JPH05258922A - Manufacture of varistor - Google Patents

Manufacture of varistor

Info

Publication number
JPH05258922A
JPH05258922A JP4086501A JP8650192A JPH05258922A JP H05258922 A JPH05258922 A JP H05258922A JP 4086501 A JP4086501 A JP 4086501A JP 8650192 A JP8650192 A JP 8650192A JP H05258922 A JPH05258922 A JP H05258922A
Authority
JP
Japan
Prior art keywords
varistor
oxide
semiconductor porcelain
compound
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4086501A
Other languages
Japanese (ja)
Inventor
Koji Hattori
康次 服部
Kazuyoshi Nakamura
和敬 中村
Kenjirou Mihara
賢二良 三原
Yasunobu Yoneda
康信 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP4086501A priority Critical patent/JPH05258922A/en
Publication of JPH05258922A publication Critical patent/JPH05258922A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To prevent the generation of irregularity in varistor voltage, non-linear coefficient and the like by making uniform the temperature and atmosphere when an Na oxide and the like is thermally diffused on a semiconductor porcelain, and to obtain a varistor manufacturing method with which the characteristics of life and surge resistivity can be improved by removing the adhered Na compound. CONSTITUTION:When a varistor is manufactured by thermally diffusing an Na oxide or its compound on a semiconductor porcelain, the semiconductor porcelain and the Na oxide, or its compound, are housed in a magnetic container, and after the thermal diffusion has been conducted by rotating the container, an ultrasonic washing operation is conducted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、セラミックス粒界を酸
化させることによって電圧非直線特性を得るようにした
バリスタに関し、特に半導体磁器にNa酸化物等を熱拡
散させる際の温度や雰囲気を均一化してバリスタ電圧,
非直線係数等のばらつきを回避でき、かつNa化合物の
付着を防止して、寿命特性,サージ耐量を改善できるよ
うにした製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a varistor in which a voltage non-linear characteristic is obtained by oxidizing a ceramic grain boundary, and in particular, a temperature and an atmosphere at the time of thermally diffusing Na oxide or the like into a semiconductor ceramic are uniform. Varistor voltage,
The present invention relates to a manufacturing method capable of avoiding variations in nonlinear coefficient and the like, preventing adhesion of Na compounds, and improving life characteristics and surge resistance.

【0002】[0002]

【従来の技術】一般に、SrTiO3 系半導体セラミッ
クスを主成分とするバリスタは、サージ吸収素子,ノイ
ズ吸収素子として電子機器等に広く使用されている。こ
のバリスタは、主成分としてSrTiO3 及びSrを一
部CaやBaと置換したペロブスカイト系多結晶焼結体
を電子価制御や還元焼成により半導体化し、これにNa
酸化物,又はそれらの化合物を拡散させることによっ
て、結晶粒界に電気的障壁を形成し、これにより大きな
誘電率と電圧非直線特性を得ている。このようなバリス
タを製造する場合、従来、SrTiO3 系半導体セラミ
ックスからなる成形体を焼成して半導体磁器を形成し、
この半導体磁器にNa酸化物,あるいはその化合物を所
定量塗布し、上記半導体磁器を皿状の匣に並べ、この状
態で熱処理することによって上記酸化物を半導体磁器に
熱拡散させる方法が一般的である。
2. Description of the Related Art Generally, varistors containing SrTiO 3 -based semiconductor ceramics as a main component are widely used as surge absorbing elements and noise absorbing elements in electronic devices and the like. In this varistor, a perovskite-based polycrystalline sintered body in which SrTiO 3 and Sr are partially replaced with Ca or Ba as main components is converted into a semiconductor by electronic valency control or reduction firing, and Na
By diffusing the oxide or the compound thereof, an electric barrier is formed at the crystal grain boundary, and thereby a large dielectric constant and a voltage non-linear characteristic are obtained. In the case of manufacturing such a varistor, conventionally, a molded body made of SrTiO 3 based semiconductor ceramics is fired to form a semiconductor porcelain,
A general method is to apply a predetermined amount of Na oxide or its compound to the semiconductor porcelain, arrange the semiconductor porcelain in a dish-shaped box, and heat-treat the oxide in this state to thermally diffuse the oxide into the semiconductor porcelain. is there.

【0003】[0003]

【発明が解決しようとする課題】ところで、サージ吸収
効果や寿命特性に優れたバリスタを得るには、バリスタ
を構成する半導体粒子径や粒界の状態を微妙にコントロ
ールするために、熱処理時の温度や雰囲気にばらつきが
生じないよう均一にコントロールする必要がある。しか
しながら、上記従来の製造方法では、温度や雰囲気を均
一にコントロールするには限界があり、その結果、バリ
スタ電圧,非直線係数,静電容量等の電気的特性にばら
つきが生じ易いという問題点がある。また、上記従来の
製造方法では、熱処理時の冷却過程において、Na化合
物が半導体磁器の表面に付着し易く、このためイオン化
し易いままの状態で残ることから、寿命特性やサージ耐
量を低下させる要因となっているという問題点がある。
By the way, in order to obtain a varistor excellent in surge absorption effect and life characteristics, in order to delicately control the diameter of semiconductor particles and the state of grain boundaries constituting the varistor, the temperature at the time of heat treatment should be controlled. It is necessary to control uniformly so that the atmosphere does not vary. However, the conventional manufacturing method described above has a limit in controlling the temperature and the atmosphere uniformly, and as a result, there is a problem in that the electrical characteristics such as the varistor voltage, the non-linear coefficient, and the capacitance easily vary. is there. Further, in the above-mentioned conventional manufacturing method, during the cooling process during the heat treatment, the Na compound is likely to adhere to the surface of the semiconductor porcelain, and therefore remains in a state of being easily ionized. There is a problem that is.

【0004】本発明は、上記従来の状況に鑑みてなされ
たもので、熱処理時の温度,雰囲気を均一化して電気的
特性のばらつきを回避できるとともに、Na化合物の付
着を防止して寿命特性,サージ耐量を改善できるバリス
タの製造方法を提供することを目的としている。
The present invention has been made in view of the above-mentioned conventional circumstances. The temperature and atmosphere during heat treatment can be made uniform to avoid variations in electrical characteristics, and the adhesion of Na compounds can be prevented to improve life characteristics. It is an object of the present invention to provide a varistor manufacturing method capable of improving surge withstand capability.

【0005】[0005]

【課題を解決するための手段】本件発明者らは、半導体
磁器にNa酸化物等を熱拡散させる熱処理工程が電気的
特性を決定づける重要な工程であるという観点から、こ
の熱処理時の過程について検討したところ、従来方法は
匣上に半導体磁器を載置し、該匣を熱処理炉内に固定し
た状態で行っていることから、熱処理時の昇温からトッ
プ温度にかけて半導体磁器に塗布したNa酸化物が飛散
し、該酸化物が主たる雰囲気を形成しており、その結果
粒界への酸化物の拡散が抑制されている。このことか
ら、上記半導体磁器を容器内に収容して酸化物の飛散を
防止するとともに、該容器を回転させて半導体磁器を移
動させることによって、温度,雰囲気のばらつきを解消
できることを見出した。また、熱処理を施した後に半導
体磁器を超音波洗浄することによって、冷却時に付着残
留した余剰のNa化合物を取り除くことができることに
想到し、発明を成したものである。
The inventors of the present invention have examined the process of heat treatment from the viewpoint that the heat treatment process of thermally diffusing Na oxide or the like into the semiconductor porcelain is an important process that determines the electrical characteristics. However, according to the conventional method, since the semiconductor porcelain is placed on the box and the box is fixed in the heat treatment furnace, the Na oxide applied to the semiconductor porcelain is increased from the temperature rise during the heat treatment to the top temperature. Are scattered, and the oxide forms a main atmosphere, and as a result, diffusion of the oxide to the grain boundaries is suppressed. From this, it has been found that the semiconductor porcelain is housed in a container to prevent the oxide from scattering, and the container is rotated to move the semiconductor porcelain, whereby variations in temperature and atmosphere can be eliminated. Further, the present invention has been made based on the idea that it is possible to remove the excess Na compound attached and remained during cooling by ultrasonically cleaning the semiconductor porcelain after the heat treatment.

【0006】そこで本発明は、半導体磁器にNa酸化
物,又はその化合物を熱拡散させることによって電圧非
直線特性を得るようにしたバリスタの製造方法におい
て、上記半導体磁器とNa酸化物,又は化合物とを、磁
性容器内で該容器を回転させながら熱処理した後、超音
波洗浄することを特徴としている。
Therefore, the present invention provides a method for manufacturing a varistor in which a voltage non-linear characteristic is obtained by thermally diffusing Na oxide or a compound thereof into a semiconductor ceramic, and the semiconductor ceramic and the Na oxide or the compound. Is heat-treated in a magnetic container while rotating the container, and then ultrasonically cleaned.

【0007】[0007]

【作用】本発明に係るバリスタの製造方法によれば、半
導体磁器,及びNa酸化物等を磁性容器内に収容し、該
容器を回転させながら熱処理したので、上記Na酸化物
の飛散を防止して粒界への酸素拡散を向上でき、しかも
磁性容器の回転に伴って半導体磁器が移動することか
ら、該容器内の温度,及び雰囲気を均一にできる。その
結果、バリスタ電圧,非直線係数,静電容量等の電気的
特性のばらつきを防止できるとともに、一度に大量の熱
処理が可能となり、生産性を向上できる。また、本発明
では、上記熱処理後の半導体磁器を超音波洗浄したの
で、拡散冷却時に半導体磁器に付着したNa化合物を取
り除くことができ、このことから寿命特性,及びサージ
耐量を向上できる。
According to the varistor manufacturing method of the present invention, the semiconductor porcelain, Na oxide and the like are housed in the magnetic container, and the container is heat-treated while rotating, so that the Na oxide is prevented from scattering. Oxygen diffusion to the grain boundaries can be improved, and since the semiconductor porcelain moves with the rotation of the magnetic container, the temperature and atmosphere in the container can be made uniform. As a result, variations in electrical characteristics such as varistor voltage, non-linear coefficient, and electrostatic capacitance can be prevented, and a large amount of heat treatment can be performed at one time, improving productivity. Further, in the present invention, since the semiconductor porcelain after the heat treatment is ultrasonically cleaned, it is possible to remove the Na compound adhering to the semiconductor porcelain during diffusion cooling, which improves the life characteristics and surge withstand capability.

【0008】[0008]

【実施例】以下、本発明の実施例を説明する。本実施例
では、本発明に係る製造方法によりバリスタを製造し、
これにより得られたバリスタの効果を確認するために行
った試験について説明する。まず、本実施例のSrTi
3 系バリスタを得るための一製造方法を説明する。S
rCO3 ,CaCO3 ,TiO2 ,及びEr2 3 の各
原料粉を、それぞれSr0.9 Ca0.1 Er0.003 TiO
3 となるよう配合し、これに純水を加えてボールミルで
混合する。これをフィルタで脱水,乾燥させるととも
に、メッシュで造粒した後、1200℃で2時間仮焼成す
る。
EXAMPLES Examples of the present invention will be described below. In this embodiment, a varistor is manufactured by the manufacturing method according to the present invention,
The test conducted for confirming the effect of the varistor thus obtained will be described. First, SrTi of this example
One manufacturing method for obtaining an O 3 -based varistor will be described. S
Raw material powders of rCO 3 , CaCO 3 , TiO 2 , and Er 2 O 3 were respectively added to Sr 0.9 Ca 0.1 Er 0.003 TiO 2.
Mix so as to be 3 , add pure water to this, and mix with a ball mill. This is dehydrated and dried with a filter, granulated with a mesh, and then calcined at 1200 ° C for 2 hours.

【0009】次に、上記仮焼成体を乾式粉砕して仮焼成
粉末を形成し、該粉末にSiO2 を0.5 wt%の割合で添
加し、これにポリビニルアルコールをバインダとして5
%加えるとともに、さらに純水を加えてボールミルで混
合し、スラリーを形成する。次いで、このスラリーをス
プレードライヤで乾燥させた後、造粒し、この造粒粉に
2t/cm2の圧力を加えて直径10mmφ, 厚さ1.5mm のディ
スク状の成形体を形成する。
Next, the above calcined body is dry pulverized to form a calcined powder, and SiO 2 is added to the powder in a proportion of 0.5 wt%, and polyvinyl alcohol is added as a binder to the powder.
%, At the same time, pure water is further added and mixed by a ball mill to form a slurry. Next, this slurry is dried by a spray dryer and then granulated, and a pressure of 2 t / cm 2 is applied to this granulated powder to form a disk-shaped compact having a diameter of 10 mmφ and a thickness of 1.5 mm.

【0010】次に、上記成形体を、空気中で400 ℃から
600 ℃に加熱昇温してバインダを燃焼させ、続いて還元
性雰囲気に置換して1400℃で2時間焼成して焼結体を形
成し、これにより半導体磁器を得る。
Next, the above-mentioned molded body is heated in air from 400 ° C.
The binder is burned by heating to 600 ° C., then the atmosphere is replaced with a reducing atmosphere and firing is performed at 1400 ° C. for 2 hours to form a sintered body, whereby a semiconductor porcelain is obtained.

【0011】そして、直径150mm φの円筒状のアルミナ
磁器ポットを準備し、該磁器ポットに上記半導体磁器を
収容し、さらにこの磁器ポット内にNa2 CO3 ,Ti
2を2対1のmol 比で混合してなる酸化物粉末を入れ
る。この場合、上記アルミナ磁器ポットの形状は、円筒
形でも多角形でも良い。
Then, a cylindrical alumina porcelain pot having a diameter of 150 mm is prepared, the above-mentioned semiconductor porcelain is housed in the porcelain pot, and Na 2 CO 3 , Ti is further placed in the porcelain pot.
An oxide powder prepared by mixing O 2 at a molar ratio of 2: 1 is added. In this case, the shape of the alumina porcelain pot may be cylindrical or polygonal.

【0012】次いで、上記アルミナ磁器ポットを0.5rpm
の回転速度で回転させながら、1200℃に昇温し、5時間
熱処理する。この熱処理により上記磁器ポット内で半導
体磁器が撹拌されながら、該半導体磁器の結晶粒界に酸
化物が熱拡散されて電気的障壁が形成されることとな
る。
Then, the alumina porcelain pot is placed at 0.5 rpm.
While rotating at a rotation speed of 1, the temperature is raised to 1200 ° C. and heat treatment is performed for 5 hours. By this heat treatment, while the semiconductor porcelain is being stirred in the porcelain pot, the oxide is thermally diffused in the crystal grain boundaries of the semiconductor porcelain to form an electrical barrier.

【0013】次に、上記半導体磁器を超音波洗浄機によ
り洗浄する。これで、この半導体磁器の表面に付着した
酸化物を洗い落とす。
Next, the semiconductor porcelain is cleaned with an ultrasonic cleaning machine. With this, the oxide adhering to the surface of the semiconductor porcelain is washed off.

【0014】最後に、上記半導体磁器の両主面に直径7
mmφの銀ペーストを塗布した後、800 ℃で10分間焼き付
けて電極を形成する。これにより本実施例のバリスタが
製造される。
Finally, a diameter of 7 is formed on both main surfaces of the semiconductor porcelain.
After applying mmφ silver paste, bake at 800 ℃ for 10 minutes to form the electrode. As a result, the varistor of this embodiment is manufactured.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【表2】 [Table 2]

【0017】表1及び表2は、上記実施例方法により製
造されたバリスタの効果を確認するために行った試験結
果を示す。この試験は、アルミナ磁器ポット内で半導体
磁器を回転させながら熱拡散した後、超音波洗浄を行っ
た本実施例試料No.1と、上記半導体磁器を回転させな
がら熱拡散しただけの比較試料No.2と、上記半導体磁
器を匣上に固定した状態で熱拡散した後、超音波洗浄を
行った比較試料No.3と、上記匣上に固定した状態で熱
拡散させただけの従来試料No.4とを作成した。
Tables 1 and 2 show the results of tests conducted to confirm the effect of the varistor manufactured by the method of the above embodiment. In this test, the sample No. 1 of this example, in which the semiconductor porcelain was thermally diffused while being rotated in the alumina porcelain pot, and then ultrasonic cleaning was performed, and the comparative sample No. 1 in which the semiconductor porcelain was merely thermally diffused while being rotated. .2, comparative sample No. 3 in which the semiconductor porcelain was heat-diffused in a state of being fixed on the box and then ultrasonically cleaned, and conventional sample No. .4 and created.

【0018】そして、表1に示すように、上記各試料N
o.1〜No.4の、2000A サージ後のバリスタ電圧( ΔV
1mA ),非直線係数( Δα),及び静電容量( ΔCap)の変化
率を測定した。この2000A サージは8×20μsec の三角
電流波を5分間隔で2回印加し、この印加前と印加後30
分後の特性を比較した。また、表2に示すように、上記
各試料No.1〜No.4に150 ℃の温度でバリスタ電圧の
85%の直流電圧を100時間印加し、この負荷後の各試料
のバリスタ電圧, 非直線係数, 及び静電容量の変化率を
測定した。なお、表中、括弧内は3σ/ 平均×100 %を
示す。(σは標準偏差)
Then, as shown in Table 1, each of the samples N
Varistor voltage (ΔV of o.1 to No.4 after 2000A surge)
1 mA ), non-linear coefficient (Δα), and rate of change of capacitance (ΔCap) were measured. This 2000A surge was applied twice with 8 × 20μsec triangular current wave at 5 minute intervals.
The characteristics after minutes were compared. Further, as shown in Table 2, the varistor voltage of each sample No. 1 to No. 4 at a temperature of 150 ° C.
A 85% DC voltage was applied for 100 hours, and the varistor voltage, nonlinear coefficient, and rate of change of capacitance of each sample after this loading were measured. In the table, the values in parentheses are 3σ / average × 100%. (Σ is standard deviation)

【0019】表1及び表2からも明らかなように、匣上
に固定して熱拡散した従来試料No.4の場合、サージ試
験によるバリスタ電圧,非直線係数,及び静電容量の変
化率はそれぞれ−26.1%, −16.0%, −8.2 %と大き
く、また負荷試験による各変化率はそれぞれ−6.1 %,
−3.3 %, −22.1%と大きい。また、各比較試料No.
2,及びNo.3の場合、従来試料に比べて各特性は改善
できているものの、サージ試験による各変化率はそれぞ
れ−10.1〜−19.8%, −13.1〜−16.9%, −10.3〜−8.
2 %となっており、また負荷試験による各変化率は−3.
9 〜−6.1 %, −2.7 〜−3.3 %, −12.0〜−22.1%と
満足できる値が得られていない。これに対して本実施例
試料No.1の場合、サージ試験による変化率はそれぞれ
−3.2 %, −3.3 %, −0.3 %となっており、負荷試験
による変化率はそれぞれ+0.3 %, −0.3 %, −4.4 %
と何れの値も小さくなっている。このように、半導体磁
器を回転させながら熱拡散させた後、超音波洗浄を施す
ことによってサージ耐量, 寿命特性の両方を大幅に改善
できることがわかる。
As is clear from Table 1 and Table 2, in the case of the conventional sample No. 4 which was fixed on the box and thermally diffused, the varistor voltage, the non-linear coefficient and the rate of change of capacitance by the surge test were These are large at -26.1%, -16.0%, and -8.2%, respectively.
Large at −3.3% and −22.1%. In addition, each comparative sample No.
In the case of No. 2 and No. 3, the characteristics were improved compared with the conventional sample, but the change rates by the surge test were -10.1 to -19.8%, -13.1 to -16.9%, -10.3 to -8, respectively. .
2%, and each rate of change by load test is -3.
Satisfactory values of 9 to −6.1%, −2.7 to −3.3%, and −12.0 to −22.1% have not been obtained. On the other hand, in the case of the sample No. 1 of this example, the change rates by the surge test are -3.2%, -3.3%, -0.3%, respectively, and the change rates by the load test are + 0.3%, -0.3%, -0.3%, -0.3%, -0.3%, respectively. 0.3%, −4.4%
And all values are smaller. Thus, it can be seen that both the surge withstand capability and life characteristics can be significantly improved by applying ultrasonic cleaning after thermally diffusing the semiconductor porcelain while rotating it.

【0020】[0020]

【発明の効果】以上のように本発明に係るバリスタの製
造方法によれば、半導体磁器とNa酸化物等とを磁性容
器内で該容器を回転させながら熱拡散した後、超音波洗
浄するようにしたので、熱処理時の温度,及び雰囲気を
均一にでき、バリスタ電圧,非直線係数,静電容量等の
電気的特性のばらつきを防止できる効果があるととも
に、半導体磁器に付着した不要なNa化合物を除去して
寿命特性,及びサージ耐量を向上できる効果がある。
As described above, according to the varistor manufacturing method of the present invention, the semiconductor porcelain and the Na oxide are thermally diffused in the magnetic container while rotating the container, and then ultrasonic cleaning is performed. As a result, the temperature and atmosphere during heat treatment can be made uniform, and variations in electrical characteristics such as varistor voltage, nonlinear coefficient, and electrostatic capacitance can be prevented, and unnecessary Na compounds attached to the semiconductor porcelain can be prevented. Has the effect of improving the life characteristics and surge withstand capability.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 米田 康信 京都府長岡京市天神2丁目26番10号 株式 会社村田製作所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Yasunobu Yoneda 2-26-10 Tenjin Tenjin, Nagaokakyo-shi, Kyoto Murata Manufacturing Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体磁器に、Na酸化物,又はその化
合物を熱拡散させることによって電圧非直線特性を得る
ようにしたバリスタの製造方法において、上記半導体磁
器とNa酸化物,又はその化合物とを、磁性容器内に収
容して該容器を回転させながら熱拡散させた後、超音波
洗浄することを特徴とするバリスタの製造方法。
1. A method for manufacturing a varistor in which a voltage non-linear characteristic is obtained by thermally diffusing Na oxide or a compound thereof in a semiconductor ceramic, wherein the semiconductor ceramic and Na oxide or a compound thereof are used. A method for producing a varistor, which comprises: storing in a magnetic container, thermally diffusing the container while rotating the container, and then performing ultrasonic cleaning.
JP4086501A 1992-03-09 1992-03-09 Manufacture of varistor Withdrawn JPH05258922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4086501A JPH05258922A (en) 1992-03-09 1992-03-09 Manufacture of varistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4086501A JPH05258922A (en) 1992-03-09 1992-03-09 Manufacture of varistor

Publications (1)

Publication Number Publication Date
JPH05258922A true JPH05258922A (en) 1993-10-08

Family

ID=13888730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4086501A Withdrawn JPH05258922A (en) 1992-03-09 1992-03-09 Manufacture of varistor

Country Status (1)

Country Link
JP (1) JPH05258922A (en)

Similar Documents

Publication Publication Date Title
JPH0524646B2 (en)
JPH05258922A (en) Manufacture of varistor
JPH05190307A (en) Production of varistor
JPS606535B2 (en) porcelain composition
JP3189341B2 (en) Composite varistor
JP2956131B2 (en) Strontium titanate-based semiconductor porcelain and method of manufacturing the same
JPH05326216A (en) Manufacture of varistor
JPS6243522B2 (en)
JP2990627B2 (en) Varistor manufacturing method
JPH01289206A (en) Voltage-dependent nonlinear resistance element and manufacture thereof
JP3185301B2 (en) Varistor manufacturing method
JP3313533B2 (en) Zinc oxide-based porcelain composition and method for producing the same
JP3124896B2 (en) Manufacturing method of semiconductor porcelain
JP2506286B2 (en) Method for manufacturing grain boundary insulated semiconductor porcelain
JP2634838B2 (en) Method of manufacturing voltage non-linear resistor
JPH0891925A (en) Barium titanate-based semiconductor ceramic
JP3237502B2 (en) Manufacturing method of grain boundary insulated semiconductor ceramic capacitor
JPS6217368B2 (en)
JPH0684611A (en) Production of varistor
JP2725405B2 (en) Voltage-dependent nonlinear resistor porcelain and method of manufacturing the same
JP2000016866A (en) Production of barium titanate-based semiconductor material
JPH05198408A (en) Manufacture of semiconductor ceramic varistor
JPH0555011A (en) Manufacture of voltage-dependent nonlinear resistor
JPH06183734A (en) High temperature ptc material and its production
JPH05258918A (en) Electrode material for voltage non-linear resistor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518