for measuring surface shape or the like | |
JPH05223541A (en) | Shape measuring method and shape measuring system | |
JPH03156305A (en) | Aspherical-shape measuring apparatus | |
JPH08159724A (en) | Rotary surface measuring instrument | |
JP2753545B2 (en) | Shape measurement system | |
JP3146591B2 (en) | Reference surface shape measurement method and shape measurement system | |
JPH05141935A (en) | Measuring method and measuring device for small displacement quantity | |
JP3111589B2 (en) | Shape measuring method and shape measuring system | |
JP2535732B2 (en) | Optical instrument aberration measurement method using hologram element | |
JP3618995B2 (en) | Eccentricity measuring method and eccentricity measuring device | |
JPH06273129A (en) | Method and apparatus for measuring rotary surface | |
JPH1114498A (en) | Optical system, measuring method, and device | |
JPH05157530A (en) | Method and apparatus for measuring surface accuracy | |
JPH07218233A (en) | Method and apparatus for measuring surface to be detected | |
JPH05264238A (en) | Method and device for measuring surface of rotation |