JPH05264109A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH05264109A
JPH05264109A JP6086392A JP6086392A JPH05264109A JP H05264109 A JPH05264109 A JP H05264109A JP 6086392 A JP6086392 A JP 6086392A JP 6086392 A JP6086392 A JP 6086392A JP H05264109 A JPH05264109 A JP H05264109A
Authority
JP
Japan
Prior art keywords
compressor
opening
bypass passage
high pressure
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6086392A
Other languages
Japanese (ja)
Inventor
Moichi Kitano
茂一 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP6086392A priority Critical patent/JPH05264109A/en
Publication of JPH05264109A publication Critical patent/JPH05264109A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/153Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification with subsequent heating, i.e. with the air, given the required humidity in the central station, passing a heating element to achieve the required temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0403Refrigeration circuit bypassing means for the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/26Problems to be solved characterised by the startup of the refrigeration cycle

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To remove liquid refrigerant in a delivery side high pressure pipe at a start up. CONSTITUTION:A compressor 1, motor-driven expansion valve 2, evaporator 3, and accumulator 4 are disposed in an indoor unit C. A condenser 5 is provided in an outdoor unit D. The unit D is located at a point above the unit C. A first bypass line 16 is provided in a refrigeration line 8. A first solenoid valve SV1, reheating heat exchanger 17, and capillary tube 18 are provided from a beginning end of the line 16. An opening and closing control means 34 to open the valve SV1 for one minute at the start of the compressor 1 is provided in a microcomputer 31. When high pressure gas is delivered from the compressor 1, the liquid refrigerant in a high pressure pipe 11 on the delivery side of the compressor is discharged into a low pressure line 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、空気調和装置に係り、
とくに吐出管への液冷媒の滞留対策に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner,
In particular, it relates to measures for retaining liquid refrigerant in the discharge pipe.

【0002】[0002]

【従来の技術】従来、コンピュータ室等を1年を通じて
冷房する空気調和装置(年間冷房機)では、例えば、特
願平2−214201号に開示されているように、室内
ユニットに圧縮機と膨脹機構と蒸発器とが配設され、室
外ユニットに凝縮器が配設されている。
2. Description of the Related Art Conventionally, in an air conditioner (annual air conditioner) for cooling a computer room or the like throughout the year, for example, as disclosed in Japanese Patent Application No. 2-214201, a compressor and an expansion unit are installed in an indoor unit. A mechanism and an evaporator are provided, and a condenser is provided in the outdoor unit.

【0003】上記年間冷房機では、複数台を設置して、
そのうちの1台または数台をバックアップ機として長期
間停止しておき、バックアップ機を順次交替していくこ
とが行われている。
In the above-mentioned annual air conditioner, a plurality of units are installed,
One or several of them are used as backup machines for a long period of time, and the backup machines are sequentially replaced.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記年
間冷房機では、圧縮機が室外ユニット内の凝縮器より低
い位置に配設されている場合があり、凝縮器内の冷媒が
吐出管に逆流する。この場合、凝縮器から液冷媒が逆流
するほか、ガス冷媒が逆流して室内の低温空気によって
凝縮されて液冷媒になりやすく、液冷媒が吐出管に滞留
してしまう。このため、始動時には、吐出管に滞留する
液冷媒のために異常高圧が生じて高圧開閉器が作動して
しまい、始動直後に圧縮機が停止してしまうという事態
が発生していた。とくに、上記バックアップ機では長期
間停止するために吐出管に液冷媒が滞留しやすく、最初
の始動時において圧縮機が停止する現象が顕著であっ
た。
However, in the above-mentioned annual air conditioner, the compressor may be disposed at a position lower than the condenser in the outdoor unit, and the refrigerant in the condenser flows back to the discharge pipe. .. In this case, the liquid refrigerant flows back from the condenser, and the gas refrigerant flows backward and is easily condensed by the low temperature air in the room to become the liquid refrigerant, and the liquid refrigerant stays in the discharge pipe. Therefore, at the time of starting, abnormal high pressure is generated due to the liquid refrigerant staying in the discharge pipe, the high-voltage switch operates, and the compressor stops immediately after starting. In particular, in the above-mentioned backup machine, since the liquid refrigerant is likely to stay in the discharge pipe because it is stopped for a long period of time, the phenomenon in which the compressor is stopped at the time of the first start was remarkable.

【0005】本発明は、かかる点に鑑みてなされたもの
であって、始動時に吐出側の高圧管内の液冷媒を排除す
ることを目的としている。
The present invention has been made in view of the above points, and an object thereof is to eliminate the liquid refrigerant in the high pressure pipe on the discharge side at the time of starting.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に係る発明が講じた手段は、開閉制御手段
により、バイパス路の開閉手段を所定時間開作動させて
吐出管内の液冷媒を低圧ラインに逃がすものである。
In order to achieve the above object, the means of the invention according to claim 1 is such that the opening / closing means of the bypass passage is opened for a predetermined time by the opening / closing control means to cause the liquid in the discharge pipe to be opened. The refrigerant is released to the low pressure line.

【0007】具体的には、請求項1に係る発明が講じた
手段は、図1(実線のみ)に示すように、圧縮機(1)
と、凝縮器(5)と、膨脹機構(2)と、蒸発器(3)
とを順に冷媒の循環可能に接続してなる冷媒回路(8)
を備えた空気調和装置を前提としている。
Specifically, the means taken by the invention according to claim 1 is that the compressor (1) is as shown in FIG. 1 (solid line only).
, Condenser (5), expansion mechanism (2), and evaporator (3)
Refrigerant circuit (8) in which and are sequentially connected so that the refrigerant can circulate.
It is premised on an air conditioner equipped with.

【0008】さらに、上記圧縮機(1)の吐出ガスの高
圧ライン(10)と冷媒回路(8)の低圧ライン(1
2)とを接続するバイパス路(16)が設けられた構成
としている。
Further, the high pressure line (10) of the discharge gas of the compressor (1) and the low pressure line (1) of the refrigerant circuit (8).
A bypass path (16) for connecting with (2) is provided.

【0009】その上、該バイパス路(16)に介設され
て、該バイパス路(16)を開閉する開閉手段(SV1 )
が設けられた構成としている。
In addition, an opening / closing means (SV1) provided on the bypass passage (16) for opening and closing the bypass passage (16)
Is provided.

【0010】さらにその上、上記圧縮機(1)の始動時
に、上記開閉手段(SV1 )を所定時間開作動させる開閉
制御手段(34)が設けられた構成としている。
Further, there is provided an opening / closing control means (34) for opening the opening / closing means (SV1) for a predetermined time when the compressor (1) is started.

【0011】また、請求項2に係る発明が講じた手段
は、開閉制御手段を、吐出管温度が凝縮圧力相当飽和温
度より低い間のみ上記開閉手段を開作動させるものであ
る。
Further, the means taken by the invention according to claim 2 is to open and close the opening / closing means only while the discharge pipe temperature is lower than the saturation temperature corresponding to the condensation pressure.

【0012】具体的には、請求項2に係る発明が講じた
手段は、請求項1に係る発明の前提としての空気調和装
置に加えて、図2(実線のみ)に示すように、上記圧縮
機(1)の吐出ガスの高圧ライン(10)と冷媒回路
(8)の低圧ライン(12)とを接続するバイパス路
(16)が設けられた構成としている。
Specifically, the means taken by the invention according to claim 2 is, in addition to the air conditioner as the premise of the invention according to claim 1, the above-mentioned compression as shown in FIG. 2 (only the solid line). A bypass passage (16) connecting the high pressure line (10) of the discharge gas of the machine (1) and the low pressure line (12) of the refrigerant circuit (8) is provided.

【0013】さらに、該バイパス路(16)に介設され
て、該バイパス路(16)を開閉する開閉手段(SV1 )
が設けられた構成としている。
Further, an opening / closing means (SV1) provided in the bypass passage (16) for opening and closing the bypass passage (16)
Is provided.

【0014】その上、上記圧縮機(1)の吐出管温度
(Td)を検出する吐出管温度検出手段(Th)が設け
られた構成としている。
In addition, a discharge pipe temperature detecting means (Th) for detecting the discharge pipe temperature (Td) of the compressor (1) is provided.

【0015】しかも、上記凝縮器(5)の凝縮圧力相当
飽和温度(Tc)を検出する飽和温度検出手段(38)
が設けられた構成としている。
Moreover, the saturation temperature detecting means (38) for detecting the saturation temperature (Tc) corresponding to the condensation pressure of the condenser (5).
Is provided.

【0016】さらにその上、上記吐出管温度検出手段
(Th)の吐出管温度(Td)と飽和温度検出手段(3
8)の凝縮圧力相当飽和温度(Tc)との信号を受け、
上記圧縮機(1)の始動時に、上記吐出管温度(Td)
が凝縮圧力相当飽和温度(Tc)より低い間のみ上記開
閉手段(SV1 )を開作動させる開閉制御手段(34)が
設けられた構成としている。
Furthermore, the discharge pipe temperature (Td) of the discharge pipe temperature detecting means (Th) and the saturation temperature detecting means (3).
8) Received the signal of the saturation pressure equivalent saturation temperature (Tc) of
At the time of starting the compressor (1), the discharge pipe temperature (Td)
The opening / closing control means (34) for opening the opening / closing means (SV1) is provided only while the temperature is lower than the saturation pressure equivalent saturation temperature (Tc).

【0017】また、請求項3に係る発明が講じた手段
は、吐出管内の液冷媒の排除に、既設の室内空気再熱用
のバイパス路を利用するものである。
Further, the means taken by the invention according to claim 3 utilizes an existing bypass passage for reheating indoor air in order to remove the liquid refrigerant in the discharge pipe.

【0018】具体的には、請求項3に係る発明が講じた
手段は、請求項1または2に係る発明について、図1
(実線と破線のみ)および図2(実線と破線のみ)に示
すように、バイパス路(16)は、一端が吐出管(1
1)に、他端が膨脹機構(2)と蒸発器(3)との間の
低圧ライン(12)に配設され、該バイパス路(16)
に再熱用熱交換器(17)が介設された構成としてい
る。
Specifically, the means taken by the invention of claim 3 is the same as that of the invention of claim 1 or 2.
As shown in (solid line and broken line only) and FIG. 2 (solid line and broken line only), one end of the bypass passage (16) is the discharge pipe (1).
1), the other end is disposed in the low pressure line (12) between the expansion mechanism (2) and the evaporator (3), and the bypass passage (16)
The heat exchanger (17) for reheating is provided in the above.

【0019】また、請求項4に係る発明が講じた手段
は、室外ユニットが室内ユニットより上方に配置されて
いる場合に、吐出管から液冷媒を排除しようとするもの
である。
Further, the means taken by the invention according to claim 4 is to remove the liquid refrigerant from the discharge pipe when the outdoor unit is arranged above the indoor unit.

【0020】具体的には、請求項4に係る発明が講じた
手段は、請求項1,2または3に係る発明について、図
1および図2に示すように、室内ユニット(C)には、
圧縮機(1)と、膨脹機構(2)と、蒸発器(3)とが
収納されると共にバイパス路(16)と開閉手段(SV1
)とが収納された構成としている。
Specifically, the means taken by the invention according to claim 4 is that, as shown in FIGS. 1 and 2, the indoor unit (C) is the same as the invention according to claim 1, 2 or 3.
The compressor (1), the expansion mechanism (2), and the evaporator (3) are housed, and the bypass passage (16) and the opening / closing means (SV1).
) And are stored.

【0021】一方、室外ユニット(D)には、凝縮器
(5)が収納された構成としている。さらに、該室外ユ
ニット(D)が室内ユニット(C)より上方に配置され
た構成としている。
On the other hand, the outdoor unit (D) has a configuration in which the condenser (5) is housed. Further, the outdoor unit (D) is arranged above the indoor unit (C).

【0022】[0022]

【作用】上記の構成により、請求項1に係る発明では、
空気調和装置の停止中に吐出管(11)に凝縮器(5)
から液冷媒やガス冷媒が逆流し、液冷媒は液状態のまま
吐出管(11)内に滞留する一方、ガス冷媒も停止中に
凝縮して液冷媒となって滞留する。
With the above structure, in the invention according to claim 1,
The condenser (5) is attached to the discharge pipe (11) while the air conditioner is stopped.
Liquid refrigerant and gas refrigerant flow backward from the liquid refrigerant, and the liquid refrigerant stays in the discharge pipe (11) in a liquid state, while the gas refrigerant also condenses and stays as a liquid refrigerant while stopped.

【0023】一方、開閉制御手段(34)が圧縮機
(1)の始動時に、開閉手段(SV1 )を所定時間開作動
させることにより、圧縮機(1)からの高圧ガスの吐出
に伴って、高圧ライン(10)と低圧ライン(12)と
の高低差圧によって高圧ライン(10)内の液冷媒はバ
イパス路(16)を介して低圧ライン(12)に排出さ
れ、高圧ライン(10)内の高圧圧力は正常な状態に保
たれることになる。
On the other hand, when the opening / closing control means (34) opens the opening / closing means (SV1) for a predetermined time when the compressor (1) is started, the high pressure gas is discharged from the compressor (1). Due to the pressure difference between the high pressure line (10) and the low pressure line (12), the liquid refrigerant in the high pressure line (10) is discharged to the low pressure line (12) through the bypass passage (16), and the inside of the high pressure line (10). The high pressure of will be kept in a normal state.

【0024】また、請求項2に係る発明では、吐出管温
度検出手段(Th)が圧縮機(1)の吐出管温度を検出
する一方、飽和温度検出手段(38)が凝縮器(5)の
凝縮圧力相当飽和温度(Tc)を検出する。そして、吐
出管温度(Td)と凝縮圧力相当飽和温度(Tc)とを
開閉制御手段(34)が受け、圧縮機(1)の始動時
に、上記吐出管温度(Td)が凝縮圧力相当飽和温度
(Tc)より低い間のみ上記開閉手段(SV1 )を開作動
させて、バイパス路(16)を介して高圧ライン(1
0)内の液冷媒は低圧ライン(12)に流出する。した
がって、高圧ライン(10)に液冷媒が滞留している時
にだけバイパス路(16)に液冷媒を流通させることに
なり、液冷媒が滞留していない正常運転時において凝縮
器(5)に流通する冷媒量が減少せず、空調能力が確保
される。
Further, in the second aspect of the invention, the discharge pipe temperature detecting means (Th) detects the discharge pipe temperature of the compressor (1), while the saturation temperature detecting means (38) functions as the condenser (5). The saturation temperature (Tc) corresponding to the condensation pressure is detected. The opening / closing control means (34) receives the discharge pipe temperature (Td) and the condensation pressure equivalent saturation temperature (Tc), and when the compressor (1) is started, the discharge pipe temperature (Td) corresponds to the condensation pressure equivalent saturation temperature. The opening / closing means (SV1) is opened only while the temperature is lower than (Tc), and the high pressure line (1) is passed through the bypass line (16).
The liquid refrigerant in 0) flows out to the low pressure line (12). Therefore, the liquid refrigerant is circulated in the bypass passage (16) only when the liquid refrigerant is retained in the high-pressure line (10), and is circulated in the condenser (5) during normal operation in which the liquid refrigerant is not retained. The amount of refrigerant to be used does not decrease, and the air conditioning capacity is secured.

【0025】また、請求項3に係る発明では、バイパス
路(16)に再熱用熱交換器(17)が配設され、この
バイパス路(16)に高圧ライン(10)からホットガ
スを流通して、除湿等のために再熱用熱交換器(17)
で室内空気を加熱する。この既設の再熱用のバイパス路
(16)を利用することにより、始動時に高圧ライン
(10)内の液冷媒を膨脹機構(2)と蒸発器(3)と
の間の低圧ライン(12)に流出し、バイパス路(1
6)を新設することなく高圧ライン(10)内の液冷媒
の排除が可能となる。
Further, in the invention according to claim 3, a heat exchanger (17) for reheating is arranged in the bypass passage (16), and hot gas is circulated from the high pressure line (10) in the bypass passage (16). And heat exchanger for reheating for dehumidification (17)
To heat the room air. By utilizing this existing reheat bypass path (16), the liquid refrigerant in the high pressure line (10) is made to flow into the low pressure line (12) between the expansion mechanism (2) and the evaporator (3) at startup. To the bypass (1
The liquid refrigerant in the high-pressure line (10) can be removed without newly installing 6).

【0026】また、請求項4に係る発明では、室外ユニ
ット(D)が室内ユニット(C)より上方に配置され、
室内ユニット(C)に圧縮機(1)が配設されている場
合には、室外ユニット(D)内の凝縮器(5)から室内
ユニット(C)内の高圧ライン(10)に冷媒が逆流し
やすく、液冷媒が逆流して滞留し、またはガス冷媒が逆
流して低温の室内空気によって冷却されて液冷媒にな
り、高圧ライン(10)には液冷媒が滞留しやすい。一
方、請求項1,2または3に係る発明を適用することに
より、高圧ライン(10)内の液冷媒を低圧ライン(1
2)に排出され、始動直後の運転の持続が確保される。
In the invention according to claim 4, the outdoor unit (D) is arranged above the indoor unit (C),
When the compressor (1) is arranged in the indoor unit (C), the refrigerant flows backward from the condenser (5) in the outdoor unit (D) to the high pressure line (10) in the indoor unit (C). The liquid refrigerant flows back and stays, or the gas refrigerant flows back and is cooled by the low-temperature room air to become liquid refrigerant, and the liquid refrigerant tends to stay in the high-pressure line (10). On the other hand, by applying the invention according to claim 1, 2 or 3, the liquid refrigerant in the high pressure line (10) is transferred to the low pressure line (1).
It is discharged to 2), and the continuation of operation immediately after the start is secured.

【0027】[0027]

【発明の効果】以上のように、請求項1に係る発明によ
れば、圧縮機(1)の始動時に開閉制御手段(34)に
より、バイパス路(16)を開いて高圧ライン(10)
内の液冷媒を排除することができ、この始動時に、高圧
開閉器が作動するような異常高圧が高圧ライン(10)
に生じることがなくなり、円滑な始動が可能になる。と
くに、停止期間が長い場合、高圧ライン(10)内に溜
まっている多量の液冷媒を排除することができ、確実な
再始動を可能にすることができる。
As described above, according to the first aspect of the invention, the opening / closing control means (34) opens the bypass passage (16) to start the high pressure line (10) when the compressor (1) is started.
It is possible to remove the liquid refrigerant inside, and at the time of starting, an abnormally high pressure such that the high-voltage switch operates will cause a high-pressure line (10).
It is possible to smoothly start the engine. In particular, when the stop period is long, a large amount of liquid refrigerant accumulated in the high pressure line (10) can be removed, and reliable restart can be achieved.

【0028】また、請求項2に係る発明によれば、開閉
制御手段(34)が吐出管温度(Td)が凝縮圧力相当
飽和温度(Tc)より低い間のみ上記開閉手段(SV1 )
を開作動させるので、高圧ライン(10)内に液冷媒が
滞留している時にだけバイパス路(16)を開くことが
でき、液冷媒が滞留していない正常運転時において凝縮
器(5)に流通する冷媒量が減少せず、空調能力の低下
を防止することができる。
According to the second aspect of the invention, the opening / closing means (SV1) is used only while the opening / closing control means (34) has the discharge pipe temperature (Td) lower than the condensation pressure equivalent saturation temperature (Tc).
The bypass passage (16) can be opened only when the liquid refrigerant stays in the high-pressure line (10), and the condenser (5) is normally operated during normal operation when the liquid refrigerant does not stay. The amount of the circulating refrigerant does not decrease, and it is possible to prevent the air conditioning capacity from decreasing.

【0029】また、請求項3に係る発明によれば、既設
の再熱用のバイパス路(16)を利用して高圧ライン
(10)内から液冷媒を排除しており、バイパス路(1
6)を新設することなく高圧ライン(10)内の液冷媒
の排除することができ、冷媒配管の複雑化、コストアッ
プを生じることなく、始動直後の運転の持続を確保する
ことができる。
According to the third aspect of the invention, the liquid refrigerant is removed from the high-pressure line (10) by utilizing the existing reheating bypass passage (16), and the bypass passage (1
The liquid refrigerant in the high-pressure line (10) can be eliminated without newly installing 6), and the continuation of the operation immediately after the start can be ensured without complicating the refrigerant pipe and increasing the cost.

【0030】また、請求項4に係る発明によれば、室外
ユニット(D)が室内ユニット(C)より上方に配置さ
れ、室内ユニット(C)に圧縮機(1)が配設されて高
圧ライン(10)に液冷媒が滞留しやすい場合におい
て、高圧ライン(10)内の液冷媒を低圧ライン(1
2)に排出するので、この場合にも始動直後の運転の持
続を確保することができる。
Further, according to the invention of claim 4, the outdoor unit (D) is arranged above the indoor unit (C), and the compressor (1) is arranged in the indoor unit (C). When the liquid refrigerant is likely to stay in (10), the liquid refrigerant in the high pressure line (10) is replaced with the low pressure line (1).
Since it is discharged to 2), in this case as well, the continuation of the operation immediately after the start can be ensured.

【0031】[0031]

【実施例】以下、本発明の実施例を図面に基づき説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0032】図3は請求項1,3および4に係る発明の
第1実施例を示す。図中において、2台の空気調和装置
(A),(B)が配設され、各空気調和装置(A),
(B)はそれぞれ別個の冷媒配管系統を形成している。
FIG. 3 shows a first embodiment of the invention according to claims 1, 3 and 4. In the figure, two air conditioners (A) and (B) are provided, and each air conditioner (A),
(B) forms a separate refrigerant piping system.

【0033】各空気調和装置(A),(B)は、コンピ
ュータ室の冷房に使用する年間冷房機であって、概略、
室内ユニット(C)に圧縮機(1)と、膨脹機構として
の電動膨脹弁(2)と、蒸発器(3)と、アキュームレ
ータ(4)とが配設されている一方、室外ユニット
(D)に凝縮器(5)が配設されており、室外ユニット
(D)が室内ユニット(C)より上方に配置されてい
る。
Each of the air conditioners (A) and (B) is an annual air conditioner used for cooling a computer room.
The indoor unit (C) is provided with a compressor (1), an electric expansion valve (2) as an expansion mechanism, an evaporator (3), and an accumulator (4), while an outdoor unit (D). Is provided with a condenser (5), and the outdoor unit (D) is arranged above the indoor unit (C).

【0034】そして、圧縮機(1)と、凝縮器(5)
と、電動膨脹弁(2)と、蒸発器(3)と、アキューム
レータ(4)とが順に冷媒配管(7)で冷媒の循環可能
に接続されて冷媒回路(8)が形成されている。
The compressor (1) and the condenser (5)
The electric expansion valve (2), the evaporator (3), and the accumulator (4) are sequentially connected in the refrigerant pipe (7) so that the refrigerant can circulate to form a refrigerant circuit (8).

【0035】この冷媒回路(8)には、始端が高圧ライ
ン(10)のうちの圧縮機(1)の吐出側の高圧管(1
1)に、終端が電動膨脹弁(2)と蒸発器(3)との間
の低圧ライン(12)に配設された第1バイパス路(1
6)が設けられ、第1バイパス路(16)には始端側か
ら、第1バイパス路(16)を開閉する開閉手段として
の第1電磁弁(SV1 )と、圧縮機(1)からのホットガ
スにより室内空気を加熱する凝縮器として機能する再熱
用熱交換器(17)と、再熱用熱交換器(17)で凝縮
された液冷媒を減圧するキャピラリーチューブ(18)
とが介設されている。
In this refrigerant circuit (8), the starting end is a high pressure pipe (1) on the discharge side of the compressor (1) of the high pressure line (10).
1), a first bypass line (1) whose end is arranged in a low pressure line (12) between the electric expansion valve (2) and the evaporator (3).
6), the first bypass passage (16) is provided with a first solenoid valve (SV1) as opening and closing means for opening and closing the first bypass passage (16) from the starting end side, and a hot air from the compressor (1). A heat exchanger for reheating (17) that functions as a condenser for heating indoor air with gas, and a capillary tube (18) for depressurizing the liquid refrigerant condensed in the heat exchanger for reheating (17).
And are installed.

【0036】凝縮器(5)と蒸発器(3)とは、ファン
(21)を有する空気熱交換器あり、蒸発器(3)より
下流側の空気通路に再熱用熱交換器(17)が配置され
ている。
The condenser (5) and the evaporator (3) are air heat exchangers having a fan (21), and the reheat heat exchanger (17) is provided in the air passage downstream of the evaporator (3). Are arranged.

【0037】また、吐出側の高圧管(11)には、消音
器(22)と、吐出側の異常高圧を検知して圧縮機
(1)を停止させる高圧圧力開閉器(HPS)とが配設
されている。また、凝縮器(5)と電動膨脹弁(2)と
の間の高圧ライン(10)には、フィルタ(24)と、
第2電磁弁(SV2 )とが配設されている。
Further, a muffler (22) and a high pressure switch (HPS) for detecting the abnormal high pressure on the discharge side and stopping the compressor (1) are arranged in the high pressure pipe (11) on the discharge side. It is set up. The high pressure line (10) between the condenser (5) and the electric expansion valve (2) has a filter (24),
A second solenoid valve (SV2) is provided.

【0038】また、冷媒回路(8)には、上記電動膨脹
弁(2)をバイパスする第2バイパス路(28)が開設
されており、第2バイパス路(28)には該第2バイパ
ス路(28)を開閉する第3電磁弁(SV3 )が介設され
ている。
Further, the refrigerant circuit (8) is provided with a second bypass passage (28) for bypassing the electric expansion valve (2), and the second bypass passage (28) is provided with the second bypass passage (28). A third solenoid valve (SV3) for opening and closing (28) is interposed.

【0039】また、室内ユニット(C)内の冷媒配管
(7)の入口端と出口端と、室外ユニット(D)内の冷
媒配管(7)の入口端と出口端とには、それぞれ閉鎖弁
(29),(29),…が介設されている。
Further, a closing valve is provided at each of the inlet end and the outlet end of the refrigerant pipe (7) in the indoor unit (C) and the inlet end and the outlet end of the refrigerant pipe (7) in the outdoor unit (D). (29), (29), ... Are provided.

【0040】さらに、上記各機器を作動制御するマイク
ロコンピュータ(31)には、本発明の特徴としての開
閉制御手段(34)と、均圧制御手段(35)とが内蔵
されている。開閉制御手段(34)は、圧縮機(1)の
始動時に、第1電磁弁(SV1)を1分間、開作動させる
ように構成されている。
Further, the microcomputer (31) for controlling the operation of each of the above-mentioned devices has a built-in opening / closing control means (34) and pressure equalization control means (35) which are features of the present invention. The opening / closing control means (34) is configured to open the first electromagnetic valve (SV1) for one minute when the compressor (1) is started.

【0041】また、均圧制御手段(35)は、停止時に
全閉作動する電動膨脹弁(2)によって冷媒回路(8)
における冷媒の流通が遮断されるのに対応して、第3電
磁弁(SV3 )を3分間、開作動させ、第2バイパス路
(28)を介して電動膨脹弁(2)をバイパスし、上流
側の高圧ライン(10)と下流側の低圧ライン(12)
とを冷媒の流通可能な状態にするように構成されてい
る。
Further, the pressure equalizing control means (35) uses the electric expansion valve (2) which is fully closed when the refrigerant circuit is stopped.
The third solenoid valve (SV3) is opened for 3 minutes in response to the cutoff of the refrigerant flow in the above, and the electric expansion valve (2) is bypassed via the second bypass passage (28), Side high pressure line (10) and downstream low pressure line (12)
And so that the refrigerant can flow.

【0042】なお、図3において、空気調和装置(B)
のマイクロコンピュータ(31)の図示されていない
が、上記空気調和装置(A)と同様の制御が行われる。
In FIG. 3, the air conditioner (B)
Although not shown in the figure, the microcomputer (31) performs the same control as the air conditioner (A).

【0043】上記空気調和装置(A),(B)の作動に
ついて説明する。2台のうち1台だけを使用して、一方
の空気調和装置(A),(B)をバックアップ機として
常に待機させておき、1ケ月毎に空気調和装置(A),
(B)を交互に使用する。
The operation of the air conditioners (A) and (B) will be described. Only one of the two units is used, and one of the air conditioners (A) and (B) is always on standby as a backup machine, and the air conditioner (A),
Alternately use (B).

【0044】運転中の一方の空気調和装置(A),
(B)における通常冷房運転では、第1電磁弁(SV1 )
を閉作動して第1バイパス路(16)を遮断し、冷媒を
冷媒回路(8)を循環させ、凝縮器(5)で凝縮した冷
媒を電動膨脹弁(2)で減圧し、蒸発器(3)で蒸発し
て室内を冷房する。
One air conditioner (A) in operation,
In the normal cooling operation in (B), the first solenoid valve (SV1)
To shut off the first bypass passage (16), circulate the refrigerant through the refrigerant circuit (8), decompress the refrigerant condensed in the condenser (5) by the electric expansion valve (2), and It evaporates in 3) and cools the room.

【0045】除湿運転では、第1電磁弁(SV1 )を開作
動して第1バイパス路(16)にホットガスを流通さ
せ、蒸発器(3)で冷却、除湿された空調空気を再熱用
熱交換器(17)で昇温する。
In the dehumidifying operation, the first solenoid valve (SV1) is opened to pass the hot gas through the first bypass passage (16), and the conditioned air cooled and dehumidified by the evaporator (3) is reheated. The temperature is raised in the heat exchanger (17).

【0046】圧縮機(1)の停止時には、均圧制御手段
(35)が第3電磁弁(SV3 )を開作動して第2バイパ
ス路(28)に冷媒を流通させ、高圧ライン(10)と
低圧ライン(12)とを連通して冷媒回路(8)を均圧
させる。これにより、高低差圧を小さくすることがで
き、停止後の再始動時に高圧ライン(10)に異常高圧
が発生し、高圧圧力開閉器(HPS)が作動して圧縮機
(1)が停止する(高圧カット)といった事態を防止す
ることができる。また、この高圧カットを防止するため
に吐出側の高圧管(11)と、蒸発器(3)とアキュー
ムレータ(4)との間の低圧ライン(12)との間に均
圧管を設けると液バックが生じるが、第2バイパス路
(28)によってこの液バックを防止することもでき
る。
When the compressor (1) is stopped, the pressure equalizing control means (35) opens the third solenoid valve (SV3) to allow the refrigerant to flow through the second bypass passage (28), and the high pressure line (10). And the low pressure line (12) are communicated with each other to equalize the pressure in the refrigerant circuit (8). This makes it possible to reduce the high and low differential pressure, an abnormal high pressure is generated in the high pressure line (10) at the time of restarting after the stop, the high pressure switch (HPS) operates, and the compressor (1) stops. A situation such as (high-voltage cut) can be prevented. Further, in order to prevent this high pressure cut, if a pressure equalizing pipe is provided between the high pressure pipe (11) on the discharge side and the low pressure line (12) between the evaporator (3) and the accumulator (4), the liquid level is reduced. However, this liquid back can be prevented by the second bypass passage (28).

【0047】一方、圧縮機(1)を停止すると、上方に
位置する凝縮器(5)内の冷媒が下方に位置する圧縮機
(1)に向かって吐出側の高圧管(11)を逆流する。
この場合、凝縮器(5)から液冷媒が逆流して吐出側の
高圧管(11)に滞留するほか、ガス冷媒が逆流して室
内の低温空気によって凝縮されて液冷媒になり、吐出側
の高圧管(11)に滞留する。とくにバックアップ機で
は、1ケ月にわたる停止中に吐出側の高圧管(11)内
に液冷媒が滞留しやすい。
On the other hand, when the compressor (1) is stopped, the refrigerant in the condenser (5) located above flows backward through the high-pressure pipe (11) on the discharge side toward the compressor (1) located below. ..
In this case, the liquid refrigerant flows backward from the condenser (5) and stays in the high-pressure pipe (11) on the discharge side, and the gas refrigerant flows backward and is condensed by the low-temperature air in the room to become the liquid refrigerant. Remains in the high pressure pipe (11). In particular, in the backup machine, the liquid refrigerant tends to stay in the high pressure pipe (11) on the discharge side during the stoppage for one month.

【0048】そこで、使用中の空気調和装置(A),
(B)の一時停止後の再始動時や、とくにバックアップ
機の始動時に、開閉制御手段(34)が、第1電磁弁
(SV1 )を所定時間開作動させることにより、圧縮機
(1)からの高圧ガスの吐出に伴って、高圧ライン(1
0)と低圧ライン(12)との高低差圧によって吐出側
の高圧管(11)内の液冷媒は第1バイパス路(16)
を介して電動膨脹弁(2)と蒸発器(3)との間の低圧
ライン(12)に排出され、吐出側の高圧管(11)内
の高圧圧力は正常な状態に保たれることになる。
Therefore, the air conditioner (A) in use,
At the time of restarting after the suspension of (B), or particularly at the time of starting the backup machine, the opening / closing control means (34) opens the first solenoid valve (SV1) for a predetermined time so that the compressor (1) is removed. The high pressure gas (1
0) and the low-pressure line (12), the liquid refrigerant in the high-pressure pipe (11) on the discharge side is removed by the first bypass passage (16).
Is discharged to the low-pressure line (12) between the electric expansion valve (2) and the evaporator (3) through the high pressure pipe (11) on the discharge side and is kept in a normal state. Become.

【0049】本実施例によれば、開閉制御手段(34)
により、第1バイパス路(16)を開いて吐出側の高圧
管(11)内の液冷媒を排除することができ、停止後の
再始動時に、高圧圧力開閉器(HPS)が作動するよう
な異常高圧が吐出側の高圧管(11)に生じることがな
くなり、円滑な再始動が可能になる。とくに、停止期間
が長いバックアップ機では、吐出側の高圧管(11)内
に溜まっている多量の液冷媒を排除することができ、確
実な始動を可能にすることができる。
According to this embodiment, the opening / closing control means (34)
As a result, the first bypass passage (16) can be opened to remove the liquid refrigerant in the discharge-side high-pressure pipe (11), and the high-pressure pressure switch (HPS) is activated when restarting after the stop. An abnormally high pressure does not occur in the high pressure pipe (11) on the discharge side, and smooth restart is possible. In particular, in a backup machine with a long stop period, a large amount of liquid refrigerant accumulated in the discharge-side high-pressure pipe (11) can be removed, and reliable starting can be achieved.

【0050】また、既設の再熱用の第1バイパス路(1
6)を利用して吐出側の高圧管(11)内から液冷媒を
排除しており、第1バイパス路(16)を新設すること
なく吐出側の高圧管(11)内の液冷媒の排除すること
ができ、冷媒配管(7)の複雑化、コストアップを生じ
ることなく、始動直後の運転の持続を確保することがで
きる。
In addition, the existing first bypass path for reheating (1
6) is used to remove the liquid refrigerant from the high pressure pipe (11) on the discharge side, and the liquid refrigerant is removed from the high pressure pipe (11) on the discharge side without newly installing the first bypass passage (16). Therefore, it is possible to ensure the continuation of the operation immediately after the start-up without causing the refrigerant pipe (7) to be complicated and increasing the cost.

【0051】また、室外ユニット(D)が室内ユニット
(C)より上方に配置され、室内ユニット(C)に圧縮
機(1)が配設されて吐出側の高圧管(11)に液冷媒
が滞留しやすい場合においても、吐出側の高圧管(1
1)内の液冷媒を低圧ライン(12)に排出するので、
始動直後の運転の持続を確保することができる。
Further, the outdoor unit (D) is arranged above the indoor unit (C), the compressor (1) is arranged in the indoor unit (C), and the liquid refrigerant is supplied to the high pressure pipe (11) on the discharge side. Even when it easily stays, the high pressure pipe (1
Since the liquid refrigerant in 1) is discharged to the low pressure line (12),
It is possible to secure the continuation of the operation immediately after the start.

【0052】次に、図4は請求項2に係る発明の第2実
施例を示す。本実施例は、開閉制御手段(34)を、吐
出管温度(Td)が凝縮圧力相当飽和温度(Tc)より
低い間のみ第1電磁弁(SV1 )を開作動させるものであ
る。
Next, FIG. 4 shows a second embodiment of the invention according to claim 2. In this embodiment, the opening / closing control means (34) opens the first solenoid valve (SV1) only while the discharge pipe temperature (Td) is lower than the condensation pressure equivalent saturation temperature (Tc).

【0053】具体的には、吐出側の高圧管(11)に
は、吐出管温度(Td)を検出する吐出管温度検出手段
としての吐出管温度センサ(Th)と、吐出ガス圧力を
検出する高圧圧力センサ(HP)とが配設されている。
Specifically, in the high-pressure pipe (11) on the discharge side, a discharge pipe temperature sensor (Th) as a discharge pipe temperature detecting means for detecting the discharge pipe temperature (Td) and a discharge gas pressure are detected. A high pressure sensor (HP) is provided.

【0054】上記各センサ(Th),(HP)の出力信
号はマイクロコンピュータ(31)に入力される。マイ
クロコンピュータ(31)には、高圧圧力センサ(H
P)の吐出ガス圧力に基づいて凝縮器(5)の凝縮圧力
相当飽和温度(Tc)を算出する飽和温度算出手段(3
7)が内蔵されて、高圧圧力センサ(HP)と飽和温度
算出手段(37)とによって飽和温度検出手段(38)
が構成されている。
The output signals of the sensors (Th) and (HP) are input to the microcomputer (31). The microcomputer (31) includes a high pressure sensor (H
Saturation temperature calculation means (3) for calculating the saturation temperature (Tc) corresponding to the condensation pressure of the condenser (5) based on the discharge gas pressure of P).
7) is built in, and a saturation temperature detecting means (38) is provided by a high pressure sensor (HP) and a saturation temperature calculating means (37).
Is configured.

【0055】また、マイクロコンピュータ(31)には
開閉制御手段(34)が内蔵され、開閉制御手段(3
4)は、上記吐出管温度センサ(Th)の吐出管温度
(Td)と飽和温度検出手段(38)の凝縮圧力相当飽
和温度(Tc)との信号を受け、圧縮機(1)の始動時
に、吐出管温度(Td)が凝縮圧力相当飽和温度(T
c)より低い間のみ第1電磁弁(SV1 )を開作動させる
ように構成されている。つまり、開閉制御手段(34)
は、吐出管温度(Td)が凝縮圧力相当飽和温度(T
c)より低い時には、吐出側の高圧管(11)内のガス
冷媒が凝縮して液冷媒が滞留していると判別して第1電
磁弁(SV1 )を開作動させて第1バイパス路(16)を
開き、液冷媒を低圧ライン(12)に逃がし、吐出管温
度(Td)が凝縮圧力相当飽和温度(Tc)以上の時に
は吐出側の高圧管(11)内には液冷媒がないと判別し
て第1電磁弁(SV1 )を閉作動するように構成されてい
る。他の構成は、前実施例と同様である。
Further, the microcomputer (31) has a built-in open / close control means (34), and the open / close control means (3
4) receives the signals of the discharge pipe temperature (Td) of the discharge pipe temperature sensor (Th) and the condensation pressure equivalent saturation temperature (Tc) of the saturation temperature detecting means (38), and when the compressor (1) is started. , The discharge pipe temperature (Td) is equal to the condensing pressure saturation temperature (T
It is configured to open the first solenoid valve (SV1) only while it is lower than c). That is, the opening / closing control means (34)
Indicates that the discharge pipe temperature (Td) is equal to the condensation pressure saturation temperature (T
When it is lower than c), it is determined that the gas refrigerant in the discharge side high pressure pipe (11) is condensed and the liquid refrigerant is retained, and the first solenoid valve (SV1) is opened to operate the first bypass passage ( 16) is opened to let the liquid refrigerant escape to the low pressure line (12), and when the discharge pipe temperature (Td) is equal to or higher than the condensation pressure equivalent saturation temperature (Tc), there is no liquid refrigerant in the discharge side high pressure pipe (11). It is configured to discriminate and close the first solenoid valve (SV1). Other configurations are similar to those of the previous embodiment.

【0056】なお、図4において、空気調和装置(B)
のマイクロコンピュータ(31)は図示されていない
が、空気調和装置(A)と同様の制御が行われる。
In FIG. 4, the air conditioner (B)
Although not shown in the figure, the microcomputer (31) is controlled in the same manner as the air conditioner (A).

【0057】本実施例では、吐出管温度センサ(Th)
が圧縮機(1)の吐出管温度(Td)を検出する一方、
飽和温度検出手段(38)が凝縮器(5)の凝縮圧力相
当飽和温度(Tc)を検出する。そして、吐出管温度
(Td)と凝縮圧力相当飽和温度(Tc)とを開閉制御
手段(34)が受け、圧縮機(1)の始動時に、上記吐
出管温度(Td)が凝縮圧力相当飽和温度(Tc)より
低い間のみ第1電磁弁(SV1 )を開作動させて、第1バ
イパス路(16)を介して吐出側の高圧管(11)内の
液冷媒は低圧ライン(12)に流出する。したがって、
高圧ライン(10)に液冷媒が滞留している時にだけバ
イパス路(16)に液冷媒を流通させることになり、液
冷媒が滞留していない正常運転時において凝縮器(5)
に流通する冷媒量が減少せず、空調能力が確保される。
In this embodiment, the discharge pipe temperature sensor (Th) is used.
Detects the discharge pipe temperature (Td) of the compressor (1),
The saturation temperature detection means (38) detects the saturation temperature (Tc) corresponding to the condensation pressure of the condenser (5). The opening / closing control means (34) receives the discharge pipe temperature (Td) and the condensation pressure equivalent saturation temperature (Tc), and when the compressor (1) is started, the discharge pipe temperature (Td) corresponds to the condensation pressure equivalent saturation temperature. The first solenoid valve (SV1) is opened only while the temperature is lower than (Tc), and the liquid refrigerant in the discharge side high pressure pipe (11) flows out to the low pressure line (12) through the first bypass passage (16). To do. Therefore,
The liquid refrigerant is circulated in the bypass passage (16) only when the liquid refrigerant is retained in the high-pressure line (10), and the condenser (5) is in normal operation when the liquid refrigerant is not retained.
The amount of the refrigerant flowing through does not decrease, and the air conditioning capacity is secured.

【0058】以上により、本実施例によれば、開閉制御
手段(34)が吐出管温度(Td)が凝縮圧力相当飽和
温度(Tc)より低い間のみ第1電磁弁(SV1 )を開作
動させるので、吐出側の高圧管(11)内に液冷媒が滞
留している時にだけ第1バイパス路(16)を開くこと
ができ、正常運転時において凝縮器(5)に流通する冷
媒量が減少せず、空調能力の低下を防止することができ
る。
As described above, according to this embodiment, the opening / closing control means (34) opens the first solenoid valve (SV1) only while the discharge pipe temperature (Td) is lower than the condensation pressure equivalent saturation temperature (Tc). Therefore, the first bypass passage (16) can be opened only when the liquid refrigerant is retained in the high pressure pipe (11) on the discharge side, and the amount of refrigerant flowing through the condenser (5) during normal operation is reduced. Without doing so, it is possible to prevent the air conditioning capacity from decreasing.

【0059】なお、除湿運転を行う必要がなく、したが
って、再熱用熱交換器(17)とキャピラリチューブ
(18)とを備えた第1バイパス路(16)がない場合
には、第1電磁弁(SV1 )のみを備えた第1バイパス路
(16)を吐出側の高圧管(11)と低圧ライン(1
2)との間に接続してもよい。
If it is not necessary to perform the dehumidifying operation and therefore there is no first bypass passage (16) provided with the reheat heat exchanger (17) and the capillary tube (18), the first electromagnetic The first bypass passage (16) having only the valve (SV1) is connected to the high pressure pipe (11) on the discharge side and the low pressure line (1).
You may connect between 2).

【0060】また、第1バイパス路(16)の終端は、
蒸発器(3)とアキュームレータ(4)との間の低圧ラ
イン(12)に接続されていてもよい。
The terminal end of the first bypass path (16) is
It may be connected to a low pressure line (12) between the evaporator (3) and the accumulator (4).

【0061】また、均圧制御手段(35)における第3
電磁弁(SV3 )を開作動させる構成としては、上記実施
例以外のものであってもよい。例えば、高圧ライン(1
0)の高圧ガス圧力と低圧ライン(12)の低圧ガス圧
力との差圧が所定値(1kg/cm2 )を越えている間は第
3電磁弁(SV3 )を開作動させるものであっても、吐出
管温度(Td)が凝縮圧力相当飽和温度(Tc)以上の
間は第3電磁弁(SV3)を開作動させるものであっても
よい。
In addition, the third part of the pressure equalizing control means (35)
The structure for opening the solenoid valve (SV3) may be other than the above embodiment. For example, high pressure line (1
The third solenoid valve (SV3) is opened while the differential pressure between the high pressure gas pressure in (0) and the low pressure gas pressure in the low pressure line (12) exceeds a predetermined value (1 kg / cm 2 ). Alternatively, the third solenoid valve (SV3) may be opened while the discharge pipe temperature (Td) is equal to or higher than the condensation pressure equivalent saturation temperature (Tc).

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項1,3および4に係る発明の構成を示す
ブロック図である。
FIG. 1 is a block diagram showing a configuration of an invention according to claims 1, 3 and 4.

【図2】請求項2,3および4に係る発明の構成を示す
ブロック図である。
FIG. 2 is a block diagram showing a configuration of an invention according to claims 2, 3 and 4.

【図3】第1実施例の空気調和装置の構成を示す冷媒配
管系統図である。
FIG. 3 is a refrigerant piping system diagram showing the configuration of the air conditioner of the first embodiment.

【図4】第2実施例の空気調和装置の構成を示す冷媒配
管系統図である。
FIG. 4 is a refrigerant piping system diagram showing a configuration of an air conditioner of a second embodiment.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 電動膨脹弁(膨脹機構) 3 蒸発器 5 凝縮器 8 冷媒回路 10 高圧ライン 12 低圧ライン 16 第1バイパス路 17 再熱用熱交換器 34 開閉制御手段 38 飽和温度検出手段 C 室内ユニット D 室外ユニット Th 吐出管温度センサ(吐出管温度検出手段) DESCRIPTION OF SYMBOLS 1 Compressor 2 Electric expansion valve (expansion mechanism) 3 Evaporator 5 Condenser 8 Refrigerant circuit 10 High pressure line 12 Low pressure line 16 First bypass passage 17 Reheat heat exchanger 34 Opening / closing control means 38 Saturation temperature detecting means C Indoor unit D Outdoor unit Th Discharge pipe temperature sensor (Discharge pipe temperature detection means)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機(1)と、凝縮器(5)と、膨脹
機構(2)と、蒸発器(3)とを順に冷媒の循環可能に
接続してなる冷媒回路(8)を備えた空気調和装置にお
いて、 上記圧縮機(1)の吐出ガスの高圧ライン(10)と冷
媒回路(8)の低圧ライン(12)とを接続するバイパ
ス路(16)と、 該バイパス路(16)に介設されて、該バイパス路(1
6)を開閉する開閉手段(SV1 )と、 上記圧縮機(1)の始動時に、上記開閉手段(SV1 )を
所定時間開作動させる開閉制御手段(34)とを備えた
ことを特徴とする空気調和装置。
1. A refrigerant circuit (8) comprising a compressor (1), a condenser (5), an expansion mechanism (2), and an evaporator (3) which are connected in sequence so that refrigerant can circulate. In the air conditioner, a bypass passage (16) connecting the high pressure line (10) of the discharge gas of the compressor (1) and the low pressure line (12) of the refrigerant circuit (8), and the bypass passage (16). Is installed in the bypass passage (1
6) an air opening / closing means (SV1) for opening and closing, and an opening / closing control means (34) for opening the opening / closing means (SV1) for a predetermined time when the compressor (1) is started. Harmony device.
【請求項2】 圧縮機(1)と、凝縮器(5)と、膨脹
機構(2)と、蒸発器(3)とを順に冷媒の循環可能に
接続してなる冷媒回路(8)を備えた空気調和装置にお
いて、 上記圧縮機(1)の吐出ガスの高圧ライン(10)と冷
媒回路(8)の低圧ライン(12)とを接続するバイパ
ス路(16)と、 該バイパス路(16)に介設されて、該バイパス路(1
6)を開閉する開閉手段(SV1 )と、 上記圧縮機(1)の吐出管温度(Td)を検出する吐出
管温度検出手段(Th)と、 上記凝縮器(5)の凝縮圧力相当飽和温度(Tc)を検
出する飽和温度検出手段(38)と、 上記吐出管温度検出手段(Th)の吐出管温度(Td)
と飽和温度検出手段(38)の凝縮圧力相当飽和温度
(Tc)との信号を受け、上記圧縮機(1)の始動時
に、上記吐出管温度(Td)が凝縮圧力相当飽和温度
(Tc)より低い間のみ上記開閉手段(SV1 )を開作動
させる開閉制御手段(34)とを備えたことを特徴とす
る空気調和装置。
2. A refrigerant circuit (8) comprising a compressor (1), a condenser (5), an expansion mechanism (2), and an evaporator (3), which are connected in sequence so that refrigerant can circulate. In the air conditioner, a bypass passage (16) connecting the high pressure line (10) of the discharge gas of the compressor (1) and the low pressure line (12) of the refrigerant circuit (8), and the bypass passage (16). Is installed in the bypass passage (1
6) Opening / closing means (SV1) for opening / closing, discharge pipe temperature detecting means (Th) for detecting the discharge pipe temperature (Td) of the compressor (1), and saturation temperature equivalent to the condensation pressure of the condenser (5) Saturation temperature detecting means (38) for detecting (Tc), and discharge pipe temperature (Td) of the discharge pipe temperature detecting means (Th)
And a saturation temperature equivalent saturation temperature (Tc) of the saturation temperature detecting means (38), the discharge pipe temperature (Td) is lower than the condensation pressure equivalent saturation temperature (Tc) when the compressor (1) is started. An air conditioner comprising: an opening / closing control means (34) for opening the opening / closing means (SV1) only while the temperature is low.
【請求項3】 請求項1または2記載の空気調和装置に
おいて、バイパス路(16)は、一端が吐出管(11)
に、他端が膨脹機構(2)と蒸発器(3)との間の低圧
ライン(12)に配設され、該バイパス路(16)に再
熱用熱交換器(17)が介設されていることを特徴とす
る空気調和装置。
3. The air conditioner according to claim 1 or 2, wherein the bypass passage (16) has a discharge pipe (11) at one end.
The other end is disposed in the low pressure line (12) between the expansion mechanism (2) and the evaporator (3), and the reheat heat exchanger (17) is provided in the bypass passage (16). An air conditioner characterized by being.
【請求項4】 請求項1,2または3記載の空気調和装
置において、室内ユニット(C)には、圧縮機(1)
と、膨脹機構(2)と、蒸発器(3)とが収納されると
共にバイパス路(16)と開閉手段(SV1 )とが収納さ
れる一方、 室外ユニット(D)には、凝縮器(5)が収納され、 該室外ユニット(D)が室内ユニット(C)より上方に
配置されていることを特徴とする空気調和装置。
4. The air conditioner according to claim 1, 2 or 3, wherein the indoor unit (C) includes a compressor (1).
The expansion mechanism (2) and the evaporator (3) are accommodated, the bypass passage (16) and the opening / closing means (SV1) are accommodated, and the outdoor unit (D) includes a condenser (5). ) Is stored, and the outdoor unit (D) is disposed above the indoor unit (C).
JP6086392A 1992-03-18 1992-03-18 Air conditioner Withdrawn JPH05264109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6086392A JPH05264109A (en) 1992-03-18 1992-03-18 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6086392A JPH05264109A (en) 1992-03-18 1992-03-18 Air conditioner

Publications (1)

Publication Number Publication Date
JPH05264109A true JPH05264109A (en) 1993-10-12

Family

ID=13154655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6086392A Withdrawn JPH05264109A (en) 1992-03-18 1992-03-18 Air conditioner

Country Status (1)

Country Link
JP (1) JPH05264109A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110030397A1 (en) * 2008-06-13 2011-02-10 Taras Michael F Start-up procedure for refrigerant systems having microchemical consensor and reheat cycle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110030397A1 (en) * 2008-06-13 2011-02-10 Taras Michael F Start-up procedure for refrigerant systems having microchemical consensor and reheat cycle
EP2304340A1 (en) * 2008-06-13 2011-04-06 Carrier Corporation Start-up procedure for refrigerant systems having microchannel condenser and reheat cycle
EP2304340A4 (en) * 2008-06-13 2014-06-04 Carrier Corp Start-up procedure for refrigerant systems having microchannel condenser and reheat cycle

Similar Documents

Publication Publication Date Title
US7770411B2 (en) System and method for using hot gas reheat for humidity control
JP3341404B2 (en) Operation control device for air conditioner
JPH11173628A (en) Air conditioner
JPH05264109A (en) Air conditioner
JPH05264113A (en) Operation control device of air conditioner
JPH10132406A (en) Refrigerating system
JP2889762B2 (en) Air conditioner
JPH07243726A (en) Two-stage cooler
JP3237206B2 (en) Air conditioner
JP2006317024A (en) Refrigerating device
JP2765391B2 (en) Oil recovery operation control device for air conditioner
JPH0694954B2 (en) Refrigerator superheat control device
JP3455587B2 (en) Air conditioner
JP3980186B2 (en) Heat pump type automotive air conditioner
JPH03122460A (en) Operating controller for refrigerating machine
JP2839347B2 (en) Air conditioner
JPH02157568A (en) Refrigerant residence suppressing device for air conditioning device
JP3245947B2 (en) Air conditioner
JPH08128747A (en) Controller for air conditioner
JPH0772647B2 (en) Pressure equalizer for air conditioner
JPS63233255A (en) Air conditioner
JPH05256496A (en) Operation controller for air conditioner
JP2508381B2 (en) Operation control device for air conditioner
JPS583014Y2 (en) refrigeration cycle
JPH03158664A (en) Air conditioner

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518