JPS62217038A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPS62217038A
JPS62217038A JP61059105A JP5910586A JPS62217038A JP S62217038 A JPS62217038 A JP S62217038A JP 61059105 A JP61059105 A JP 61059105A JP 5910586 A JP5910586 A JP 5910586A JP S62217038 A JPS62217038 A JP S62217038A
Authority
JP
Japan
Prior art keywords
compressor
blower
timer
time
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61059105A
Other languages
Japanese (ja)
Inventor
Kenichi Munakata
宗像 健一
Hozumi Handa
半田 穂積
Shinichi Iizuka
慎一 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61059105A priority Critical patent/JPS62217038A/en
Publication of JPS62217038A publication Critical patent/JPS62217038A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to perform a dehumidifying operation without any fault under low-temperature environments with a high efficiency and to practice dehu midification while suppressing the lowering of the room temperature by preventing a vaporizer at the time of operating the air conditioner in a dehumidifying mode utilizing a freezing cycle. CONSTITUTION:A bypass circuit 6 which bypasses a condenser 2 and a pressure reduc ing turn-down mechanism 3 to connect an outer side pipeline 1a of a compressor 1 to an inlet side pipeline 4a of a vaporizer 4 is provided in a coolant circuit. A switching valve 7 keeping its closed state during the space cooling mode operation, is disposed in the bypass circuit 6. Further, the air conditioning control system comprises timing means 18 for setting the period of a dehumidifying mode during the dehumidifying mode operation; timing means 19 for ON/OFF controlling the com pressor 1 in every period of the dehumidifying mode; timing means 20 for starting the operation of a blower 5 with a preset time lag after starting the operation of the compressor; timing means 21 for stopping the operation of the blower before the stoppage of the operation of the compressor; and timing means 22 for controlling to open the switching valve 7 of the circuit 6 in a period from the time of stopping the operation of the blower to the time of starting the resumptive operation at the time of the dehumidifying mode operation of the compressor.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、空気調和機に係り、特に冷凍サイクルのオン
−オフ制御を利用して除湿モード運転を行う除湿機能付
き空気調和機に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an air conditioner, and more particularly to an air conditioner with a dehumidification function that operates in a dehumidification mode using on-off control of a refrigeration cycle. be.

〔従来の技術〕[Conventional technology]

従来の空気調和機には、例えば特開昭57−37644
号公報に示すように、空気調和機の冷凍サイクルに用い
る圧縮機と室内側送風機のオン−オフ制御を断続的に行
うことにより、室内の温度低下を抑制しつつ除湿を行う
ものがある。この種の空気調和機は、除湿モード時に圧
縮機を断続的に駆動させて蒸発器を作動させ、蒸発器を
通過して除湿冷却された空気を送風機により室内側に戻
して除湿を行うものであり、再熱器等の専用の除湿器を
使用することなく既存の冷房用の冷凍サイクルを利用し
て除湿を行い得るので、空気調和機の製作コストを低減
化することができる利点を有する。
Conventional air conditioners include, for example, Japanese Patent Application Laid-open No. 57-37644.
As shown in the above publication, there is an air conditioner that performs dehumidification while suppressing a decrease in indoor temperature by intermittently performing on-off control of a compressor used in the refrigeration cycle of an air conditioner and an indoor blower. This type of air conditioner dehumidifies air by intermittently driving the compressor to activate the evaporator during dehumidification mode, and then returning the dehumidified and cooled air that has passed through the evaporator to the room using a blower. This has the advantage that the manufacturing cost of the air conditioner can be reduced because dehumidification can be performed using the existing cooling refrigeration cycle without using a dedicated dehumidifier such as a reheater.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、この種の除湿方式は、蒸発器を通過する
空気の湿気を蒸発器表面に付着させて除湿を行うために
次のような改善すべき点があった。
However, this type of dehumidification method has the following points that need to be improved since the moisture in the air passing through the evaporator is attached to the surface of the evaporator to perform dehumidification.

すなわち、通常、冷凍サイクル時の蒸発器の表面温度は
、室温より約15℃程度低いので、室温が15℃程度或
いはそれ以下の低温環境の下で除湿モード運転を行うと
、蒸発器の表面温度が0℃以下に低下し、その結果、蒸
発器の表面に霜が経時的に増殖して除湿機能が低下し、
また、この状態で送風運転に切換わると蒸発器を通過す
る空気が霜の湿気を含んで室内に戻されてしまい、低温
環境下では除湿効果を充分に発揮し得ながった。
In other words, the surface temperature of the evaporator during the refrigeration cycle is usually about 15°C lower than room temperature, so if the dehumidification mode is operated in a low-temperature environment where the room temperature is about 15°C or lower, the surface temperature of the evaporator will drop. As a result, frost grows on the surface of the evaporator over time, reducing the dehumidifying function.
Furthermore, when switching to blowing operation in this state, the air passing through the evaporator is returned indoors containing frost moisture, making it impossible to achieve a sufficient dehumidifying effect in a low-temperature environment.

本発明は、以上の点に鑑みてなされたものであり、その
目的とするところは、既存の冷房用冷凍サイクルのオン
−オフ制御を利用しつつ、低温環境の下でも支障なく効
率の良い除湿運転を行うことができ、しかも室温の低下
を抑制しながら除湿を行い得る空気調和機を提供するこ
とにある。
The present invention has been made in view of the above points, and its purpose is to provide efficient dehumidification without any trouble even in low-temperature environments while utilizing the on-off control of the existing cooling refrigeration cycle. It is an object of the present invention to provide an air conditioner that can be operated and can perform dehumidification while suppressing a decrease in room temperature.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記目的を達成するために、冷凍サイクル系
、送風機、空調制御系からなる空気調和機の冷媒回路に
、凝縮器及び減圧絞り機構をバイパスして圧縮機の出口
側配管と蒸発器の入口側配管とを接続する冷媒バイパス
回路を配設すると共に、この冷媒バイパス回路には冷房
モード時に閉弁状層を保つ開閉弁を設け、更に、前記空
調制御系には、除湿モード時にこの除湿モードの周期を
設定する第1の時限手段と、前記除湿モードの周期毎に
前記圧縮機をオン−オフ制御して運転制御する第2の時
限手段と、前記圧縮機の運転開始後にこの圧縮機よりも
遅延させて前記送風機を運転開始させる第3の時限手段
と、前記圧縮機の運転停止前に前記送風機を運転停止さ
せる第4の時限手段と、前記送風機の運転停止時より前
記圧縮機の除湿モード時の再運転開始時までの間に前記
冷媒バイパス回路の開閉弁を開弁制御する第5の時限手
段とを設けたものである。
In order to achieve the above object, the present invention bypasses the condenser and the vacuum throttling mechanism in the refrigerant circuit of an air conditioner consisting of a refrigeration cycle system, a blower, and an air conditioning control system, and connects the outlet side piping of the compressor and the evaporator. A refrigerant bypass circuit is provided to connect the refrigerant bypass circuit to the inlet side pipe of the refrigerant bypass circuit, and the refrigerant bypass circuit is provided with an on-off valve that maintains a closed valve-like layer during the cooling mode. a first timer for setting a cycle of the dehumidification mode; a second timer for controlling the operation of the compressor by on/off control for each cycle of the dehumidification mode; a third timer for starting the blower at a later time than the compressor; a fourth timer for stopping the blower before stopping the compressor; and fifth time limit means for controlling the opening/closing valve of the refrigerant bypass circuit until the re-start of operation in the dehumidification mode.

〔作用〕[Effect]

このような構成よりなる本発明によれば、冷房モード時
には、冷媒バイパス回路の開閉弁は閉弁状態にあるから
、冷媒はバイパス回路を流れず、圧縮機、凝縮器、蒸発
器、減圧絞り機構の経路(冷媒回路)を流れて冷房運転
を行い得る。
According to the present invention having such a configuration, in the cooling mode, the on-off valve of the refrigerant bypass circuit is closed, so the refrigerant does not flow through the bypass circuit, and the compressor, condenser, evaporator, and pressure reducing throttle mechanism It is possible to perform cooling operation by flowing through the path (refrigerant circuit).

また、除湿モード時には、空調制御系の第1の時限手段
により除湿モードの周期が設定され、第2の時限手段が
前記周期毎に圧縮機を断続運転させ、第3及び第4の時
限手段が送風機を前記圧縮機の運転時間内で駆動させる
ので、この圧縮機。
Further, in the dehumidification mode, the first timer of the air conditioning control system sets the period of the dehumidification mode, the second timer causes the compressor to operate intermittently at each cycle, and the third and fourth timer This compressor because the blower is driven within the operating time of the compressor.

送風機の断続運転により、冷房モード同様の経路を経て
蒸発器を通過する空気を除湿モード周期毎に冷却除湿し
て室内に戻し、室内温度の低下を抑制しながら除湿を行
うことができる。
By intermittent operation of the blower, the air that passes through the evaporator through the same route in the cooling mode is cooled and dehumidified in each dehumidification mode cycle, and then returned indoors, making it possible to perform dehumidification while suppressing a drop in indoor temperature.

更に、除湿モード時に、送風機が周期的にオフ制御され
ると、第5の時限手段が送風機の運転停止時より前記圧
縮機の再運転開始時までの間に前記冷媒バイパス回路の
開閉弁を弁開制御するので。
Furthermore, when the blower is periodically turned off in the dehumidification mode, the fifth timer operates the on-off valve of the refrigerant bypass circuit between when the blower stops operating and when the compressor starts operating again. Because it controls opening.

この冷媒バイパス回路を通して圧縮機が運転を停止する
までは圧縮機側から高圧高温冷媒が流入して蒸発器に流
れ込む。更に、圧縮機が運転停止後にも、除湿モード時
には圧縮機が再運転を開始するまでは、冷媒バイパス回
路が開弁状態にあるので、凝縮器内の高温冷媒が冷媒バ
イパス回路を通って蒸発器に流れ込む。従って、これら
の高温冷媒が除湿モード時に周期的に蒸発器に流入して
、蒸発器に付着した霜を除去することができ、霜のない
状態で冷却除湿を行い得る。また、圧縮機。
Until the compressor stops operating, high-pressure, high-temperature refrigerant flows from the compressor side through this refrigerant bypass circuit and flows into the evaporator. Furthermore, even after the compressor stops operating, the refrigerant bypass circuit remains open until the compressor starts operating again in dehumidification mode, so the high temperature refrigerant in the condenser passes through the refrigerant bypass circuit to the evaporator. flows into. Therefore, these high-temperature refrigerants periodically flow into the evaporator during the dehumidification mode, and can remove frost adhering to the evaporator, making it possible to perform cooling and dehumidification in a frost-free state. Also a compressor.

送風機を断続運転することに加えて蒸発器内に周期的に
高温冷媒を流入させるので低温環境下で除湿運転を行っ
ても室温低下を抑制することができる。
In addition to intermittent operation of the blower, high-temperature refrigerant is periodically flowed into the evaporator, so even if dehumidifying operation is performed in a low-temperature environment, a drop in room temperature can be suppressed.

〔実施例〕〔Example〕

本発明の一実施例を第1図ないし第5図に基づき説明す
る。
An embodiment of the present invention will be explained based on FIGS. 1 to 5.

第1図は、本発明の一実施例たる空気調和機の冷凍サイ
クル系統図である。図中、1は冷媒圧縮機、2は凝縮器
、3は減圧絞り機構、4は蒸発器であり、冷房モード時
には、圧縮機1.凝縮器2、減圧絞り機構3、蒸発器4
の経路を一循して冷媒が流れる。5は蒸発器4を通過す
る空気を室内側に送る室内側の送風機である。
FIG. 1 is a refrigeration cycle system diagram of an air conditioner according to an embodiment of the present invention. In the figure, 1 is a refrigerant compressor, 2 is a condenser, 3 is a decompression throttling mechanism, and 4 is an evaporator. In the cooling mode, compressor 1. Condenser 2, pressure reduction throttle mechanism 3, evaporator 4
The refrigerant flows through the path. Reference numeral 5 denotes an indoor fan that sends air passing through the evaporator 4 to the indoor side.

6は、凝縮器2及び減圧絞り機構3をバイパスして圧縮
機1の出口側配管工aと蒸発器4の入口側配管4aとを
接続する冷媒バイパス回路であり。
Reference numeral 6 denotes a refrigerant bypass circuit that bypasses the condenser 2 and the pressure reducing throttle mechanism 3 and connects the outlet side plumber a of the compressor 1 and the inlet side pipe 4a of the evaporator 4.

冷媒バイパス回路6には開閉弁7が設置されている。開
閉弁7は後述する空調制御系により冷房運転モード時に
は閉状態に保持され、又除湿モード時には所定のパター
ンに基づき断続的に開閉制御される。
An on-off valve 7 is installed in the refrigerant bypass circuit 6. The on-off valve 7 is kept closed during the cooling operation mode by an air conditioning control system, which will be described later, and is controlled to open and close intermittently based on a predetermined pattern during the dehumidification mode.

第3図(a)、(b)は上記空気調和機の制御系を示す
もので、同図(a)において、8は室温センサ、9は室
温センサ8の検出値をアナログ−デジタル信号に変換す
るA/D変換器、10は設定温度入力スイッチ、11は
主操作スイッチ、12は冷房運転、除湿運転等の空調制
御を行う空調制御手段、13は空調制御手段12の制御
信号に基づき、圧縮機1のモータ駆動用のリレーコイル
14a、送風機5のモータ駆動用のリレーコイル16a
、開閉弁7の駆動電磁コイル用のリレーコイル15aを
オン−オフさせる駆動手段である。
Figures 3 (a) and (b) show the control system of the air conditioner. In Figure 3 (a), 8 is a room temperature sensor, and 9 is a sensor that converts the detected value of the room temperature sensor 8 into an analog-digital signal. 10 is a set temperature input switch, 11 is a main operation switch, 12 is an air conditioning control means for controlling air conditioning such as cooling operation and dehumidification operation, and 13 is a compression Relay coil 14a for driving the motor of machine 1, relay coil 16a for driving the motor of blower 5
, is a driving means for turning on and off the relay coil 15a for the driving electromagnetic coil of the on-off valve 7.

14b〜16bは上記リレーコイル14a〜L6aのリ
レー接点である。
14b to 16b are relay contacts of the relay coils 14a to L6a.

空調制御手段12は、マイクロコンピュータ1こより構
成され、冷房運転モード時には、送風機5を常時運転さ
せると共に、圧縮機1に対しては室温センサ8の検出値
が設定温度以上の場合に運転させ、また、バイパス回路
6の開閉弁7を常時閉じるような制御信号を出力するよ
うに設定しである。また、空調制御手段12は、除湿運
転モード時に作動する時限手段18〜23(第4図参照
)が内蔵されている。第4図は、空調制御手段12の除
湿運転モード時の機能ブロック図を示すもので、同図に
示すように、空調制御手段12は、設定温度入力手段(
スイッチ)10の設定温度値と室温センサ8の検出値と
を比較判断して室温が設定温度よりも高いか低いか判定
する温度判定手段17を有する。そして、温度判定手段
17が設定温度よりも室温が高いと判定した場合には、
第1の時限手段18により、第2図に示す信号波形図に
示す如く、除湿運転の繰返しモードの1周期の時限1.
を設定し、時限t1が設定されると、第2の時限手段1
9により時限t2の範囲内で圧縮機1を運転させる出力
信号を出力し、圧縮機1が始動すると第3の時限手段2
0により時限上〇だけ遅延させて送風機5を始動させる
出力信号を出力し、第4の時限手段2・1により圧縮機
1の運転時間より短かい時限t3の範囲内で送風機5を
作動させる出力信号を出力し、更に送風機5が停止する
と、第5の時限手段22により開閉弁7を送風機5の運
転停止時から圧縮機1の再運転開始時までの間(時限t
7+tB)開制御するように設定しである。また、温度
判定手段17が設定温度よりも室温が低いと判定した場
合には、除湿モードが停止するが、この場合には、第6
の時限手段23により、除湿モード停止した時限tδ後
に強制的に、上記第2時限手段19から第5時限手段2
2までとほぼ等しい一連の動作が一時的に行われるよう
にしである。
The air conditioning control means 12 is composed of one microcomputer, and in the cooling operation mode, it causes the blower 5 to operate at all times, and causes the compressor 1 to operate when the detected value of the room temperature sensor 8 is higher than the set temperature. , it is set to output a control signal that always closes the on-off valve 7 of the bypass circuit 6. Further, the air conditioning control means 12 has built-in time limit means 18 to 23 (see FIG. 4) that operate in the dehumidifying operation mode. FIG. 4 shows a functional block diagram of the air conditioning control means 12 in the dehumidifying operation mode. As shown in the figure, the air conditioning control means 12 has a set temperature input means (
The temperature determination means 17 compares and determines the set temperature value of the switch 10 and the detected value of the room temperature sensor 8 to determine whether the room temperature is higher or lower than the set temperature. When the temperature determining means 17 determines that the room temperature is higher than the set temperature,
As shown in the signal waveform diagram shown in FIG. 2, the first time limit means 18 sets a time limit 1 for one cycle of the repeat mode of the dehumidifying operation.
is set, and when the time limit t1 is set, the second time limit means 1
9 outputs an output signal to operate the compressor 1 within the range of time limit t2, and when the compressor 1 starts, the third time limit means 2
0 outputs an output signal that starts the blower 5 with a delay of the upper time limit 〇, and the fourth time limit means 2.1 outputs an output signal that starts the blower 5 within a time limit t3 shorter than the operating time of the compressor 1. When the signal is output and the blower 5 is further stopped, the fifth timer 22 closes the on-off valve 7 for a period from when the blower 5 stops operating to when the compressor 1 starts operating again (time limit t).
7+tB) is set to open control. Further, when the temperature determination means 17 determines that the room temperature is lower than the set temperature, the dehumidification mode is stopped, but in this case, the sixth
The timer means 23 forces the second timer means 19 to the fifth timer means 2 after the time limit tδ at which the dehumidification mode is stopped.
In this case, a series of operations approximately equal to those up to 2 are temporarily performed.

次に本実施例の動作を説明する。Next, the operation of this embodiment will be explained.

冷房運転モード時には、送風機5は常時運転され、圧縮
機1は室温センサ8が設定温度(設定温度スイッチ10
の設定値)よりも高い温度値を検出した時に運転し、こ
の時冷媒バイパス回路6の開閉弁7は閉じており、冷媒
は圧縮機1.凝縮機2、絞り機構3.蒸発器4の経路で
流れて冷凍サイクルが作動し冷房運転が行われる。
In the cooling operation mode, the blower 5 is constantly operated, and the compressor 1 has a room temperature sensor 8 indicating the set temperature (set temperature switch 10
It operates when a temperature value higher than the set value of the compressor 1. Condenser 2, throttling mechanism 3. It flows through the path of the evaporator 4 to activate the refrigeration cycle and perform cooling operation.

除湿運転モード時には以下に述べる動作が行われる。こ
の動作を第5図のフローチャートを参照しながら説明す
る。
In the dehumidifying operation mode, the following operations are performed. This operation will be explained with reference to the flowchart in FIG.

ステップ1:室温センサ8.温度判定手段17により室
温が設定温度より高いと判定した場合には、先ず第1の
時限手段18により設定された除湿運転モードの周期(
時限1.)が開始し、同時に第2の時限手段19の時限
tzが開始して圧縮機1がオン制御され運転を開始する
。また第3の時限手段2oにより時限tsが開始して、
送風機5の始動が遅延制御される。従って、これらの過
程においては、圧縮機1のみが運転し、冷媒バイパス回
路6の開閉弁7は閉状態にあるので、冷媒は冷房運転モ
ード同様に流れ、圧縮機1.凝縮器2、絞り機構3を介
して蒸発器4に流れ込む。
Step 1: Room temperature sensor 8. When the temperature determining means 17 determines that the room temperature is higher than the set temperature, first the cycle of the dehumidifying operation mode set by the first timer 18 (
Time limit 1. ) starts, and at the same time, the time limit tz of the second time limit means 19 starts, and the compressor 1 is turned on and starts operating. Further, the third time limit means 2o starts the time limit ts,
Starting of the blower 5 is controlled to be delayed. Therefore, in these processes, only the compressor 1 operates and the on-off valve 7 of the refrigerant bypass circuit 6 is in the closed state, so the refrigerant flows in the same manner as in the cooling operation mode, and the compressor 1. It flows into the evaporator 4 via the condenser 2 and the throttle mechanism 3.

ステップ2:遅延時限上8が終了すると、第3の時限手
段20が送風機5を始動させる出力信号を発しく送風機
リレー16aオン)、時限t8の開始により送風機5が
始動する。この場合、送風機5は、時限tsだけ圧縮機
1よりも遅延して始動するので、この間に蒸発器4の表
面温度は、室内空気の露点温度よりも低くなっているの
で、送風機5の運転開始と同時に室内空気を蒸発器4の
冷却作用により充分に除湿した後に室内に送ることがで
きる。
Step 2: When the delay time limit 8 ends, the third time limit means 20 issues an output signal to start the blower 5 (on the blower relay 16a), and the blower 5 starts with the start of the time limit t8. In this case, the blower 5 is started later than the compressor 1 by the time period ts, and during this time the surface temperature of the evaporator 4 is lower than the dew point temperature of the indoor air, so the blower 5 starts operating. At the same time, indoor air can be sufficiently dehumidified by the cooling action of the evaporator 4 before being sent indoors.

ステップ3:また、ステップ2の経過後に室温が設定温
度よりも引続き高い状態にある場合には、送風機5の運
転時限t3が終了した後に、第4の時限手段21により
送風機5が時限t7分だけ圧縮機1の運転時限t2終了
よりも早く停止する。
Step 3: If the room temperature remains higher than the set temperature after step 2, after the operating time t3 of the blower 5 ends, the fourth timer 21 turns on the blower 5 for the time t7. The compressor 1 is stopped earlier than the end of the operating time t2.

そして、送風機5の運転停止と同時に、第5の時限手段
22により、開閉弁7が送風機5の運転停止から圧縮機
1の再運転開始までの間(時限t7十時限t2I)に開
弁制御される。この時、時限t7の間、すなわち送風機
5の運転停止から圧縮機1が運転停止するまでの間には
、圧縮機1の運転により圧縮機1で高圧化された高温冷
媒が冷媒バイパス回路6を通って蒸発器4に流れ込む。
Then, at the same time as the blower 5 stops operating, the opening/closing valve 7 is controlled to open by the fifth timer 22 from the time when the blower 5 stops operating until the compressor 1 starts operating again (time limit t7 and time limit t2I). Ru. At this time, during the time period t7, that is, from the time when the blower 5 stops operating until the compressor 1 stops operating, the high-temperature refrigerant that has been made high-pressure in the compressor 1 due to the operation of the compressor 1 passes through the refrigerant bypass circuit 6. and flows into the evaporator 4.

また、第5時限手段22により、圧縮機1の停止後も開
閉弁7が時限t5の間(圧縮機1の停止から再運転まで
の間)開かれているので、この場合には、凝縮器2内に
ある高温凝縮冷媒が冷媒バイパス回路6を通って蒸発器
4に流れ込む。従って、送風機5の停止時から圧縮機1
の再運転開始までの間(蒸発器4が冷却除湿動作を行っ
ていない間)を利用して、蒸発器4に高温冷媒を流し込
んで、冷却除湿動作時に蒸発器4に付着し始めた霜を早
期に除去し霜付きを防止することができる。
In addition, since the on-off valve 7 is kept open for the time period t5 (from the stop of the compressor 1 to the restart of the compressor 1) by the fifth time limit means 22 even after the compressor 1 is stopped, in this case, the condenser The high temperature condensed refrigerant in 2 flows into the evaporator 4 through the refrigerant bypass circuit 6. Therefore, from the time when the blower 5 stops, the compressor 1
During the period until the restart of operation (while the evaporator 4 is not performing cooling and dehumidifying operation), high-temperature refrigerant is poured into the evaporator 4 to remove the frost that has started to adhere to the evaporator 4 during the cooling and dehumidifying operation. It can be removed early to prevent frost formation.

また、除湿モード時における送風機5の停止時から圧縮
機1の再運転開始までの時間(時間t7+ts)の間に
は、室内の熱負荷や蒸発器4への高温冷媒流入により室
温が適度に上昇することになりその結果除湿運転モード
時の室温の低下を最小限に抑制することができる。
In addition, during the time (time t7 + ts) from when the blower 5 stops to when the compressor 1 starts operating again in the dehumidification mode, the room temperature rises moderately due to the indoor heat load and the high temperature refrigerant flowing into the evaporator 4. As a result, the decrease in room temperature during the dehumidifying operation mode can be suppressed to a minimum.

なお、ステップ3の途中過程において、室温センサ8及
び温度判定手段17により室温が設定温度よりも低くな
っていると判定した場合には、第5図のステップ3′に
示すように第1の時限手段18から第5の時限手段22
にタイマリセットが働き、圧縮機1.送風機5がオフし
て除湿モード運転が停止する。
In addition, in the middle of step 3, if the room temperature sensor 8 and the temperature determination means 17 determine that the room temperature is lower than the set temperature, the first time limit is set as shown in step 3' in FIG. Means 18 to fifth timer means 22
The timer reset works on compressor 1. The blower 5 is turned off and the dehumidification mode operation is stopped.

ステップ4ニステツプ3の過程を経て、圧縮機1のオン
−オフ制御の1周期(時限tz)が終了すると、空調制
御手段12により開閉弁リレー15aがオフ制御され、
冷媒バイパス回路6の開閉弁7が閉じる。そして、再度
ステップ1の前の状態に戻り、次いで室温が設定温度よ
りも高い場合には、除湿モードの周期t1の間にステッ
プ1〜ステツプ4までの動作が行われる。
Step 4 When one cycle (time limit tz) of on-off control of the compressor 1 is completed through the process of Step 3, the air conditioning control means 12 turns off the on-off valve relay 15a,
The on-off valve 7 of the refrigerant bypass circuit 6 is closed. Then, the state returns to the state before step 1 again, and then, if the room temperature is higher than the set temperature, the operations from step 1 to step 4 are performed during the period t1 of the dehumidification mode.

また、室温が設定温度よりも低くなる場合には、ステッ
プ5に移行する。
Further, if the room temperature becomes lower than the set temperature, the process moves to step 5.

ステップ5:室温センサ8.温度判定手段17により室
温が設定温度より低いと判定した場合には、除湿運転は
停止し、第6時限手段23が動作してステップ6に移行
する。
Step 5: Room temperature sensor 8. When the temperature determining means 17 determines that the room temperature is lower than the set temperature, the dehumidifying operation is stopped, the sixth time limit means 23 is activated, and the process moves to step 6.

ステップ6:時限tδ除湿運転を停止し、その後強制的
に開閉弁リレー15aがオフして開閉弁7が閉じ、次い
でステップ7がらステップ9の過程に移行する。ステッ
プ7から9の過程は、前述したステップ1からステップ
3の過程の温度判定を除いたパターンと同じであり、こ
れらの一連の過程を経て再び除湿運転が行われる。この
ような強制動作を行う理由は、除湿モード停止期間中は
、送風機5が停止するので室内の空気が充分に循環せず
室内温度が場所ごとにばらつくので、空気調和機内に設
置された室温センサ8が室温を充分に把握できない場合
もあり、この時、室温が設定温度以上に上昇する事態が
生じるため、これを防止する対策として除湿モード停止
中も、定期的に圧縮機1.送風機5を一時運転させて室
内空気をほぼ均一の温度分布にして室温状況を正確に把
握し。
Step 6: The time-limited tδ dehumidifying operation is stopped, and then the on-off valve relay 15a is forcibly turned off to close the on-off valve 7, and then the process moves from step 7 to step 9. The process from steps 7 to 9 is the same as the pattern from step 1 to step 3 described above except for the temperature determination, and the dehumidification operation is performed again through these series of processes. The reason for performing this forced operation is that during the dehumidification mode stop period, the blower 5 is stopped, so the indoor air is not sufficiently circulated and the indoor temperature varies from place to place. 8 may not be able to fully grasp the room temperature, and in this case, the room temperature may rise above the set temperature, so as a measure to prevent this, the compressor 1. The blower 5 is temporarily operated to create a nearly uniform temperature distribution in the indoor air and accurately grasp the room temperature situation.

且つ一時的な冷却除湿動作を行うことにより室温及び温
度の上昇を抑制するようにしたものである。
Moreover, by performing a temporary cooling and dehumidifying operation, a rise in room temperature and temperature is suppressed.

以上のような本実施例によれば、(1)既存の冷凍サイ
クルを利用して除湿運転を行い得ると共に、(2)除湿
モードの周期tl毎に、圧縮機1゜送風機5のオフ制御
時を利用して高温冷媒を冷媒バイパス回路6を介して蒸
発器4に流すことができるので、室内が低温多湿の状況
にある場合でも蒸発器4の霜付防止を図ることができる
。従って、低温環境下においても蒸発器4の除湿性能を
低下させることなく、効率の良い除湿運転を行い得る。
According to this embodiment as described above, (1) the existing refrigeration cycle can be used to perform the dehumidifying operation, and (2) the compressor 1° blower 5 can be turned off at every cycle tl of the dehumidifying mode. Since the high-temperature refrigerant can be flowed to the evaporator 4 through the refrigerant bypass circuit 6 by using the refrigerant bypass circuit 6, frost formation on the evaporator 4 can be prevented even when the indoor temperature is low and humid. Therefore, even in a low temperature environment, efficient dehumidification operation can be performed without reducing the dehumidification performance of the evaporator 4.

(3)更に除湿モード時の圧縮機1.送風機5の運転は
周期的な断続運転であることに加えて、蒸発器4に高温
冷媒が繰返し流れ込むので、この時。
(3) Furthermore, compressor 1 in dehumidification mode. In addition to the periodic intermittent operation of the blower 5, high-temperature refrigerant repeatedly flows into the evaporator 4, so at this time.

室内温度を適度に上昇させるので、低温環境の下で除湿
モード運転を行っても室内温度が低くなりすぎることが
ない。(5)また、除湿運転モードの停止後、第6の時
限手段23により一時的に圧縮機1.送風機5を運転さ
せて室温センサ8の温度検出を適正に行い得るようにし
であるので、除湿運転を正確に作動制御することができ
る等の効果を奏する。
Since the indoor temperature is raised appropriately, the indoor temperature will not become too low even if the dehumidification mode operation is performed in a low-temperature environment. (5) After the dehumidifying operation mode is stopped, the sixth timer 23 temporarily closes the compressor 1. Since the air blower 5 is operated to allow the room temperature sensor 8 to appropriately detect the temperature, it is possible to accurately control the dehumidification operation.

なお、本実施例では除湿モード時の圧縮機1及び送風機
5の運転制御を室温センサ8の室温検出により自動的に
行っているが、その低室温センサに代えて湿度センサに
より室内の湿度状況を把握させて行うようにしてもよい
In this embodiment, the operation of the compressor 1 and the blower 5 in the dehumidification mode is automatically controlled by the room temperature detection by the room temperature sensor 8, but instead of the low room temperature sensor, a humidity sensor is used to monitor the indoor humidity situation. It is also possible to have the user understand the information and perform the process.

また、蒸発器4に霜付センサを付加し、霜付センサが所
定度合以上の霜付を検出した場合には、霜付センサの信
号により前記除湿モード運転を解除して、冷媒バイパス
回路6の開閉弁7を独立して一時的に開放し、且つ圧縮
機1を連続運転させてもよい。
Further, a frost sensor is added to the evaporator 4, and when the frost sensor detects frost of a predetermined degree or higher, the dehumidification mode operation is canceled by a signal from the frost sensor, and the refrigerant bypass circuit 6 is activated. The on-off valve 7 may be independently temporarily opened and the compressor 1 may be operated continuously.

このようにすれば、特に低温多湿の条件の下で除湿モー
ド運転が行われ、蒸発器4に付着した霜が除湿モード運
転の開閉弁7の開いている期間の高温冷媒流入では完全
に除去しきれない場合に、独自の霜取機能が働き、蒸発
器4の霜を完全に除去することができるので、更に低温
環境下での除湿性能を向上させることができる。
In this way, the dehumidification mode operation is performed especially under low temperature and high humidity conditions, and the frost adhering to the evaporator 4 is completely removed by the inflow of high temperature refrigerant while the on-off valve 7 is open in the dehumidification mode operation. If the frost is not completely removed, a unique defrosting function is activated to completely remove the frost from the evaporator 4, thereby further improving the dehumidifying performance in a low-temperature environment.

(発明の効果〕 以上のように、本発明によれば、冷凍サイクルを利用し
た除湿モード運転時に蒸発器の霜付防止を図り得るので
、低温環境下においても支障なく除湿効率の良い除湿運
転を行うことができ、しかも室温が低くなりすぎること
なく除湿を行い得る空気調和機を提供することができる
(Effects of the Invention) As described above, according to the present invention, it is possible to prevent frost formation on the evaporator during dehumidification mode operation using a refrigeration cycle, so dehumidification operation with high dehumidification efficiency can be performed without any trouble even in low-temperature environments. It is possible to provide an air conditioner that can perform dehumidification without the room temperature becoming too low.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例たる空気調和機の冷凍サイク
ル系統図、第2図は上記実施例に使用する圧縮機、送風
機、冷媒バイパス用開閉弁の除湿モード運転時の動作状
態を示す出力波形図、第3図(a)、(b)は上記実施
例の空気調和機の空調制御系の回路図、第4図は上記空
調制御系の機能実現手段を表わしたブロック図、第5図
は上記実施例の動作を説明するフローチャートである。 1・・・圧縮機、1a・・・圧縮機の出口側配管、2・
・・凝縮器、3・・・減圧絞り機構、4・・・蒸発器、
4a・・・蒸発器の入口側配管、5・・・送風機、6・
・・冷媒バイパス回路、7・・・開閉弁、8・・・室温
センサ、12・・・空調制御手段、18・・・第1時限
手段、19・・・第2時限手段、20・・・第3時限手
段、21・・・第4時限手段、22・・・第5時限手段
、23・・・第6時限手段。
Fig. 1 is a refrigeration cycle system diagram of an air conditioner that is an embodiment of the present invention, and Fig. 2 shows the operating states of the compressor, blower, and refrigerant bypass on-off valve used in the above embodiment during dehumidification mode operation. Output waveform diagrams, Figures 3(a) and 3(b) are circuit diagrams of the air conditioning control system of the air conditioner of the above embodiment, Figure 4 is a block diagram showing the function realizing means of the air conditioning control system, and Figure 5 The figure is a flowchart explaining the operation of the above embodiment. 1... Compressor, 1a... Compressor outlet side piping, 2.
... Condenser, 3... Decompression throttling mechanism, 4... Evaporator,
4a...Evaporator inlet side piping, 5...Blower, 6.
... Refrigerant bypass circuit, 7... Opening/closing valve, 8... Room temperature sensor, 12... Air conditioning control means, 18... First time limit means, 19... Second time limit means, 20... 3rd time limit means, 21...4th time limit means, 22...5th time limit means, 23...6th time limit means.

Claims (1)

【特許請求の範囲】 1、冷媒回路に圧縮機、凝縮器、減圧絞り機構、蒸発器
を配設してなる冷凍サイクル系と、前記蒸発器を通過す
る空気を室内に送る送風機と、前記圧縮機及び送風機を
運転制御して室内を設定温度に保つ空調制御系とを具備
してなる空気調和機において、前記冷媒回路に、前記凝
縮器及び減圧絞り機構をバイパスして前記圧縮機の出口
側配管と前記蒸発器の入口側配管とを接続する冷媒バイ
パス回路を配設する共に、該冷媒バイパス回路には冷房
モード時に閉弁状態を保つ開閉弁を設け、更に、前記空
調制御系は、除湿モード時に該除湿モードの周期を設定
する第1の時限手段と、前記除湿モードの周期毎に前記
圧縮機をオン−オフ制御して運転制御する第2の時限手
段と、前記圧縮機の運転開始後に該圧縮機の運転開始よ
りも遅延させて前記送風機を運転開始させる第3の時限
手段と、前記圧縮機の運転停止前に前記送風機を運転停
止させる第4の時限手段と、前記送風機の運転停止時よ
り前記圧縮機の除湿モード時の再運転開始時までの間に
前記冷媒バイパス回路の開閉弁を開弁制御する第5の時
限手段とを具備してなることを特徴とする空気調和機。 2、特許請求の範囲第1項において、前記空調制御系の
第1から第5までの時限手段は、室内の温度又は湿度を
検出するセンサの検出信号に基づいて作動するように設
定してなる空気調和機。 3、特許請求の範囲第1項または第2項において、前記
空調制御系は、前記除湿モード終了後に一時的に前記圧
縮機及び送風機を強制的に作動させる第6の時限手段を
有する空気調和機。
[Scope of Claims] 1. A refrigeration cycle system including a compressor, a condenser, a pressure reduction throttling mechanism, and an evaporator arranged in a refrigerant circuit, a blower that sends air passing through the evaporator into a room, and the compressor. In the air conditioner, the air conditioner is equipped with an air conditioning control system that controls the operation of the air conditioner and the blower to keep the room at a set temperature, and the refrigerant circuit is provided at the outlet side of the compressor, bypassing the condenser and the pressure reduction throttling mechanism. A refrigerant bypass circuit is provided to connect the piping and the inlet side piping of the evaporator, and the refrigerant bypass circuit is provided with an on-off valve that remains closed during the cooling mode. a first timer for setting a cycle of the dehumidification mode when in the dehumidification mode; a second timer for controlling the operation of the compressor by on-off control for each cycle of the dehumidification mode; and a second timer for starting the operation of the compressor. a third timer for starting the blower later than the start of the compressor; a fourth timer for stopping the blower before stopping the compressor; and a fourth timer for stopping the blower before stopping the compressor. An air conditioner comprising: a fifth time limiter for controlling the opening/closing valve of the refrigerant bypass circuit between the time of stopping and the time of restarting operation of the compressor in the dehumidifying mode. . 2. In claim 1, the first to fifth timer means of the air conditioning control system are set to operate based on a detection signal of a sensor that detects indoor temperature or humidity. Air conditioner. 3. The air conditioner according to claim 1 or 2, wherein the air conditioning control system includes a sixth timer for forcibly operating the compressor and the blower temporarily after the dehumidification mode ends. .
JP61059105A 1986-03-19 1986-03-19 Air conditioner Pending JPS62217038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61059105A JPS62217038A (en) 1986-03-19 1986-03-19 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61059105A JPS62217038A (en) 1986-03-19 1986-03-19 Air conditioner

Publications (1)

Publication Number Publication Date
JPS62217038A true JPS62217038A (en) 1987-09-24

Family

ID=13103703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61059105A Pending JPS62217038A (en) 1986-03-19 1986-03-19 Air conditioner

Country Status (1)

Country Link
JP (1) JPS62217038A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01174843A (en) * 1987-12-29 1989-07-11 Daikin Ind Ltd Dehumidifying operation controller for air conditioner
US4850198A (en) * 1989-01-17 1989-07-25 American Standard Inc. Time based cooling below set point temperature

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01174843A (en) * 1987-12-29 1989-07-11 Daikin Ind Ltd Dehumidifying operation controller for air conditioner
US4850198A (en) * 1989-01-17 1989-07-25 American Standard Inc. Time based cooling below set point temperature

Similar Documents

Publication Publication Date Title
JPH09310927A (en) Device for controlling refrigerant of air conditioner
JP4134501B2 (en) Automatic operation control method for air conditioner
JPS62217038A (en) Air conditioner
JPH04131668A (en) Defrosting operation controller for air-conditioning apparatus
JPH04356647A (en) Control device for air conditioner
JPH05322332A (en) Air conditioner
JPH0718933Y2 (en) Release controller for air conditioner
JPH10332231A (en) Air conditioner and air-conditioning method
JPH09159249A (en) Control method of dehumidifying operation of air conditionerand air conditioner
JPH07174389A (en) Defrosting controller for air-conditioning machine
JPH0256570B2 (en)
JPS613937A (en) Defrosting control device
JPS6315023A (en) Air conditioner
JPS5946438A (en) Defrosting operation control device for air conditioner
JP2959185B2 (en) Dehumidifying dryer
JPS5829790Y2 (en) Air conditioner control circuit
JPS583014Y2 (en) refrigeration cycle
JPS62125244A (en) Air conditioner
JPH0248774Y2 (en)
JP3076751U (en) Operation control device for air conditioner
JPH0437340B2 (en)
JPH0225104Y2 (en)
JP2626158B2 (en) Operation control device for air conditioner
JPS6029561A (en) Defroster for air conditioner
JPH05322291A (en) Control device for air conditioner