JPH05259495A - Solar cell element - Google Patents

Solar cell element

Info

Publication number
JPH05259495A
JPH05259495A JP4051884A JP5188492A JPH05259495A JP H05259495 A JPH05259495 A JP H05259495A JP 4051884 A JP4051884 A JP 4051884A JP 5188492 A JP5188492 A JP 5188492A JP H05259495 A JPH05259495 A JP H05259495A
Authority
JP
Japan
Prior art keywords
light
silicon substrate
solar cell
refractive index
cell element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4051884A
Other languages
Japanese (ja)
Other versions
JP3006266B2 (en
Inventor
Tomomichi Nagashima
知理 長島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP4051884A priority Critical patent/JP3006266B2/en
Publication of JPH05259495A publication Critical patent/JPH05259495A/en
Application granted granted Critical
Publication of JP3006266B2 publication Critical patent/JP3006266B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/056Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means the light-reflecting means being of the back surface reflector [BSR] type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To raise photoelectrical conversion efficiency. CONSTITUTION:A multilayer selective reflecting film 20 is formed on the rear surface side of a silicon substrate 10 consisting of n<+>-type layer 10a, p-type body 10c and p<+>-type layer 10. The multilayer selective reflection film 20 consists of alternate assignment of a high refractive index layer 20a and a low refractive index layer 20b, and has high reflectivity for the light of 1000+ or -200nm. Therefore, the multi-layer selective reflection film 20 selectively reflects the light in the near infrared area. So, the absorptivity of the silicon substrate 10 for the area rises to raise photoelectric conversion rate. Mean while, relating to the light beyond the wave length of 1200, a probability at which it transmits through the multilayer selective reflecting film 20 is expected to be higher, so the temperature rise of the silicon substrate 10 due to incident light of the wave length area is prevented, resulting in a higher energy conversion efficiency of the entire element.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、太陽光の入射により所
定の電圧を発生するシリコン系の太陽電池素子に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon-based solar cell element that generates a predetermined voltage when sunlight is incident on it.

【0002】[0002]

【従来の技術】従来より、各種の太陽電池素子が知られ
ており、一般にはp領域とn領域からなる結晶シリコン
基板を用い、入射する光によって生成された正キャリア
(正孔)および負キャリア(電子)がp領域およびn領
域に分離して集まることを利用している。
2. Description of the Related Art Conventionally, various solar cell elements have been known, and generally, a crystalline silicon substrate composed of a p region and an n region is used, and positive carriers (holes) and negative carriers generated by incident light are used. The fact that (electrons) are separately collected in the p region and the n region is used.

【0003】このような、シリコン太陽電池素子におい
て、入射光の光エネルギーを電気エネルギーに変換する
変換効率を上昇するためには、p領域、n領域に分離生
成されたキャリアを効率よく取り出すことが必要であ
り、このためには電池を薄型化することが好適である。
また、薄型化することによって、太陽電池素子を低コス
ト化することもできる。
In such a silicon solar cell element, in order to increase the conversion efficiency of converting the light energy of incident light into electric energy, it is necessary to efficiently take out the carriers separately generated in the p region and the n region. It is necessary, and it is preferable to make the battery thinner for this purpose.
Further, by reducing the thickness, the cost of the solar cell element can be reduced.

【0004】ところが、素子を薄型化すると、シリコン
基板における吸収係数の小さな超波長側可視光線〜赤外
線の光吸収量が減少し、十分な出力を得られないという
問題点があった。
However, when the device is made thinner, there has been a problem that a sufficient absorption cannot be obtained because the light absorption amount of visible rays to infrared rays on the super wavelength side having a small absorption coefficient in the silicon substrate is reduced.

【0005】そこで、この対策法の1つとして、太陽電
池素子の裏面に金属反射膜を設けることが提案されてい
る。すなわち、雑誌「日経マイクロデバイス 1990
年4月発行」、「日経ニューマテリアル 1990年1
0月発行」には、素子の裏面電極を金属反射膜として利
用し、入射光が裏面から透過するのを抑制して、入射光
を素子中に閉じ込め、薄型にもかかわらず入射光の吸収
効率を上昇することが示されている。このように、従来
の太陽電池素子においても、各種の改良がなされ、変換
効率の上昇が図られている。
Therefore, as one of the countermeasures, it has been proposed to provide a metal reflection film on the back surface of the solar cell element. That is, the magazine “Nikkei Microdevices 1990
Issued in April, 2004, "Nikkei New Material 1990 1
In “October issue”, the back electrode of the element is used as a metal reflection film to suppress the incident light from passing through the back surface and to confine the incident light in the element. Has been shown to rise. As described above, the conventional solar cell element is also improved in various ways to increase the conversion efficiency.

【0006】[0006]

【発明が解決しようとする課題】しかし、上記従来例の
太陽電池素子においては、入射光を素子内に閉じ込める
ため、素子内において電気エネルギーに変換されない入
射光も増加する。そして、電気エネルギーに変換されな
い入射光は熱エネルギーに変換されるため、これによっ
て素子の温度が上昇してしまう。シリコン系の太陽電池
素子におけるエネルギー変換効率と温度には、図4に示
すような関係があり、エネルギー変換効率は、温度の上
昇に伴い悪化する。すなわち、温度上昇に伴い、開放電
圧(V)、最大出力(W)とも直線的に悪化する。そし
て、電気エネルギーに変換されない部分は熱エネルギー
になるため、基板の温度はさらに上昇することになる。
However, in the above-mentioned conventional solar cell element, since incident light is confined in the element, the incident light which is not converted into electric energy in the element also increases. The incident light that is not converted to electrical energy is converted to thermal energy, which increases the temperature of the element. The energy conversion efficiency and temperature in the silicon-based solar cell element have a relationship as shown in FIG. 4, and the energy conversion efficiency deteriorates as the temperature rises. That is, as the temperature rises, both the open circuit voltage (V) and the maximum output (W) deteriorate linearly. Then, since the portion which is not converted to electric energy becomes thermal energy, the temperature of the substrate further rises.

【0007】このように、従来の素子においては、使用
時に素子温度が上昇してしまうために、入射光から電気
エネルギーへの変換効率が悪化するという問題点があっ
た。本発明は、上記課題に鑑みなされたものであり、素
子温度の上昇を抑制して、エネルギー変換効率の改善さ
れた太陽電池素子を提供することを目的とする。
As described above, the conventional element has a problem that the efficiency of conversion of incident light into electric energy is deteriorated because the element temperature rises during use. The present invention has been made in view of the above problems, and an object of the present invention is to provide a solar cell element that suppresses an increase in element temperature and has improved energy conversion efficiency.

【0008】ここで、本発明は、次のような知見よりな
されたものである。すなわち、太陽電池素子において、
遠赤外光はそのエネルギーレベル(hν:hはプランク
定数、νは光の振動数)が小さいため、キャリアの生成
に寄与できない(太陽電池素子は、通常の場合、波長が
400〜1000nmの光を効率よく電気エネルギーに
変換する)。そこで、遠赤外光を裏面より透過させ、こ
の遠赤外光に起因する温度上昇を抑制することを考え、
本発明を完成するに至った。
The present invention has been made based on the following findings. That is, in the solar cell element,
Far infrared light cannot contribute to the generation of carriers because its energy level (hν: h is Planck's constant, ν is the frequency of light) is small (a solar cell element normally emits light with a wavelength of 400 to 1000 nm). Is efficiently converted into electric energy). Therefore, in consideration of suppressing the temperature rise due to this far infrared light by transmitting the far infrared light from the back surface,
The present invention has been completed.

【0009】[0009]

【課題を解決するための手段】本発明は、p領域および
n領域を有する結晶シリコン基板への光入射による正負
キャリアの生成を利用した太陽電池素子であって、前記
シリコン基板のp領域側の表面に接続された第1の電極
と、前記シリコン基板のn領域側の表面に設けられた第
2の電極と、前記シリコン基板の裏面側を覆うように形
成され、表面側から入射しシリコン基板を透過してきた
光の中の近赤外線を選択的に反射する多層反射膜と、を
有することを特徴とする。
The present invention is a solar cell element utilizing the generation of positive and negative carriers by light incidence on a crystalline silicon substrate having ap region and an n region, wherein the p region side of the silicon substrate is provided. A first electrode connected to the front surface, a second electrode provided on the surface of the silicon substrate on the n-region side, and a back surface of the silicon substrate are formed so as to cover the surface of the silicon substrate. And a multi-layer reflective film that selectively reflects near-infrared rays in the light that has passed through.

【0010】[0010]

【作用】このように、本発明においては、近赤外光を選
択的に反射する多層膜を裏面に有している。このため、
遠赤外光は裏面から透過し、電気エネルギーに変換しや
すい近赤外以下の波長の入射光は素子内に閉じ込められ
る。従って、太陽電池素子を薄型としながら、所望の波
長範囲の入射光のみの吸収効率を上昇できる。そこで、
使用時における温度上昇を防止しながら入射する光エネ
ルギーの電気エネルギーへの変換効率を上昇できる。
As described above, in the present invention, the back surface has the multilayer film which selectively reflects near infrared light. For this reason,
Far-infrared light is transmitted from the back surface, and incident light with a wavelength of near-infrared or less that is easily converted into electric energy is confined in the element. Therefore, the absorption efficiency of only the incident light in the desired wavelength range can be increased while making the solar cell element thin. Therefore,
It is possible to increase the efficiency of conversion of incident light energy into electric energy while preventing a temperature rise during use.

【0011】[0011]

【実施例】以下、本発明の実施例について、図面に基づ
いて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0012】基本構成 図1は、本発明に係る太陽電池素子の基本的な構成を示
す図である。B(硼素)が低濃度で拡散されたp型のシ
リコン基板10の上部には、P(燐)が拡散されたn+
型層10aが形成され、下部には不純物の拡散によりキ
ャリア濃度の上昇されたp+ 型層10bが形成され、中
間部のp型の本体10cが形成されている。そして、n
+ 型層10aの上側には、例えばAl(アルミ)により
形成されたくし型の受光面電極12及び反射防止膜14
が形成されている。一方、シリコン基板10の裏面側に
は、p+ 型層10bに接触して、同じくくし型の裏面電
極16が形成されている。
Basic Structure FIG. 1 is a diagram showing the basic structure of a solar cell element according to the present invention. On top of the p-type silicon substrate 10 in which B (boron) is diffused at a low concentration, n + in which P (phosphorus) is diffused is formed .
A mold layer 10a is formed, a p + -type layer 10b whose carrier concentration is increased by diffusion of impurities is formed in the lower portion, and a p-type main body 10c in the middle portion is formed. And n
On the upper side of the + type layer 10a, for example, a comb-shaped light-receiving surface electrode 12 and an antireflection film 14 formed of Al (aluminum).
Are formed. On the other hand, on the back surface side of the silicon substrate 10, a comb-shaped back surface electrode 16 is formed in contact with the p + type layer 10b.

【0013】そして、このシリコン基板10の裏面側に
は、多層選択反射膜20が積層形成されている。この多
層選択反射膜20は、4層の高屈折率層20aと3層の
低屈折率層20bを交互に積層したものである。
A multilayer selective reflection film 20 is laminated on the back surface of the silicon substrate 10. This multilayer selective reflection film 20 is formed by alternately stacking four high refractive index layers 20a and three low refractive index layers 20b.

【0014】また、本実施例では、シリコン基板10は
厚さ300〜400μmである。そして、多層選択反射
膜20は、高屈折率層20aが最もシリコン基板10に
近い場所に形成され、その後低屈折率層20b高屈折率
層20aが繰り返されるように形成されている。ここ
で、各高屈折率層20a、低屈折率層20bは、その厚
さが反射すべき光の中心波長λに対し、ほぼλ/4とな
るように形成されている。
Further, in this embodiment, the silicon substrate 10 has a thickness of 300 to 400 μm. The multilayer selective reflection film 20 is formed such that the high refractive index layer 20a is formed at a position closest to the silicon substrate 10 and then the low refractive index layer 20b and the high refractive index layer 20a are repeated. Here, each of the high-refractive index layer 20a and the low-refractive index layer 20b is formed so that its thickness is approximately λ / 4 with respect to the central wavelength λ of the light to be reflected.

【0015】このような太陽電池素子において、表面側
から入射した光は、反射防止膜14、n+ 型10aを透
過しシリコン基板の本体10cに至る。ここで、シリコ
ン基板10の厚さが100μm程度と通常使用される3
00〜400μmに比べて薄い場合には、シリコン基板
10における吸収係数の波長依存性に起因して、波長9
00nm以下の光はシリコン基板10内で吸収される
が、波長900nm以上の光はシリコン基板10から透
過し易くなる。
In such a solar cell element, light incident from the surface side passes through the antireflection film 14 and the n + type 10a and reaches the main body 10c of the silicon substrate. Here, the thickness of the silicon substrate 10 is about 100 μm, which is normally used.
When the thickness is thinner than 00 to 400 μm, the wavelength of 9 nm is caused due to the wavelength dependence of the absorption coefficient in the silicon substrate 10.
Light having a wavelength of 00 nm or less is absorbed in the silicon substrate 10, but light having a wavelength of 900 nm or more is easily transmitted from the silicon substrate 10.

【0016】ところが、本実施例においては、裏面側
に、多層選択反射膜20が形成されている。そして、こ
の多層選択反射膜20は、中心波長900nm程度の光
を選択的に反射するため、そのままでは透過してしまう
波長900nm以上の光をシリコン基板10内に反射さ
せることが可能となる。このため、シリコン基板10内
における入射光の吸収が改善され、これによって太陽電
池素子における発電量の増加、すなわち光電変換効率が
向上する。
However, in this embodiment, the multilayer selective reflection film 20 is formed on the back surface side. Since the multilayer selective reflection film 20 selectively reflects light having a center wavelength of about 900 nm, it is possible to reflect light having a wavelength of 900 nm or more that would otherwise be transmitted into the silicon substrate 10. Therefore, the absorption of incident light in the silicon substrate 10 is improved, which increases the amount of power generation in the solar cell element, that is, the photoelectric conversion efficiency.

【0017】ここで、図2に本実施例における多層選択
反射膜20の反射特性を示す。この多層選択反射膜20
は、1000nm±200nmの範囲で反射率が増加す
るように形成されており、図に示すように波長が120
0nmを超えた領域において反射率が非常に小さくなっ
ている。
Here, FIG. 2 shows the reflection characteristics of the multilayer selective reflection film 20 in this embodiment. This multilayer selective reflection film 20
Are formed so that the reflectance increases in the range of 1000 nm ± 200 nm, and the wavelength is 120 nm as shown in the figure.
The reflectance is very small in the region exceeding 0 nm.

【0018】一方、結晶系シリコン太陽電池素子の光電
変換の効率は、入射光の波長が900nmを超えたあた
りから減少し、1200nm以上では非常に小さくな
る。従って、1200nm以上の光は、シリコン基板1
0の内部に吸収されても、発電に寄与する割合は小さ
く、ほとんどは熱エネルギーに変換され、太陽電池素子
の温度上昇を招く。しかしながら、本実施例によれば、
1200nm以上の光は、多層選択反射膜20を透過す
る割合が大きいため、このような遠赤外の光により、太
陽電池素子の温度上昇を招くことを防止することができ
る。
On the other hand, the photoelectric conversion efficiency of the crystalline silicon solar cell element decreases when the wavelength of the incident light exceeds 900 nm, and becomes extremely small at 1200 nm or more. Therefore, the light of 1200 nm or more is emitted from the silicon substrate 1
Even if it is absorbed inside 0, the rate of contributing to power generation is small, and most of it is converted into thermal energy, which causes a rise in temperature of the solar cell element. However, according to this embodiment,
Since light having a wavelength of 1200 nm or more has a high rate of passing through the multilayer selective reflection film 20, it is possible to prevent the temperature of the solar cell element from increasing due to such far infrared light.

【0019】このように、本実施例によれば、光電変換
に有効な波長領域の光を選択的に素子内部に閉じ込め、
温度上昇を招く波長領域の光を透過させることができ
る。そこで、長時間使用(特に気温の高い夏期)におい
て、安定して高い光電変換効率を有する太陽電池素子が
得られる。
As described above, according to this embodiment, light in the wavelength region effective for photoelectric conversion is selectively confined inside the device,
It is possible to transmit light in a wavelength region that causes a temperature rise. Therefore, a solar cell element having stable and high photoelectric conversion efficiency can be obtained during long-term use (especially in summer when the temperature is high).

【0020】実施例1 まず、Bがドーピングされた厚さ約100μmのp型の
Si単結晶からなるシリコン基板10を用意し、拡散法
によりP(燐)を拡散し、受光面側に接合深さ約0.5
μのn+ 層を形成する。次に、イオン注入法によりシリ
コン基板10の裏面側にBを注入し、接合深さ約1.0
μmのp+ 層10bを形成する。
Example 1 First, a silicon substrate 10 made of B-doped p-type Si single crystal having a thickness of about 100 μm was prepared, P (phosphorus) was diffused by a diffusion method, and a junction depth was formed on the light receiving surface side. About 0.5
Form an n + layer of μ. Next, B is implanted into the back surface side of the silicon substrate 10 by an ion implantation method to obtain a junction depth of about 1.0.
A p + layer 10b of μm is formed.

【0021】次に、多層選択反射膜20を次の手順で形
成する。ここで、この多層選択反射膜20の形成には、
スパッタ装置を用いる。また、このスパッタ装置は、本
実施例における反射防止膜14の形成にも使用される。
Next, the multilayer selective reflection film 20 is formed by the following procedure. Here, in forming the multilayer selective reflection film 20,
A sputtering device is used. This sputtering apparatus is also used for forming the antireflection film 14 in this embodiment.

【0022】まず、第1層として、高屈折率層20aを
形成する。この高屈折率層20aは、屈折率2.49程
度のTiO2 によって形成し、その膜厚は、約95nm
程度とする。次に、第2層として低屈折率層20bを形
成する。この低屈折率層20bには、屈折率1.45程
度のSiO2 を用い、その膜厚は約164μmとする。
そして、この高屈折率層20a、低屈折率層20bを交
互に順次積層形成し、TiO2 /SiO2 /TiO2
SiO2 /TiO2 /SiO2 /TiO2 と、高屈折率
層4層、低屈折率層3層からなる多層選択反射膜20を
形成した。次に、受光面の反射防止膜14及び裏面の多
層選択反射膜20における受光面電極12及び裏面電極
16を形成する部分をエッチングにより除去し、スクリ
ーン印刷法によりAlペーストを印刷後焼成し、受光面
電極12及び裏面電極16を形成した。なお、受光面電
極12及び裏面電極16共くし形のものとした。このよ
うにして、実施例1の太陽電池素子が形成された。
First, the high refractive index layer 20a is formed as the first layer. The high refractive index layer 20a is formed of TiO 2 having a refractive index of about 2.49, and its film thickness is about 95 nm.
The degree. Next, the low refractive index layer 20b is formed as the second layer. The low refractive index layer 20b is made of SiO 2 having a refractive index of about 1.45 and has a film thickness of about 164 μm.
Then, the high-refractive index layers 20a and the low-refractive index layers 20b are alternately laminated to form TiO 2 / SiO 2 / TiO 2 /
A multilayer selective reflection film 20 composed of SiO 2 / TiO 2 / SiO 2 / TiO 2 , 4 layers of high refractive index layer and 3 layers of low refractive index layer was formed. Next, the portions of the antireflection film 14 on the light receiving surface and the multilayer selective reflection film 20 on the back surface where the light receiving surface electrode 12 and the back surface electrode 16 are formed are removed by etching, and an Al paste is printed and baked by a screen printing method to receive light. The surface electrode 12 and the back surface electrode 16 were formed. The light-receiving surface electrode 12 and the back surface electrode 16 were both comb-shaped. Thus, the solar cell element of Example 1 was formed.

【0023】実施例2 実施例1と同様の方法により、厚さ約100μmのp型
のSi単結晶からなるシリコン基板10にn+ 型層10
a及びp+ 型層10bを形成した。続いて、多層選択反
射膜20を実施例1と同様の方法で、高屈折率層20a
および低屈折率層20bを形成した。ここで、実施例2
においては、高屈折率層20aとして、実施例1と同様
に屈折率2.49程度のTiO2 を用い、約95nmの
膜を形成したが、低屈折率層20bとして、屈折率1.
8程度のMgF2 を用い、この膜厚を約172nmとし
た。そして、これら高屈折率層20aと低屈折率層20
bを、TiO2 /MgF2 /TiO2 … MgF2
TiO2 のように、高屈折率層5層、低屈折率層4層か
らなる計9層の多層選択反射膜20を形成した。そし
て、第1実施例と同様の方法で、受光面電極12及び裏
面電極16を形成し、実施例2の太陽電池素子を形成し
た。
Example 2 In the same manner as in Example 1, the n + type layer 10 was formed on the silicon substrate 10 of p-type Si single crystal having a thickness of about 100 μm.
The a and p + type layers 10b were formed. Subsequently, the multi-layer selective reflection film 20 is processed by the same method as in Example 1 to obtain the high refractive index layer 20a.
And the low refractive index layer 20b was formed. Example 2
In Example 2 , TiO 2 having a refractive index of about 2.49 was used as the high refractive index layer 20a to form a film having a thickness of about 95 nm, but the low refractive index layer 20b had a refractive index of 1.
About 8 of MgF 2 was used, and this film thickness was set to about 172 nm. Then, the high refractive index layer 20a and the low refractive index layer 20
b is TiO 2 / MgF 2 / TiO 2 ... MgF 2 /
As in TiO 2 , a multilayer selective reflection film 20 having a total of 9 layers including 5 high refractive index layers and 4 low refractive index layers was formed. Then, the light-receiving surface electrode 12 and the back surface electrode 16 were formed by the same method as in the first embodiment, and the solar cell element of the second embodiment was formed.

【0024】実施例3 実施例1と同様の方法で、厚さ約150μmのp型の多
結晶Siからなるシリコン基板10に、n+ 型層10a
及びp+ 型層10bを形成した。続いて、実施例1と同
様のTiO2 からなる高屈折率層20aと、SiO2
らなる低屈折率層20bからなる7層の多層選択反射膜
20を形成し、その後受光面電極12及び裏面電極16
を形成し、第3実施例の太陽電池素子を形成した。
Example 3 In the same manner as in Example 1, an n + type layer 10a was formed on a silicon substrate 10 of p-type polycrystalline Si having a thickness of about 150 μm.
And p + type layer 10b were formed. Subsequently, the high-refractive index layer 20a made of TiO 2 and the multi-layered selective reflection film 20 made of 7 layers made of the low-refractive index layer 20b made of SiO 2 are formed as in Example 1, and then the light-receiving surface electrode 12 and the back surface are formed. Electrode 16
To form the solar cell element of the third embodiment.

【0025】各実施例における素子構成 ここで、表1に、上述した実施例1〜3における素子構
成をまとめて示す。
Element Configuration in Each Example Here, Table 1 collectively shows the element configurations in the above Examples 1 to 3.

【0026】[0026]

【表1】 各実施例における裏面の反射特性 次に、表2に、各実施例の裏面の反射率をまとめて示
す。
[Table 1] Reflection Characteristics of Back Side in Each Example Next, Table 2 collectively shows the reflectance of the back side of each example.

【0027】[0027]

【表2】 このように、今回の実施例1〜3においては、特に実施
例2の多層選択反射膜20の構成の裏面反射率が波長8
00〜1200nmの光に対して96%、1200〜2
000nmの光に対して19%と、非常に良い選択反射
特性を有することがわかった。
[Table 2] As described above, in Examples 1 to 3 of this time, the back surface reflectance of the multilayer selective reflection film 20 of Example 2 has a wavelength of 8
96% for light of 00 to 1200 nm, 1200 to 2
It was found that the film had a very good selective reflection property of 19% for light of 000 nm.

【0028】次に、図3に、本実施例2における素子構
造を有する太陽電池素子の長時間光照射時における素子
温度と変換効率変化状態を示す。ここで、比較例とし
て、従来より用いられていた金属反射防止膜(Al、A
gなどを用いた膜)を多層選択反射膜20の代りに用い
た素子構造を有する太陽電池素子の特性を示す。
Next, FIG. 3 shows the element temperature and the conversion efficiency change state of the solar cell element having the element structure of the second embodiment during long-time light irradiation. Here, as a comparative example, a conventionally used metal antireflection film (Al, A
Characteristics of a solar cell element having an element structure in which a film including g) is used instead of the multilayer selective reflection film 20.

【0029】図から明らかなように、本実施例における
太陽電池素子は、従来のものに比べ長時間の光照射にお
いても素子温度上昇が小さく、良好な光電変換特性を維
持できることが理解される。
As is apparent from the figure, the solar cell element in this example has a smaller element temperature rise even after irradiation with light for a longer period of time than the conventional solar cell element, and it is understood that good photoelectric conversion characteristics can be maintained.

【0030】[0030]

【発明の効果】以上説明したように、本発明に係る太陽
電池素子によれば、遠赤外光、近赤外光を選択的に反射
させる多層反射膜を設けたため、薄いシリコン基板を用
いた太陽電池素子においても、近赤外光を素子内部に閉
じ込めることができ、変換効率を向上させることができ
ると共に、遠赤外光を透過させることができるため、長
時間の光照射においても温度上昇が小さく、変換効率の
低下を抑制することができる。
As described above, according to the solar cell element of the present invention, the thin silicon substrate is used because the multilayer reflective film for selectively reflecting far infrared light and near infrared light is provided. Also in the solar cell element, near infrared light can be confined inside the element, conversion efficiency can be improved, and far infrared light can be transmitted, so temperature rise even during long-time light irradiation. Is small, and a decrease in conversion efficiency can be suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の基本構成を示す図である。FIG. 1 is a diagram showing a basic configuration of an embodiment.

【図2】多層選択反射膜20の反射特性の波長依存性を
示す特性図である。
FIG. 2 is a characteristic diagram showing wavelength dependence of reflection characteristics of the multilayer selective reflection film 20.

【図3】実施例の温度及び出力電力の経時変化を示す特
性図である。
FIG. 3 is a characteristic diagram showing changes in temperature and output power with time in the example.

【図4】太陽電池素子の温度特性を示す図である。FIG. 4 is a diagram showing temperature characteristics of a solar cell element.

【符号の説明】[Explanation of symbols]

10 シリコン基板 12 受光面電極 14 反射防止膜 16 裏面電極 20 多層選択反射膜 20a 高屈折率層 20b 低屈折率層 DESCRIPTION OF SYMBOLS 10 Silicon substrate 12 Light receiving surface electrode 14 Antireflection film 16 Back surface electrode 20 Multilayer selective reflection film 20a High refractive index layer 20b Low refractive index layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 p領域およびn領域を有する結晶シリコ
ン基板への光入射による正負キャリアの生成を利用した
太陽電池素子であって、 前記シリコン基板のp領域側の表面に接続された第1の
電極と、 前記シリコン基板のn領域側の表面に設けられた第2の
電極と、 前記シリコン基板の裏面側を覆うように形成され、表面
側から入射しシリコン基板を透過してきた光の中の近赤
外線を選択的に反射する多層反射膜と、 を有することを特徴とする結晶シリコン太陽電池素子。
1. A solar cell element utilizing the generation of positive and negative carriers by light incidence on a crystalline silicon substrate having ap region and an n region, the first solar cell device being connected to a surface of the silicon substrate on the p region side. An electrode, a second electrode provided on the surface of the silicon substrate on the side of the n region, and a second electrode formed so as to cover the back surface side of the silicon substrate, among the light incident from the front surface side and transmitted through the silicon substrate. A crystalline silicon solar cell element, comprising: a multilayer reflective film that selectively reflects near infrared rays.
JP4051884A 1992-03-10 1992-03-10 Solar cell element Expired - Fee Related JP3006266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4051884A JP3006266B2 (en) 1992-03-10 1992-03-10 Solar cell element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4051884A JP3006266B2 (en) 1992-03-10 1992-03-10 Solar cell element

Publications (2)

Publication Number Publication Date
JPH05259495A true JPH05259495A (en) 1993-10-08
JP3006266B2 JP3006266B2 (en) 2000-02-07

Family

ID=12899313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4051884A Expired - Fee Related JP3006266B2 (en) 1992-03-10 1992-03-10 Solar cell element

Country Status (1)

Country Link
JP (1) JP3006266B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06310740A (en) * 1993-04-21 1994-11-04 Sharp Corp Solar cell and fabrication thereof
US5569332A (en) * 1995-08-07 1996-10-29 United Solar Systems Corporation Optically enhanced photovoltaic back reflector
WO2004036658A1 (en) * 2002-10-15 2004-04-29 Sharp Kabushiki Kaisha Solar cell and solar cell module using same
JP2007095370A (en) * 2005-09-27 2007-04-12 Sony Corp Dye-sensitized photoelectric conversion element, photoelectric conversion element module, electronic apparatus, moving body, and power generation system
JP2007103813A (en) * 2005-10-07 2007-04-19 Techno Polymer Co Ltd Back sheet for solar cell
KR100877817B1 (en) * 2005-11-08 2009-01-12 엘지전자 주식회사 Solar Cell of High Efficiency and Process for Preparation of the Same
WO2009157053A1 (en) * 2008-06-23 2009-12-30 三菱電機株式会社 Photovoltaic system and method for manufacturing the same
US20100180941A1 (en) * 2008-09-08 2010-07-22 Electronics And Telecommunications Research Institute Antireflection film of solar cell, solar cell, and method of manufacturing solar cell
JP2011508430A (en) * 2007-12-21 2011-03-10 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド Multi-junction photovoltaic cell
JP2011511453A (en) * 2008-08-01 2011-04-07 エルジー エレクトロニクス インコーポレイティド Solar cell and manufacturing method thereof
JP2012084747A (en) * 2010-10-13 2012-04-26 National Institute Of Advanced Industrial & Technology Crystal silicon solar cell manufacturing method
KR101149308B1 (en) * 2009-04-02 2012-05-24 삼성코닝정밀소재 주식회사 Multi-layer thin film structure for solor cell
US8643935B2 (en) 1999-10-05 2014-02-04 Qualcomm Mems Technologies, Inc. Photonic MEMS and structures
JP2014505370A (en) * 2011-01-26 2014-02-27 マサチューセッツ インスティテュート オブ テクノロジー Transparent photocell
CN103715276A (en) * 2012-09-28 2014-04-09 茂迪股份有限公司 Solar cell and module thereof
CN112151633A (en) * 2019-06-27 2020-12-29 君泰创新(北京)科技有限公司 Heterojunction solar cell and preparation method thereof

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06310740A (en) * 1993-04-21 1994-11-04 Sharp Corp Solar cell and fabrication thereof
US5569332A (en) * 1995-08-07 1996-10-29 United Solar Systems Corporation Optically enhanced photovoltaic back reflector
US8643935B2 (en) 1999-10-05 2014-02-04 Qualcomm Mems Technologies, Inc. Photonic MEMS and structures
WO2004036658A1 (en) * 2002-10-15 2004-04-29 Sharp Kabushiki Kaisha Solar cell and solar cell module using same
US7858873B2 (en) 2002-10-15 2010-12-28 Sharp Kabushiki Kaisha Photovoltaic cell and photovoltaic module employing the same
JP2007095370A (en) * 2005-09-27 2007-04-12 Sony Corp Dye-sensitized photoelectric conversion element, photoelectric conversion element module, electronic apparatus, moving body, and power generation system
JP2007103813A (en) * 2005-10-07 2007-04-19 Techno Polymer Co Ltd Back sheet for solar cell
KR100877817B1 (en) * 2005-11-08 2009-01-12 엘지전자 주식회사 Solar Cell of High Efficiency and Process for Preparation of the Same
JP2011508430A (en) * 2007-12-21 2011-03-10 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド Multi-junction photovoltaic cell
JP5323827B2 (en) * 2008-06-23 2013-10-23 三菱電機株式会社 Photovoltaic device and manufacturing method thereof
WO2009157053A1 (en) * 2008-06-23 2009-12-30 三菱電機株式会社 Photovoltaic system and method for manufacturing the same
JP2011511453A (en) * 2008-08-01 2011-04-07 エルジー エレクトロニクス インコーポレイティド Solar cell and manufacturing method thereof
US8759140B2 (en) 2008-08-01 2014-06-24 Lg Electronics Inc. Solar cell and method for manufacturing the same
US20100180941A1 (en) * 2008-09-08 2010-07-22 Electronics And Telecommunications Research Institute Antireflection film of solar cell, solar cell, and method of manufacturing solar cell
KR101149308B1 (en) * 2009-04-02 2012-05-24 삼성코닝정밀소재 주식회사 Multi-layer thin film structure for solor cell
JP2012084747A (en) * 2010-10-13 2012-04-26 National Institute Of Advanced Industrial & Technology Crystal silicon solar cell manufacturing method
JP2014505370A (en) * 2011-01-26 2014-02-27 マサチューセッツ インスティテュート オブ テクノロジー Transparent photocell
US9728735B2 (en) 2011-01-26 2017-08-08 Massachusetts Institute Of Technology Transparent photovoltaic cells
US10665801B2 (en) 2011-01-26 2020-05-26 Massachusetts Institute Of Technology Transparent photovoltaic cells
US11424423B2 (en) 2011-01-26 2022-08-23 Massachusetts Institute Of Technology Transparent photovoltaic cells
CN103715276A (en) * 2012-09-28 2014-04-09 茂迪股份有限公司 Solar cell and module thereof
CN112151633A (en) * 2019-06-27 2020-12-29 君泰创新(北京)科技有限公司 Heterojunction solar cell and preparation method thereof

Also Published As

Publication number Publication date
JP3006266B2 (en) 2000-02-07

Similar Documents

Publication Publication Date Title
US4663495A (en) Transparent photovoltaic module
JP3006266B2 (en) Solar cell element
JP2738557B2 (en) Multilayer solar cell
JP4811945B2 (en) Thin film photoelectric converter
JPS6257113B2 (en)
WO2005011002A1 (en) Silicon based thin film solar cell
JP2539780B2 (en) Photosensitive semiconductor device with anti-reflective double layer coating
JP2003142709A (en) Laminated solar battery and method for manufacturing the same
US4151005A (en) Radiation hardened semiconductor photovoltaic generator
JPH09162435A (en) Filter for solar battery
JPH04372177A (en) Photovoltaic device
JPH0793451B2 (en) Multi-junction amorphous silicon solar cell
JP2000299482A (en) Solar battery module
JPS5850034B2 (en) photovoltaic device
JPH07321362A (en) Photovoltaic device
JP3342257B2 (en) Photovoltaic element
JPH0463550B2 (en)
JP2717015B2 (en) Color sensor
JP4358493B2 (en) Solar cell
JP2710318B2 (en) Translucent solar cell
JPH073875B2 (en) Photovoltaic device
CN114512560B (en) Photovoltaic module
JP4243050B2 (en) Stacked solar cell device
JP3303577B2 (en) Solar cell
JP2939780B2 (en) Solar cell

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees