JPS5850034B2 - photovoltaic device - Google Patents

photovoltaic device

Info

Publication number
JPS5850034B2
JPS5850034B2 JP53035944A JP3594478A JPS5850034B2 JP S5850034 B2 JPS5850034 B2 JP S5850034B2 JP 53035944 A JP53035944 A JP 53035944A JP 3594478 A JP3594478 A JP 3594478A JP S5850034 B2 JPS5850034 B2 JP S5850034B2
Authority
JP
Japan
Prior art keywords
layer
solar radiation
active region
thickness
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53035944A
Other languages
Japanese (ja)
Other versions
JPS53120394A (en
Inventor
アラン・エドワ−ド・ベル
ブラウン・エフ・ウイリアムス
デ−ビツド・エミル・カ−ルソン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RCA Corp
Original Assignee
RCA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US05/848,250 external-priority patent/US4126150A/en
Application filed by RCA Corp filed Critical RCA Corp
Publication of JPS53120394A publication Critical patent/JPS53120394A/en
Publication of JPS5850034B2 publication Critical patent/JPS5850034B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 この発明は光起電力装置の無反射条件の改良、特に薄膜
の活性領域を持つ光起電力装置の無反射特性の微細調整
に関する。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to improving the non-reflection conditions of photovoltaic devices, and in particular to fine tuning the non-reflection properties of photovoltaic devices having thin film active regions.

太陽電池の様な光起電力装置における綜合電力発生効率
は光が太陽電池の活性領域に入射吸収される効率に直接
依存する。
The total power generation efficiency in a photovoltaic device such as a solar cell is directly dependent on the efficiency with which light is incident on and absorbed by the active region of the solar cell.

光起電力装置の活性領域とは光すなわち太陽輻射が吸収
され、それによって電荷担体を発生させる領域のことで
ある。
The active region of a photovoltaic device is the region in which light or solar radiation is absorbed and thereby generates charge carriers.

太陽電池の電力は活性領域あるいはその内部の半導体接
合によってこれら光により発生した電荷担体を捕集する
ことによって得られる。
Power in solar cells is obtained by collecting these light-generated charge carriers by the active region or by semiconductor junctions within it.

単結晶シリコン太陽電池の場合、電荷釦体の拡散距離は
比較的長くて最大的100μである。
In the case of single-crystal silicon solar cells, the diffusion distance of the charge button is relatively long, at most 100μ.

従って、半導体接合から約100μ以内で発生した電子
正孔対は太陽電池で発生する電力に寄与することになる
Therefore, electron-hole pairs generated within about 100 microns from the semiconductor junction will contribute to the power generated by the solar cell.

この場合、光を太陽電池内部まで有効に入射させるため
に、太陽電池表面上に広帯域の反射防止層を具備する必
要がある。
In this case, it is necessary to provide a broadband antireflection layer on the surface of the solar cell in order to effectively allow light to enter the inside of the solar cell.

この反射防止層は通常表面に形成された誘電体材料の薄
膜から成り、光の反射を抑制して太陽電池中への光の透
過率を向上する。
This anti-reflection layer usually consists of a thin film of dielectric material formed on the surface to suppress reflection of light and improve the transmittance of light into the solar cell.

一般に、厚さ数μ以下の薄膜活性領域を持つ多くの光起
電力装置の場合、光によって発生した電荷担体の拡散距
離は単結晶シリコンのような良質の結晶材料の厚い活性
領域を持つ光起電力装置の拡散距離に比較して著しく短
かい。
In general, for many photovoltaic devices with thin active regions of a few microns or less in thickness, the diffusion distance of photogenerated charge carriers is significantly reduced for photovoltaic devices with thick active regions of good crystalline materials such as single-crystal silicon. This is significantly shorter than the diffusion distance of power equipment.

この拡散距離が短かいことは、薄膜材料が多結晶あるい
は非晶質のため電荷担体易動度が低いことによる。
This short diffusion distance is due to the fact that the thin film material is polycrystalline or amorphous and thus has low charge carrier mobility.

光起電力装置の薄膜活性領域はシラン中におけるグロー
放電によって作られた非晶質シリコンのような材料で形
成し得るが、一般にシラン中のグロー放電によって制作
した非晶質シリコン中の正孔の拡散距離は単結晶シリコ
ン中における100μに比較して非常に短か(僅かに3
oooAである。
The thin-film active region of a photovoltaic device can be formed from materials such as amorphous silicon created by glow discharge in silane, but is generally made of holes in amorphous silicon created by glow discharge in silane. The diffusion distance is very short (only 3μ) compared to 100μ in single crystal silicon.
oooA.

しかしながら、上記のような薄膜活性領域を持つ光起電
力装置は、より高品質の結晶で作られた厚い活性領域を
持つ光起電力装置と比較して安価に製作でき、従って経
済的に有利である。
However, photovoltaic devices with thin film active regions as described above are cheaper to fabricate and are therefore economically advantageous compared to photovoltaic devices with thicker active regions made of higher quality crystals. be.

エアマス−1(AMl) の太陽スペクトルは、その
エネルギの相当部分を太陽スペクトルの高波長部分と呼
ばれる波長6000Å以上の光子中に含み、この6oo
oA以上の波長の太陽輻射は、シラン中のグロー放電に
よって作られた非晶質シリコンを含む薄膜活性領域材料
の多くにおいて、これらの材料中で発生する電荷担体の
拡散距離以上の光学吸収距離を示す。
The solar spectrum of Air Mass-1 (AMl) contains a considerable portion of its energy in photons with a wavelength of 6000 Å or more, which is called the high wavelength part of the solar spectrum.
Solar radiation at wavelengths greater than oA, in many thin-film active region materials, including amorphous silicon created by glow discharge in silane, has optical absorption lengths that exceed the diffusion lengths of charge carriers occurring in these materials. show.

このことは薄膜活性領域を持つ太陽電池を厚い活性領域
を持つ太陽電池の場合と同一の設計理論で製作すると、
太陽スペクトルの高波長部分がこの薄膜の活性領域に少
しも吸収されないため太陽電池の効率は零になってしま
う。
This means that if a solar cell with a thin active region is manufactured using the same design theory as a solar cell with a thick active region,
Since none of the high wavelengths of the solar spectrum are absorbed by the active region of this thin film, the efficiency of the solar cell drops to zero.

このため、太陽スペクトルの高波長部分の吸収率の高い
薄膜活性領域を持つ光起電力装置を設計することが望ま
しい。
Therefore, it is desirable to design photovoltaic devices with thin film active regions that have high absorption in the high wavelength portion of the solar spectrum.

光起電力装置は活性領域を持つ本体と太陽輻射を捕集す
るための入射面を持つ光透過層を具備するが、この発明
ではこの光透過層の厚さを第1の波長の太陽輻射に対し
て入射面が無反射性を呈するように、また光透過層と活
性領域との綜合厚さを第1の波長より長い第2の波長の
太陽輻射に対して上記入射面が無反射性を呈するように
選ぶ。
The photovoltaic device includes a main body having an active region and a light-transmitting layer having an incident surface for collecting solar radiation, and in the present invention, the thickness of the light-transmitting layer is adjusted to reflect solar radiation of a first wavelength. In addition, the total thickness of the light-transmitting layer and the active region is adjusted so that the incidence surface exhibits non-reflection property against solar radiation having a second wavelength longer than the first wavelength. choose the way to present it.

次に添付図面を参照しつつこの発明をさらに詳細に説明
する。
The present invention will now be described in more detail with reference to the accompanying drawings.

第1図にこの発明の光起電力装置の第1の実施例を10
で示す。
FIG. 1 shows a first embodiment of the photovoltaic device of the present invention.
Indicated by

この光起電力装置10はショットキ障壁型太陽電池とし
て例示するが、当業者に明らかなように、この発明は太
陽電池でも光検出器でもよく、また、PN接合構造、P
IN接合構造または異種接合構造等の他の半導体接合を
持つものでもよい。
The photovoltaic device 10 is illustrated as a Schottky barrier solar cell, but as will be apparent to those skilled in the art, the present invention may be a solar cell or a photodetector;
It may also have other semiconductor junctions such as an IN junction structure or a heterojunction structure.

ショットキ障壁型太陽電池10は薄膜活性領域12を含
む本体11を有する。
Schottky barrier solar cell 10 has a body 11 that includes a thin film active region 12 .

この薄膜活性領域12の厚さは約0.1〜10μで、活
性領域とは太陽光線を吸収して電荷担体を発生すること
のできる本体110部分を意味し、良好な光吸収特性を
持つ薄膜半導体材料から作られる。
The thickness of this thin film active region 12 is about 0.1~10μ, the active region means the part of the body 110 that can absorb sunlight and generate charge carriers, and the thin film has good light absorption properties. Made from semiconductor materials.

この発明の説明の便宜上活性領域12はシラン中のグロ
ー放電で作られた非晶質シリコンから成るものとするが
、この活性領域12は多結晶ガリウム砒素やカドミウム
・テルル等の他の薄膜半導体材料から作ることもできる
For convenience of explanation of this invention, the active region 12 is assumed to be made of amorphous silicon produced by glow discharge in silane, but the active region 12 may be made of other thin film semiconductor materials such as polycrystalline gallium arsenide or cadmium tellurium. It can also be made from.

活性領域12の一方の表面は基板14に接している。One surface of active region 12 is in contact with substrate 14 .

この基板14は入射する太陽輻射を反射すると同時に活
性領域12と良好な電気的接触を作る例えばアルミニウ
ムのような材料から成り、活性領域12に対する電気的
接触として働く。
This substrate 14 is made of a material, such as aluminum, which reflects incoming solar radiation and at the same time makes good electrical contact with the active region 12, serving as an electrical contact to the active region 12.

基板14とは反対側の活性領域120表面13には金属
薄膜18が被着されている。
A thin metal film 18 is deposited on the surface 13 of the active region 120 opposite the substrate 14 .

この金属薄膜18は表面13上で非晶質シリコンの活性
領域12とショットキ障壁すなわち表面障壁型接合を形
成することのできる連続した金属薄膜である。
The metal thin film 18 is a continuous metal thin film capable of forming a Schottky barrier or surface barrier type junction with the amorphous silicon active region 12 on the surface 13.

通常ドープしない非晶質シリコンは僅かにN型であるか
ら、金属薄膜18はショットキ障壁を形成するためには
4.5eV以上の高い仕事函数を持つ金属でなげればな
らない。
Since undoped amorphous silicon is normally only slightly N-type, the metal thin film 18 must be a metal with a high work function of 4.5 eV or higher to form a Schottky barrier.

これに適する高い仕事函数を持つ金属として、白金、イ
ンジウム、ロジウム、パラジウムがあげられる。
Metals with high work functions suitable for this purpose include platinum, indium, rhodium, and palladium.

さらに、金属薄膜18は太陽輻射に対して少なくとも半
透明であるように薄く、かつ比較的低い層抵抗を持つも
のでなげればならない。
Furthermore, the metal film 18 must be so thin that it is at least semitransparent to solar radiation and must have a relatively low layer resistance.

この金属薄膜18に必要な光透過特性と低い薄膜抵抗の
値はその金属薄膜が連続薄膜ということと共に薄膜の膜
厚を決定する因子となることは当業者に明らかである。
It is clear to those skilled in the art that the light transmission properties and low thin film resistance required for the metal thin film 18, together with the fact that the metal thin film is a continuous thin film, are factors that determine the thickness of the thin film.

金属薄膜18の活性領域12と反対側の面には太陽輻射
24が基体11に入射することができる入射面22を持
つ光透過層20が配置されている。
A light-transmitting layer 20 having an entrance surface 22 through which solar radiation 24 can enter the base body 11 is arranged on the side of the thin metal film 18 facing away from the active region 12 .

この光透過層20は2酸化チタン、酸化ジルコニウム、
窒化シリコンのような太陽輻射を実質的に透過させる誘
電体材料から成る。
This light transmitting layer 20 is made of titanium dioxide, zirconium oxide,
It is comprised of a dielectric material that is substantially transparent to solar radiation, such as silicon nitride.

シラン中のグロー放電によって製作された非晶質シリコ
ンの活性領域12は約3500〜5000大の範囲の太
陽輻射が強く吸収されるような太陽スペクトルに対する
吸収曲線を持つ(以後この領域を高吸収領域と呼ぶ)が
、非晶質シリコンの活性領域12による吸収は5000
Å以上の波長の太陽輻射に対して減少する(以後この領
域を低吸収領域と呼ぶ)。
The active region 12 of amorphous silicon fabricated by glow discharge in silane has an absorption curve for the solar spectrum such that solar radiation in the range of about 3500 to 5000 is strongly absorbed (hereinafter this region will be referred to as the high absorption region). ), but the absorption by the active region 12 of amorphous silicon is 5000
It decreases for solar radiation with wavelengths longer than Å (hereinafter this region will be referred to as the low absorption region).

光透過層2001つの機能は非晶質シリコンの吸収曲線
の高吸収領域の太陽輻射がほとんど反射することなく入
射面22に入射するようにすることである。
One function of the light transmitting layer 200 is to allow solar radiation in the high absorption region of the absorption curve of amorphous silicon to enter the entrance surface 22 with little reflection.

このため光透過層20の厚さは高吸収領域の第1の所定
波長の太陽光線に対し入射面22で反射しない様に選択
しなげればならない。
Therefore, the thickness of the light-transmitting layer 20 must be selected so that the sunlight having the first predetermined wavelength in the high absorption region is not reflected at the incident surface 22.

この第1の所定波長は高吸収領域の太陽輻射が活性預域
12で最大限吸収されて第1の無反射条件が成立するよ
うに選ぶ。
This first predetermined wavelength is selected so that the solar radiation in the high absorption region is absorbed to the maximum extent in the active deposit region 12 and the first non-reflection condition is satisfied.

金属薄膜18の膜厚はこの第1の無反射条件に合致する
とき若干光透過層20の厚さに影響を及ぼす。
The thickness of the metal thin film 18 slightly influences the thickness of the light transmitting layer 20 when this first non-reflection condition is met.

この発明の最も有用な点は、光透過層20と活性領域1
2との綜合厚さを低吸収領域の第2の所定波長に合わせ
て装置10の吸収能をこの低吸収領域でも向上させたこ
とにある。
The most useful point of this invention is that the light transmitting layer 20 and the active region 1
2 is adjusted to the second predetermined wavelength of the low absorption region, and the absorption ability of the device 10 is improved even in this low absorption region.

この第2の所定波長は活性領域12で吸収される低吸収
領域の太陽輻射量を最大にするように選択される。
This second predetermined wavelength is selected to maximize the amount of solar radiation absorbed by the active region 12 in the low absorption region.

この吸収能の向上は低吸収領域の太陽輻射に対して入射
面22で第2の無反射条件が成立するためである。
This improvement in absorption ability is due to the fact that the second non-reflection condition is satisfied at the entrance surface 22 for solar radiation in the low absorption region.

活性領域12がシラン中のグロー放電による非晶質シリ
コンで作られる場合、光透過層20が約5oooAの波
長(第1の所定波長)の太陽輻射に対し無反射性を呈す
るような厚さを持ち、活性領域12と光透過層20とが
約6500穴の波長(第2の所定波長)の太陽輻射に対
し無反射性を呈するような綜合厚さを持つことが望まし
い。
If the active region 12 is made of amorphous silicon by glow discharge in silane, the thickness is such that the light-transmissive layer 20 is non-reflective to solar radiation at a wavelength of about 5oooA (first predetermined wavelength). It is desirable that the active region 12 and the light transmitting layer 20 have a combined thickness such that the active region 12 and the light transmitting layer 20 are non-reflective to solar radiation at a wavelength of about 6,500 holes (the second predetermined wavelength).

この場合、第2の所定波長は第1の所定波長よりも長い
In this case, the second predetermined wavelength is longer than the first predetermined wavelength.

当業者に周知のごとく、無反射層または無反射条件の設
計においである特定の輻射波長を選ぶと、その無反射条
件は入射面における反射がその波長で最低になるように
働ら(。
As is well known to those skilled in the art, when a particular wavelength of radiation is selected in the design of an anti-reflection layer or condition, the non-reflection condition operates such that the reflection at the input surface is minimized at that wavelength.

この選択波長近傍(僅かに長波長側もしくは短波長側)
の太陽輻射に対しても入射面は比較的低い反射率を持つ
が、輻射波長が選択波長からづれるに従がってその入射
面の反射率は高くなる。
Near this selected wavelength (slightly longer wavelength side or shorter wavelength side)
The incident surface has a relatively low reflectance for solar radiation, but as the radiation wavelength deviates from the selected wavelength, the reflectance of the incident surface increases.

第2図には第1および第2の所定波長5000Aおよび
6500穴に対する入射面22の反射率が4250〜6
750大の波長範囲の太陽輻射に対して比較的低いこと
が示されている。
FIG. 2 shows the reflectance of the incident surface 22 for the first and second predetermined wavelengths of 5,000 A and 6,500 holes of 4,250 to 6.
It has been shown to be relatively low for solar radiation in the 750 wavelength range.

太陽電池10の動作時には、活性領域12を最初に通過
する間に吸収されない第2の所定波長近傍の太陽輻射が
反射基板14によって反射されて活性領域12に戻され
、次に活性領域12を通過する間に吸収される。
During operation of solar cell 10 , solar radiation near a second predetermined wavelength that is not absorbed during its initial passage through active region 12 is reflected by reflective substrate 14 back to active region 12 and then passes through active region 12 . It is absorbed during

しかし、第2の所定波長近傍の太陽輻射が活性領域12
の2回目の通過で吸収されなくても、入射面22は第2
の所定波長近傍の太陽輻射を反射しないため、この太陽
輻射は入射面22から装置10を出ていくことができな
い。
However, solar radiation near the second predetermined wavelength may cause the active region 12 to
Even if it is not absorbed in the second pass of
does not reflect solar radiation in the vicinity of a predetermined wavelength, so this solar radiation cannot exit the device 10 through the entrance surface 22.

このため活性領域12によって僅かしか吸収されないこ
の太陽輻射は光透過層20と活性領域12との内部でほ
とんど捕捉され、それによって活性領域12中での吸収
される確率が高くなる。
This solar radiation, which is only slightly absorbed by the active region 12, is therefore mostly trapped inside the light-transmissive layer 20 and the active region 12, thereby increasing the probability of absorption in the active region 12.

この太陽輻射の捕捉は、吸収されやすい第1の所定波長
の輻射に対しては普通これが活性領域12の最初の通過
で吸収されてしまうために起らない。
This trapping of solar radiation does not normally occur for the first predetermined wavelength of radiation that is more likely to be absorbed, since it is absorbed on the first pass through the active region 12.

第3図に従来型のシラン中のグロー放電によって製作し
た非晶質シリコンの活性領域を持つ太陽電池とこの発明
の太陽電池の太陽輻射吸収効率の比較を示す。
FIG. 3 shows a comparison of the solar radiation absorption efficiency of a conventional solar cell having an amorphous silicon active region fabricated by glow discharge in silane and a solar cell of the present invention.

図中の曲線Aは従来型の非晶質シリコンの太陽電池の吸
収効率を、曲線Bはこの発明の太陽電池10の吸収効率
を示す。
Curve A in the figure shows the absorption efficiency of a conventional amorphous silicon solar cell, and curve B shows the absorption efficiency of the solar cell 10 of the present invention.

ここで比較のため選んだ従来型の太陽電池にシラン中の
グロー放電によって製作した厚さ約10μの活性領域を
持つもので、この活性領域はアルミニウムのような材料
の基板に隣接して形成されている。
The conventional solar cell selected here for comparison has an active region approximately 10 μm thick fabricated by glow discharge in silane, with the active region formed adjacent to a substrate of a material such as aluminum. ing.

この活性領域の背面接触部と反対側の表面には白金の薄
膜が被着されてショットキ障壁を形成している。
A thin film of platinum is deposited on the surface of the active region opposite the back contact to form a Schottky barrier.

この白金薄膜の厚さは約75久である。The thickness of this platinum thin film is approximately 75 mm.

活性領域と反対側の白金薄膜面には厚さ約340人の酸
化チタン(T i02 )の反射防止層が形成され、波
長的5oooAの太陽輻射に対して無反射状態を呈する
ようになっている。
An antireflection layer of titanium oxide (T i02 ) with a thickness of about 340 nm is formed on the platinum thin film surface opposite to the active region, so that it exhibits a non-reflective state against solar radiation with a wavelength of 500A. .

この発明の太陽電池10の光透過層20と金属薄膜18
とは上記従来型の太陽電池と同一材料、同一厚さのもの
で、やはり5oooAの太陽輻射に対し無反射状態を呈
する。
Light transmitting layer 20 and metal thin film 18 of solar cell 10 of this invention
is made of the same material and has the same thickness as the conventional solar cell described above, and also exhibits no reflection against solar radiation of 500A.

しかし活性領域1また厚さ約3250久でアルミニウム
の反射基板14上にあり、この活性領域12の厚さは光
透過層20との綜合厚さが約6500Aの太陽輻射に対
する第2の無反射状態を呈するように選ばれているため
、第3図においてこの発明の太陽電池10を示す曲線B
の下に斜線で示されるように、明らかに太陽光子束の吸
収の増加が見られる。
However, the active region 1 also has a thickness of about 3250 Å and is located on an aluminum reflective substrate 14, and this active region 12 has a second non-reflective state for solar radiation with a total thickness of about 6500 Å with the light-transmitting layer 20. Curve B showing the solar cell 10 of the present invention in FIG.
As shown by the diagonal line below, there is clearly an increase in the absorption of solar photon flux.

従来型の非晶質シリコンの太陽電池の光子変換効率は約
28%であるのに対し、この発明の太陽電池10の変換
効率は約33%となり、従来型の太陽電池の初期効率に
比べ18%も増加している。
While the photon conversion efficiency of a conventional amorphous silicon solar cell is approximately 28%, the conversion efficiency of the solar cell 10 of the present invention is approximately 33%, which is 18% higher than the initial efficiency of the conventional solar cell. % has also increased.

太陽電池10を製造するときは、例えばアルミニウムの
基板14を通常のグロー放電装置中に置き、実質的にシ
ランの雰囲気中でグロー放電を行なって基板14上に非
晶質シリコンの活性領域12を被着した後、その活性領
域12を含む基板14を通常の蒸着装置に入れて活性領
域12上に金属薄膜18を蒸着し、さらにその金属薄膜
18上に光透過層20を被着形成する。
When manufacturing the solar cell 10, a substrate 14 of, for example, aluminum is placed in a conventional glow discharge apparatus, and a glow discharge is performed in a substantially silane atmosphere to form an active region 12 of amorphous silicon on the substrate 14. After the deposition, the substrate 14 including the active region 12 is placed in a conventional vapor deposition apparatus to deposit a metal thin film 18 on the active region 12, and further to deposit a light transmitting layer 20 on the metal thin film 18.

第4図にこの発明の光起電力装置の第2の実施例を11
0で示す。
FIG. 4 shows a second embodiment of the photovoltaic device of the present invention.
Indicated by 0.

第1の実施例で説明したのと同様に、第2の実施例もシ
ョットキ障壁型太陽電池であるとする。
As explained in the first embodiment, the second embodiment is also assumed to be a Schottky barrier type solar cell.

太陽電池110の本体111は光吸収特性の良い薄膜半
導体材料の活性領域112を持つ。
The body 111 of the solar cell 110 has an active region 112 of a thin film semiconductor material with good light absorption properties.

この場合も説明の便宜上、活性領域112はシラン中の
グロー放電によって形成される非晶質シリコンから戒る
ものとするが、第1の実施例と異なり、この活性領域1
12はシラン中のグロー放電によって形成されたドープ
されていない非晶質シリコンの第1層113と、この第
1層113に隣接して、シランとドーピングガスとの混
合気体中のグロー放電によって形成されたドープされた
非晶質シリコンの第2層115から成る。
In this case as well, for convenience of explanation, it is assumed that the active region 112 is made of amorphous silicon formed by glow discharge in silane.
12 is a first layer 113 of undoped amorphous silicon formed by glow discharge in silane, and adjacent to this first layer 113, formed by glow discharge in a mixed gas of silane and doping gas. a second layer 115 of doped amorphous silicon.

第2層115は高濃度にドープして、たとエバ0.1原
子%の燐を含むことが望ましい。
The second layer 115 is preferably highly doped and contains 0.1 atomic percent phosphorous.

第1層113を原さ約3ooo久とすれば第2層115
は通常約200人の厚さとなる。
If the first layer 113 is about 3 ooo long, the second layer 115
is usually about 200 people thick.

活性領域112、評言すればその第1層113は基板1
14の表面上にあり、この基板114も第1の実施例の
基板14と同様に太陽輻射を反射する材料で作られるが
、この場合は同時に活性領域112とショットキ障壁す
なわち表面障壁型接合を形成することのできる材料でも
ある。
The active region 112, so to speak, the first layer 113 of the substrate 1
14, this substrate 114 is also made of a material that reflects solar radiation like the substrate 14 of the first embodiment, but in this case it also forms a Schottky barrier or surface barrier type junction with the active region 112. It is also a material that can

基板114に適する材料としてロジウム、イリジウム、
白金等の金属があげられる。
Suitable materials for the substrate 114 include rhodium, iridium,
Examples include metals such as platinum.

第2層115の基板114と反対側の面にはこの第2層
115に対し良好な電気的接触すなわちオーム接触を作
ることのできる金材料からなる金属層117がある。
On the opposite side of the second layer 115 from the substrate 114 is a metal layer 117 made of a gold material capable of making good electrical or ohmic contact to the second layer 115.

白金がこの材料の1例である。金属層117もまた太陽
輻射に対して実質的に透明で、通常約50A程度の比較
的薄い厚さのものである。
Platinum is one example of this material. Metal layer 117 is also substantially transparent to solar radiation and is of relatively thin thickness, typically on the order of about 50 amps.

金属層1170表面には入射面122を持つ太陽輻射透
過層120が形成されている。
A solar radiation transmitting layer 120 having an incident surface 122 is formed on the surface of the metal layer 1170.

第1の実施例の透過層20と同様に、この透過層120
も太陽輻射に対して実質的に透明であると同時に金属層
117と良好な電気的接触を作ることのできるものであ
る。
Similar to the transparent layer 20 of the first embodiment, this transparent layer 120
is also substantially transparent to solar radiation while being able to make good electrical contact with metal layer 117.

光透過層1200条件を満たすことのできる材料として
、例えば酸化インジウム錫がある。
An example of a material that can satisfy the conditions for the light transmitting layer 1200 is indium tin oxide.

金属層1170目的は光透過層120と活性領域112
との間で電気的接触を形成し、整流性の接合を作らない
ようにすることである。
Metal layer 1170 purpose is light transmission layer 120 and active region 112
The purpose of this is to form electrical contact between the two and avoid creating a rectifying junction.

さらに、金属層117に隣接して第2層115のような
高濃度ドープ層があるため金属層117と活性領域11
2間で良好な電気的接触が形成される。
Furthermore, since there is a highly doped layer such as the second layer 115 adjacent to the metal layer 117, the metal layer 117 and the active region 11
A good electrical contact is made between the two.

ドープされていない非晶質シリコンの第1層113は僅
かにN型であるから、第2層115としては同一の導電
型で高濃度にドープしたものでなげればならない。
Since the first layer 113 of undoped amorphous silicon is slightly N-type, the second layer 115 must be of the same conductivity type and heavily doped.

例えば第2層115は燐のようなN型不純物でドープす
ることができる。
For example, second layer 115 can be doped with an N-type impurity such as phosphorous.

この発明の第1の実施例と同様に、太陽電池110の光
透過層120は第1の所定波長に対し入射面122で第
1の無反射条件を満たす様な厚さを持ち、さらに光透過
層120と活性領域112との綜合厚さは第2の所定波
長に対し入射面122で第2の無反射条件を満たすよう
に選定されている。
Similar to the first embodiment of the present invention, the light transmitting layer 120 of the solar cell 110 has a thickness that satisfies the first non-reflection condition at the incident surface 122 for a first predetermined wavelength, and furthermore, the light transmitting layer 120 has a thickness that satisfies the first non-reflection condition at the incident surface 122 for a first predetermined wavelength. The combined thickness of layer 120 and active region 112 is selected to satisfy a second non-reflection condition at entrance surface 122 for a second predetermined wavelength.

第1の実施例の場合と同様、金属層117の厚さは第1
の無反射条件を満足させる光透過層120の厚さに若干
影響を及ぼす。
As in the case of the first embodiment, the thickness of the metal layer 117 is the same as that of the first embodiment.
This has a slight influence on the thickness of the light transmitting layer 120 that satisfies the non-reflection condition.

第2の実施例では光透過層120と活性領域112との
間に電気的整流作用防止用の金属層117を設けたが、
この整流作用はドープした第2層115単独でも、すな
わち金属層117なしでも防止し得ることは容易に考え
られる。
In the second embodiment, a metal layer 117 for preventing electrical rectification was provided between the light transmitting layer 120 and the active region 112.
It is easily conceivable that this rectifying effect can be prevented by the doped second layer 115 alone, ie, without the metal layer 117.

この発明の第1および第2の実施例は本体内におけるシ
ョットキ障壁の位置が異なるが、その動作は本質的に同
じである。
Although the first and second embodiments of the invention differ in the location of the Schottky barrier within the body, their operation is essentially the same.

シラン中のグロー放電によって形成した非晶質シリコン
の活性領域112と白金の基板114を用いる場合、金
属層117の膜厚を約50A、酸化インジウム錫の光透
過層120の厚さを約525久とすると、第1の無反射
条件は約5000人の波長で成立する。
When using an active region 112 of amorphous silicon formed by glow discharge in silane and a substrate 114 of platinum, the thickness of the metal layer 117 is approximately 50 Å, and the thickness of the light transmitting layer 120 of indium tin oxide is approximately 525 mm. Then, the first non-reflection condition is satisfied at a wavelength of about 5000 people.

さらに、活性領域112の厚さは約320OAで、活性
領域112と光透過層120との綜合厚さが約6500
穴の波長の太陽輻射に対し入射面122で第2の無反射
条件を形成するようになっている。
Further, the thickness of the active region 112 is about 320 OA, and the total thickness of the active region 112 and the light transmission layer 120 is about 6500 OA.
A second non-reflection condition is formed at the entrance surface 122 for solar radiation at the wavelength of the hole.

太陽電池110を製造するときは、まず白金の基板11
4を通常のグロー放電装置に入れ、実質的なシラン雰囲
気中でグロー放電を行なって第1層113を被着した後
、ホスフィンのようなドーピングガスをグロー放電雰囲
気中に導入して第2層115を被着し、次にこの活性領
域112を持つ基板114を通常の蒸着装置に入れて金
属層117と光透過層120とを蒸着する。
When manufacturing the solar cell 110, first the platinum substrate 11
4 is placed in a conventional glow discharge apparatus and a glow discharge is performed in a substantial silane atmosphere to deposit the first layer 113, and then a doping gas such as phosphine is introduced into the glow discharge atmosphere to deposit the second layer 113. 115 is deposited, and then the substrate 114 with the active region 112 is placed in a conventional deposition apparatus to deposit a metal layer 117 and a light transmitting layer 120.

この発明の第1の実施例において活性領域12に電気的
接触を形成する手段は基板14および金属薄膜18であ
るが、第2の実施例において活性領域112に電気的接
触を形成する手段は基板114と金属層117に直列に
入った光透過層120である。
In the first embodiment of the invention, the means for making electrical contact to the active region 12 is the substrate 14 and the thin metal film 18, whereas in the second embodiment, the means for making the electrical contact to the active region 112 is the substrate 14. 114 and a light transmitting layer 120 in series with the metal layer 117.

この発明の第1および第2の実施例において活性領域と
接触する基板表面を粗面化するか傾げることによって吸
収されない太陽輻射を捕捉する入射面の能力を向上し得
ることはこの発明により容易に予想することができる。
The invention readily shows that in the first and second embodiments of the invention, the ability of the entrance surface to capture unabsorbed solar radiation can be improved by roughening or tilting the substrate surface in contact with the active region. It can be predicted.

この発明の光起電力装置は優れた太陽光子変換効率を持
つ装置を具現する無反射条件の設計基準を提供するもの
に外ならない。
The photovoltaic device of the present invention provides a design standard for non-reflection conditions to realize a device with excellent solar photon conversion efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の光起電力装置の第1の実施例を示す
断面図である。 第2図は第1の所定波長が約5000人、第2の所定波
長が約6500大のこの発明の光起電力装置の太陽輻射
波長対反射率の図表である。 第3図は従来法による太陽電池とこの発明の光起電力装
置との太陽輻射吸収効率の比較を示す図表である。 第4図はこの発明の光起電力装置の第2の実施例を示す
断面図である。 10.110・・・・・・太陽電池、11,111・・
・・・・本体、12,112・・・・・・活性領域、1
4,114・・・・・・基板、18,117・・・・・
・金属薄膜、20゜120・・・・・・光透過層、22
,122・・・・・・光入射面、113・・・・・・活
性領域の第1層、115・・・・・・活性領域の第2層
FIG. 1 is a sectional view showing a first embodiment of the photovoltaic device of the present invention. FIG. 2 is a graph of solar radiation wavelength versus reflectance for a photovoltaic device of the present invention in which the first predetermined wavelength is about 5,000 and the second predetermined wavelength is about 6,500. FIG. 3 is a chart showing a comparison of solar radiation absorption efficiency between a conventional solar cell and a photovoltaic device of the present invention. FIG. 4 is a sectional view showing a second embodiment of the photovoltaic device of the present invention. 10.110...Solar cell, 11,111...
...Main body, 12,112...Active region, 1
4,114... Board, 18,117...
・Metal thin film, 20°120...Light transmission layer, 22
, 122... Light incidence surface, 113... First layer of active region, 115... Second layer of active region.

Claims (1)

【特許請求の範囲】 1 太陽輻射が入射することのできる入射面を持ち、そ
の入射面が太陽輻射スペクトルの第1の所定波長の入射
太陽輻射に対し実質的に無反射性を呈するような厚さを
持つ太陽輻射透過層と、この透過層との綜合厚さが、上
記入射面が太陽輻射スペクトル中で上記第1の所定波長
よりも長い第2の所定波長の入射太陽輻射に対し実質的
に無反射性を呈するような活性領域とを含む本体を持つ
光起電力装置。 2 太陽輻射が入射することのできる入射面を持ち、そ
の入射面が太陽輻射スペクトルの第1の所定波長の入射
太陽輻射に対し実質的に無反射性を呈するような厚さを
持つ太陽幅対透過層と、この透過層との綜合厚さが、上
記入射面が太陽輻射スペクトル中で上記第1の所定波長
よりも長い第2の所定波長の入射太陽輻射に対し実質的
に無反射性を呈するような活性領域と、上記透過層と活
性領域との間にあって両者に隣接する金属層とを有し、
この金属層は上記活性領域と表面障壁型接合を形成する
ことができる材料から成る光起電力装置。 3 上記活性領域が同一の導電型の第1層と第2層とを
含み、上記第1層より第2層の方が高い不純物濃度を持
つ特許請求の範囲第1項記載の光起電力装置。
[Scope of Claims] 1. Having an entrance surface through which solar radiation can be incident, the entrance surface having a thickness such that the entrance surface exhibits substantially non-reflection for incident solar radiation at a first predetermined wavelength of the solar radiation spectrum. a solar radiation transmitting layer having a thickness of about 100 nm, and a total thickness of the transmitting layer such that the incident surface has a solar radiation transmitting layer having a thickness such that the total thickness of the solar radiation transmitting layer is such that the incident surface has a thickness that is substantially equal to the incident solar radiation having a second predetermined wavelength longer than the first predetermined wavelength in the solar radiation spectrum. A photovoltaic device having a main body including an active region exhibiting non-reflective properties. 2. A solar width pair having an entrance surface through which solar radiation can be incident, and having a thickness such that the entrance surface exhibits substantially non-reflection to the incident solar radiation at the first predetermined wavelength of the solar radiation spectrum. a transmissive layer and a combined thickness of the transmissive layer such that the incident surface is substantially non-reflective to incident solar radiation at a second predetermined wavelength in the solar radiation spectrum that is longer than the first predetermined wavelength; and a metal layer located between and adjacent to the transparent layer and the active region,
The metal layer is comprised of a material capable of forming a surface barrier type junction with the active region. 3. The photovoltaic device according to claim 1, wherein the active region includes a first layer and a second layer of the same conductivity type, and the second layer has a higher impurity concentration than the first layer. .
JP53035944A 1977-03-28 1978-03-27 photovoltaic device Expired JPS5850034B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US78219077A 1977-03-28 1977-03-28
US000000782190 1977-03-28
US000000848250 1977-11-03
US05/848,250 US4126150A (en) 1977-03-28 1977-11-03 Photovoltaic device having increased absorption efficiency

Publications (2)

Publication Number Publication Date
JPS53120394A JPS53120394A (en) 1978-10-20
JPS5850034B2 true JPS5850034B2 (en) 1983-11-08

Family

ID=27119964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53035944A Expired JPS5850034B2 (en) 1977-03-28 1978-03-27 photovoltaic device

Country Status (9)

Country Link
JP (1) JPS5850034B2 (en)
AU (1) AU517084B2 (en)
DE (1) DE2812547A1 (en)
EG (1) EG13199A (en)
ES (1) ES468085A1 (en)
FR (1) FR2386143A1 (en)
GB (1) GB1597037A (en)
HK (1) HK77286A (en)
IT (1) IT1092849B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4163677A (en) * 1978-04-28 1979-08-07 Rca Corporation Schottky barrier amorphous silicon solar cell with thin doped region adjacent metal Schottky barrier
JPS56152276A (en) * 1980-04-25 1981-11-25 Teijin Ltd Solar cell made of amorphous silicon thin film
DE3023165A1 (en) * 1980-06-20 1982-01-07 Siemens AG, 1000 Berlin und 8000 München Solar cell with high efficiency - using thin film of amorphous silicon on thin film of aluminium with matt reflecting surface
DE3048381C2 (en) * 1980-12-22 1985-09-05 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Thin film solar cell
IL67926A (en) * 1982-03-18 1986-04-29 Energy Conversion Devices Inc Photo-voltaic device with radiation reflector means
DE3234096A1 (en) * 1982-09-14 1984-03-15 Messerschmitt-Bölkow-Blohm GmbH, 8000 München SILICON COMPONENTS AND ARRAYS FOR DETECTING INFRARED LIGHT
JPS5976481A (en) * 1982-10-25 1984-05-01 Semiconductor Energy Lab Co Ltd Semiconductor device for photoelectric conversion
US4497974A (en) * 1982-11-22 1985-02-05 Exxon Research & Engineering Co. Realization of a thin film solar cell with a detached reflector
AU576594B2 (en) * 1984-06-15 1988-09-01 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Heat-resistant thin film photoelectric converter
JPH0537484Y2 (en) * 1987-11-30 1993-09-22
JPH01175269A (en) * 1987-12-29 1989-07-11 Nippon Mining Co Ltd Solar battery
JP2717583B2 (en) * 1988-11-04 1998-02-18 キヤノン株式会社 Stacked photovoltaic element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3533850A (en) * 1965-10-13 1970-10-13 Westinghouse Electric Corp Antireflective coatings for solar cells

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3176679A (en) * 1963-10-09 1965-04-06 Engelhard Ind Inc Solar energy collector
DE2405587A1 (en) * 1973-02-13 1974-08-15 Communications Satellite Corp SOLAR CELL AND METHOD FOR MANUFACTURING IT
US3973994A (en) * 1974-03-11 1976-08-10 Rca Corporation Solar cell with grooved surface
US3988167A (en) * 1975-03-07 1976-10-26 Rca Corporation Solar cell device having improved efficiency
AU503228B2 (en) * 1975-07-28 1979-08-30 Rca Corp. Semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3533850A (en) * 1965-10-13 1970-10-13 Westinghouse Electric Corp Antireflective coatings for solar cells

Also Published As

Publication number Publication date
IT7820753A0 (en) 1978-02-28
FR2386143A1 (en) 1978-10-27
AU517084B2 (en) 1981-07-09
ES468085A1 (en) 1978-12-16
HK77286A (en) 1986-10-24
FR2386143B1 (en) 1983-05-27
DE2812547C2 (en) 1990-07-19
DE2812547A1 (en) 1978-10-05
EG13199A (en) 1981-06-30
IT1092849B (en) 1985-07-12
AU3444378A (en) 1979-09-27
GB1597037A (en) 1981-09-03
JPS53120394A (en) 1978-10-20

Similar Documents

Publication Publication Date Title
US4126150A (en) Photovoltaic device having increased absorption efficiency
US4292461A (en) Amorphous-crystalline tandem solar cell
JP5237791B2 (en) Heterojunction solar cell
US4532537A (en) Photodetector with enhanced light absorption
US4442310A (en) Photodetector having enhanced back reflection
US4663188A (en) Method for making a photodetector with enhanced light absorption
CN109728103B (en) Solar cell
JP4811945B2 (en) Thin film photoelectric converter
EP1724840B1 (en) Photoelectric cell
US5705828A (en) Photovoltaic device
US4496788A (en) Photovoltaic device
JPS6249672A (en) Amorphous photovoltaic element
US4772335A (en) Photovoltaic device responsive to ultraviolet radiation
JPH0117272B2 (en)
JP2002270879A (en) Semiconductor device
US20100051095A1 (en) Hybrid Photovoltaic Cell Using Amorphous Silicon Germanium Absorbers With Wide Bandgap Dopant Layers and an Up-Converter
US20110272010A1 (en) High work function metal interfacial films for improving fill factor in solar cells
JPS5850034B2 (en) photovoltaic device
EP0099720A2 (en) Photovoltaic device
US4376228A (en) Solar cells having ultrathin active layers
JP3236306B2 (en) Enhanced short-circuit current using broadband gap n-layer in pin amorphous silicon photovoltaic cells
JP2614561B2 (en) Photovoltaic element
JPH07321362A (en) Photovoltaic device
JP3342257B2 (en) Photovoltaic element
JP2896793B2 (en) Method for manufacturing photovoltaic device