JPS583014Y2 - refrigeration cycle - Google Patents

refrigeration cycle

Info

Publication number
JPS583014Y2
JPS583014Y2 JP12982577U JP12982577U JPS583014Y2 JP S583014 Y2 JPS583014 Y2 JP S583014Y2 JP 12982577 U JP12982577 U JP 12982577U JP 12982577 U JP12982577 U JP 12982577U JP S583014 Y2 JPS583014 Y2 JP S583014Y2
Authority
JP
Japan
Prior art keywords
refrigerant
throttle
pressure
heat exchanger
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12982577U
Other languages
Japanese (ja)
Other versions
JPS5454955U (en
Inventor
大野俊介
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to JP12982577U priority Critical patent/JPS583014Y2/en
Publication of JPS5454955U publication Critical patent/JPS5454955U/ja
Application granted granted Critical
Publication of JPS583014Y2 publication Critical patent/JPS583014Y2/en
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は着霜の初期に暖房運転を行いながら除霜する冷
凍サイクルに関する。
[Detailed Description of the Invention] The present invention relates to a refrigeration cycle that defrosts while performing heating operation in the initial stage of frost formation.

第1図は従来のヒートポンプニアコンディショナに於け
る暖房運転時の冷媒の流れを示し、第2図は除霜運転時
の冷媒の流れを示す。
FIG. 1 shows the flow of refrigerant during heating operation in a conventional heat pump near conditioner, and FIG. 2 shows the flow of refrigerant during defrosting operation.

即ち、暖房運転では第1図実線矢印のごとく、圧縮機1
から吐出した高圧高温冷媒ガスは、四方弁2を通って室
内側熱交換器3に入り、ここで室内側ファン4の強制通
風によって凝縮液となり、これが逆止弁5を通り絞り8
によって断熱膨張し、室外側熱交換器9に入りここで室
外側ファン10により蒸発し、低圧ガスとなって再び四
方弁2を通って、圧縮機1に吸入される。
In other words, during heating operation, as shown by the solid line arrow in Figure 1, the compressor 1
The high-pressure, high-temperature refrigerant gas discharged from the 4-way valve 2 enters the indoor heat exchanger 3, where it becomes a condensed liquid due to the forced ventilation of the indoor fan 4, which passes through the check valve 5 and enters the throttle 8.
The gas enters the outdoor heat exchanger 9, where it is evaporated by the outdoor fan 10, becomes a low-pressure gas, passes through the four-way valve 2 again, and is sucked into the compressor 1.

つ筐り、暖房運転時は絞り6、逆止弁Iには冷媒は流れ
ず、冷房時及び除霜時に流れる。
Refrigerant does not flow through the throttle 6 and check valve I during heating operation, but flows during cooling and defrosting.

外気温が低下して室外側熱交換器9に着霜が進行すると
、同室外側熱交換器9での汲み上げ熱量が誠少し、冷媒
圧力が下がり冷媒飽和温度も下がる。
When the outside temperature decreases and frost builds up on the outdoor heat exchanger 9, the amount of heat pumped up by the outdoor heat exchanger 9 decreases, the refrigerant pressure decreases, and the refrigerant saturation temperature also decreases.

室外側熱交換器9への入口配管には除霜検知器11の感
温部が接触させてあり、冷媒温度が設定温度以下になる
と、上記除霜検知器11が働らき、四方弁2が切換わり
、冷媒回路は冷房運転となり、第2図の破線矢印で示す
ように冷媒は流れる。
A temperature sensing part of a defrost detector 11 is brought into contact with the inlet pipe to the outdoor heat exchanger 9, and when the refrigerant temperature falls below the set temperature, the defrost detector 11 is activated and the four-way valve 2 is activated. As a result, the refrigerant circuit enters cooling operation, and the refrigerant flows as shown by the broken line arrow in FIG.

即ち、圧縮機1から吐出された高圧高温冷媒ガスは、切
換わった四方弁2を通過した後、室外側熱交換器9に入
り冷媒の有する熱で、除霜を行なう。
That is, after the high-pressure and high-temperature refrigerant gas discharged from the compressor 1 passes through the switched four-way valve 2, it enters the outdoor heat exchanger 9 and is defrosted using the heat possessed by the refrigerant.

この後、逆止弁7を通り絞り6で断熱膨張して室内側熱
交換器3に入り、ここでは通常コールドドラフト(冷気
が急に室内に吹出し室内者に不快感を与える)を防止す
る為、室内側ファン4は停止しており、冷媒は自然対流
分だけ熱交換し、四方弁2を通って圧縮機1に吸入され
る。
After that, it passes through the check valve 7 and is adiabatically expanded by the throttle 6 and enters the indoor heat exchanger 3, where it is normally used to prevent cold draft (cold air suddenly blown into the room and causing discomfort to the occupants). , the indoor fan 4 is stopped, the refrigerant exchanges heat by the amount of natural convection, and is sucked into the compressor 1 through the four-way valve 2.

室外側熱交換器9の霜がとけ、除霜検知器11の感温部
の温度が上がると、四方弁2が切換わり第1図の暖房運
転に復帰するが、上記従来のものには下記の欠点があっ
た。
When the frost on the outdoor heat exchanger 9 melts and the temperature of the temperature sensing part of the defrost detector 11 rises, the four-way valve 2 switches and returns to the heating operation shown in Figure 1. There was a drawback.

上記除霜運転の間、及び復帰後若干時間は、室内には暖
房運転が行なわれず、又着霜が進行し除霜運転に入る壕
での間、室外側熱交換器9での汲み上げ熱量は徐々に減
少しており、十分な暖房運転が行なわれないという欠点
があった。
During the above-mentioned defrosting operation and for some time after the return, heating operation is not performed indoors, and during the time in the trench where frosting progresses and defrosting operation begins, the amount of heat pumped up by the outdoor heat exchanger 9 is It has been gradually decreasing, and there was a drawback that sufficient heating operation was not carried out.

本考案は、オン−オフによる除霜運転ではなく、着霜の
初期に暖房運転を行ないながら除霜を行なうことにより
暖房運転時における低圧冷媒回路(暖房用絞り出口から
圧縮機人口1で)にむける冷媒の圧力又は温度を検出し
、これが所定値以下になったときに暖房用絞りによる絞
り量を減らし室外側熱交換器に熱量を与え、暖房運転を
しながら除霜する、若しくは着霜を未然に防止するよう
にしたもので、空気熱源式セパレート型ヒートポンプニ
アコンディショナに使用されるものである。
This invention does not perform defrosting operation by turning on and off, but by performing defrosting while performing heating operation at the early stage of frost formation, the low-pressure refrigerant circuit (from the heating throttle outlet to the compressor population 1) during heating operation is The system detects the pressure or temperature of the refrigerant that is being used, and when this falls below a predetermined value, reduces the amount of throttling by the heating diaphragm and provides heat to the outdoor heat exchanger to defrost or prevent frost formation while running the heating operation. It is designed to prevent this from happening and is used in air heat source type separate type heat pump near conditioners.

本考案を第3図(本考案による暖房運転冷媒回路の説明
図)、第4図(電気回路の説明図)に基いて説明する。
The present invention will be explained based on FIG. 3 (illustrative diagram of a heating operation refrigerant circuit according to the present invention) and FIG. 4 (illustrative diagram of an electric circuit).

暖房運転時、圧縮機1で圧縮吐出された高圧高温ガスは
四方弁2を通り、室内側熱交換器3で室内側ファン4に
よって冷却され凝縮液となり、逆止弁5を通って絞り8
で断熱膨張し低圧となり、室外側熱交換器9で室外側フ
ァン10によって熱を取入れ蒸発し、低圧ガスとなって
四方弁2を通り、圧縮機1に吸入される。
During heating operation, high-pressure, high-temperature gas compressed and discharged by the compressor 1 passes through the four-way valve 2, is cooled by the indoor fan 4 in the indoor heat exchanger 3, becomes condensed liquid, passes through the check valve 5, and enters the throttle 8.
It expands adiabatically and becomes low pressure, takes in heat by the outdoor fan 10 in the outdoor heat exchanger 9, evaporates, becomes a low pressure gas, passes through the four-way valve 2, and is sucked into the compressor 1.

そして、逆止弁7、絞り6は冷房運転時に流れる点は、
前記従来のもの(第1図)と同じである。
The point that the check valve 7 and throttle 6 flow during cooling operation is as follows.
This is the same as the conventional one (FIG. 1).

しかし、本考案による第3図の実施例では四方弁2を切
換わせる事なく、着霜を防止し、又は除去するものであ
る。
However, in the embodiment of the present invention shown in FIG. 3, frost formation is prevented or removed without switching the four-way valve 2.

このため、暖房用絞り8から圧縮機1人口に至る間の配
管に、冷媒の低圧圧力を検知するための圧力スイッチ1
2を組入れである。
For this reason, a pressure switch 1 is installed in the piping between the heating throttle 8 and the compressor 1 to detect the low pressure of the refrigerant.
2 is included.

該圧力スイッチ12は設定圧力(後記する)以下になる
と作動しリレー20及び電磁弁13を励磁するようにな
っている。
The pressure switch 12 is activated to excite the relay 20 and the solenoid valve 13 when the pressure falls below a set pressure (described later).

該電磁弁13/d絞り14とともに暖房用絞り部8と並
列に直列回路で設けられている。
The electromagnetic valve 13/d throttle 14 and the heating throttle section 8 are provided in parallel in a series circuit.

上記のように暖房運転時、暖房用絞り8がら圧縮機1人
口に至る間の冷媒圧力が設定圧力以下になり、圧力スイ
ッチ12が作動し第4図のリレー20が励磁すると、リ
レー接点21が切換わり、室内側ファン4は抵抗22を
介して電気が流れるようになり、このため上記ファン4
の回転数が低下(極低速回転)し、室内側熱交換器3の
凝縮圧力を上げる。
As mentioned above, during heating operation, when the refrigerant pressure between the heating throttle 8 and the compressor 1 reaches the set pressure or less, the pressure switch 12 is activated and the relay 20 shown in FIG. 4 is energized, the relay contact 21 is activated. As a result, electricity begins to flow through the indoor fan 4 through the resistor 22, so that the fan 4
The rotation speed of the indoor heat exchanger 3 decreases (extremely low speed rotation), and the condensing pressure of the indoor heat exchanger 3 increases.

同時に電磁弁13を励磁することにより開路し、これに
より逆止弁5を通った液冷媒は矢印MOのごとく同電磁
弁13及び絞り14を通る。
At the same time, the electromagnetic valve 13 is energized to open the circuit, so that the liquid refrigerant that has passed through the check valve 5 passes through the electromagnetic valve 13 and the throttle 14 as indicated by arrow MO.

つ1す、絞り8、絞り14の両者に分かれて流れ、冷媒
の流速が低下する為、全体の絞り量は減少し、室外側熱
交換器9に入る冷媒の低圧圧力が上がって、着霜を防止
、又は除去する。
Since the flow rate of the refrigerant decreases, the overall amount of throttling decreases, and the low pressure of the refrigerant entering the outdoor heat exchanger 9 increases, causing frost formation. prevent or eliminate

そして、やがて蒸発圧力が上がって、圧力スイッチ12
が復帰すると、通常の暖房運転に戻るようになっている
Then, the evaporation pressure eventually rises and the pressure switch 12
When the heating is restored, normal heating operation resumes.

なお、上記圧力スイッチ12の設定圧力の設定は、例え
ば4 kg /crit Gに設定すれば、飽和温度は
−0,2℃であり、着霜防止として働ら〈0又3.5k
g/dGに設定すれば、飽和温度は3゜4°Cとなり、
一部着霜したものを除霜する。
If the setting pressure of the pressure switch 12 is set to, for example, 4 kg/crit G, the saturation temperature will be -0.2°C, and it will work as a frost prevention.
If set to g/dG, the saturation temperature will be 3°4°C,
Defrost partially frosted items.

第3図の実施例では上記のごとく圧力スイッチ12を設
けた場合であるが、これに代り第1図の除霜検知器11
を使用し、それは圧力スイッチ12と同じく冷媒ガスの
低温度状態を検知する位置に設置する。
In the embodiment shown in FIG. 3, the pressure switch 12 is provided as described above, but instead of this, the defrost detector 11 shown in FIG.
It is installed at a position similar to the pressure switch 12 to detect the low temperature state of the refrigerant gas.

つ1す、圧力検出ではなく、温度検出によるようにする
もので、この場合は第4図の圧力スイッチ12を除霜検
知器11に置き換えただけで、作用効果は上記圧力スイ
ッチ12使用の場合と同様である。
First, temperature detection is used instead of pressure detection.In this case, the pressure switch 12 shown in Fig. 4 is simply replaced with the defrost detector 11, and the effect is the same as when the pressure switch 12 is used. It is similar to

要するに、本考案はヒートポンプ式ニアコンディショナ
にむいて、暖房用絞り8と並列に電磁弁13と絞り14
の直列回路を設け、暖房用絞り8の出口から圧縮機1の
入口に至る間の冷媒ガスの状態を検知して、これが設定
値(圧力、温度)以下において該電磁弁13を開とする
よう構成したことを特徴とする冷凍サイクルである。
In short, the present invention is suitable for a heat pump type near conditioner, in which a solenoid valve 13 and an aperture 14 are connected in parallel to a heating aperture 8.
A series circuit is provided to detect the state of the refrigerant gas between the outlet of the heating throttle 8 and the inlet of the compressor 1, and to open the solenoid valve 13 when the state of the refrigerant gas is below a set value (pressure, temperature). This is a refrigeration cycle characterized by the following configuration.

即ち、本考案にあっては暖房運転時に圧縮機1から吐出
された冷媒が室内側熱交換器3、暖房用絞り8、室外側
熱交換器9がこの順に経て上記圧縮機1に循環するよう
にしたニアコンディショナの冷凍サイクルにおいて、上
記暖房用絞り8の出口から上記圧縮機1の入口に至る間
の冷媒の圧力又は温度を検知する検知装置12と、この
検知装置12からの信号を受けて上記冷媒の圧力又は温
度が所定値以下になったとき開き、所定値以上になった
ときに閉じる電磁弁13と、上記暖房用絞り8に対し並
列に介装され上記電磁弁13と絞り14とからなる直列
冷媒回路を具備することを特徴とするものである。
That is, in the present invention, the refrigerant discharged from the compressor 1 during heating operation is circulated to the compressor 1 through the indoor heat exchanger 3, the heating throttle 8, and the outdoor heat exchanger 9 in this order. In the refrigeration cycle of the near conditioner, there is provided a detection device 12 for detecting the pressure or temperature of the refrigerant between the outlet of the heating throttle 8 and the inlet of the compressor 1, and a detection device 12 that receives a signal from the detection device 12. a solenoid valve 13 that opens when the pressure or temperature of the refrigerant falls below a predetermined value and closes when the pressure or temperature of the refrigerant reaches a predetermined value or more; It is characterized by comprising a series refrigerant circuit consisting of.

従って、 (I) 着霜の直行過程の初期で除霜するため、除霜
が容易である。
Therefore, (I) Defrosting is easy because defrosting is carried out at the early stage of the orthogonal process of frost formation.

(ロ)四方弁の切換えがないので、不快音がない。(b) There is no switching between four-way valves, so there is no unpleasant noise.

([III)室内側ファンの回転を低下させれば、コー
ルドドラフトがない。
([III) If the rotation of the indoor fan is reduced, there will be no cold draft.

(V)負荷に見合った運転が出来る。(V) Capable of operation commensurate with the load.

M 従来のもののように着霜の直行過程に見られる暖房
能力の低下程度が軽くてすむ。
M The degree of decrease in heating capacity that is seen in the direct process of frost formation, unlike conventional ones, is small.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は夫々従来のヒートポンプ式ニアコン
ディショナにおいて四方弁の切換わりによる暖房運転時
、及び冷房運転時の冷媒の流れを示す説明図、第3図は
本考案に係る冷凍サイクルの一実施例を示す系統図、第
4図は第3図中の電磁弁を開閉するための電気回路図の
説明図である。 1・・・・・・圧縮機、3・・・・・・室内側熱交換器
、8・・・・・・暖房用絞り、9・・・・・・室外側熱
交換器、12・・・・・・検知装置、13・・・・・・
電磁弁、14・・・・・・絞り。
Figures 1 and 2 are explanatory diagrams showing the flow of refrigerant during heating operation and cooling operation by switching the four-way valve in a conventional heat pump type near conditioner, respectively, and Figure 3 is a refrigeration cycle according to the present invention. FIG. 4 is a system diagram showing one embodiment of the present invention, and FIG. 4 is an explanatory diagram of an electric circuit diagram for opening and closing the electromagnetic valve in FIG. 1... Compressor, 3... Indoor heat exchanger, 8... Heating throttle, 9... Outdoor heat exchanger, 12... ...Detection device, 13...
Solenoid valve, 14... Throttle.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 暖房運転時に圧縮機から吐出された冷媒が室内側熱交換
器、暖房用絞り、室外側熱交換器をこの順に経て上記圧
縮機に循環するようにしたニアコンディショナの冷凍サ
イクルにおいて、上記暖房用絞り出口から上記圧縮機入
口に至る間の冷媒の圧力又は温度を検知する検知装置と
、この検知装置からの信号を受けて上記冷媒の圧力又は
温度が所定値以下になったとき開き、所定値以上になっ
たときに閉じる電磁弁と、上記暖房用絞りに対し並列に
介装され上記電磁弁と絞りとからなる直列冷媒回路を具
備することを特徴とする冷凍サイクル。
In the refrigeration cycle of a near conditioner in which the refrigerant discharged from the compressor during heating operation is circulated to the compressor after passing through an indoor heat exchanger, a heating aperture, and an outdoor heat exchanger in this order, a detection device that detects the pressure or temperature of the refrigerant between the throttle outlet and the compressor inlet; A refrigeration cycle characterized in that it is equipped with a solenoid valve that closes when the above condition occurs, and a series refrigerant circuit that is interposed in parallel with the heating throttle and includes the solenoid valve and the throttle.
JP12982577U 1977-09-26 1977-09-26 refrigeration cycle Expired JPS583014Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12982577U JPS583014Y2 (en) 1977-09-26 1977-09-26 refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12982577U JPS583014Y2 (en) 1977-09-26 1977-09-26 refrigeration cycle

Publications (2)

Publication Number Publication Date
JPS5454955U JPS5454955U (en) 1979-04-16
JPS583014Y2 true JPS583014Y2 (en) 1983-01-19

Family

ID=29094855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12982577U Expired JPS583014Y2 (en) 1977-09-26 1977-09-26 refrigeration cycle

Country Status (1)

Country Link
JP (1) JPS583014Y2 (en)

Also Published As

Publication number Publication date
JPS5454955U (en) 1979-04-16

Similar Documents

Publication Publication Date Title
JP2508860B2 (en) Operation control device for air conditioner
JPH0527018B2 (en)
KR20010001012A (en) Defrosting method for air conditioner
JPH0730979B2 (en) Air conditioner
JPS583014Y2 (en) refrigeration cycle
CN111174373B (en) Air conditioning system and control method thereof
JP2002098451A (en) Heat pump type air conditioner
JPH0694954B2 (en) Refrigerator superheat control device
KR20000073050A (en) Low pressure side obstruction deciding method for air conditioner
JP2002081778A (en) Refrigerating apparatus
JPH0623880Y2 (en) Heat pump device
JP2959185B2 (en) Dehumidifying dryer
JPH04327770A (en) Defrosting device in multi-chamber type air conditioner
JPS5825233Y2 (en) air conditioner
JPH0327265Y2 (en)
JPH04363536A (en) Operation control method for air-conditioner
JPH0317177Y2 (en)
JPH01127870A (en) Air conditioner
JPH07151426A (en) Air conditioner
JP2626158B2 (en) Operation control device for air conditioner
JP3754205B2 (en) Control valve operating method for air conditioner and air conditioner
JPH05322291A (en) Control device for air conditioner
JPH1038389A (en) Freezer
JPH01123965A (en) Air conditioner
JPS62217038A (en) Air conditioner