JPH05326216A - Manufacture of varistor - Google Patents
Manufacture of varistorInfo
- Publication number
- JPH05326216A JPH05326216A JP4158724A JP15872492A JPH05326216A JP H05326216 A JPH05326216 A JP H05326216A JP 4158724 A JP4158724 A JP 4158724A JP 15872492 A JP15872492 A JP 15872492A JP H05326216 A JPH05326216 A JP H05326216A
- Authority
- JP
- Japan
- Prior art keywords
- oxide
- varistor
- heat treatment
- semiconductor
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Thermistors And Varistors (AREA)
- Apparatuses And Processes For Manufacturing Resistors (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、セラミック粒界を酸化
させることによって電圧非直線特性を得るようにしたバ
リスタに関し、特に半導体磁器にLi,Kの酸化物又は
その化合物を熱拡散させる際の温度や雰囲気を均一化し
て、バリスタ電圧,非直線係数等のばらつきを回避で
き、さらには熱処理時の冷却過程における酸化物の付着
を防止して、寿命特性,サージ耐量を改善できるように
した製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a varistor in which a voltage non-linear characteristic is obtained by oxidizing a ceramic grain boundary, and in particular, when a Li or K oxide or its compound is thermally diffused in a semiconductor ceramic. Manufacturing in which temperature and atmosphere are made uniform to avoid variations in varistor voltage, non-linear coefficient, etc., and also to prevent oxides from adhering in the cooling process during heat treatment and improve life characteristics and surge withstand capability. Regarding the method.
【0002】[0002]
【従来の技術】一般に、SrTiO3 系半導体セラミッ
クスを主成分とするバリスタは、サージ吸収素子,ノイ
ズ吸収素子として電子機器等に広く使用されている。こ
のバリスタは、主成分としてSrTiO3 及びSrを一
部CaやBaと置換したペロブスカイト系多結晶焼結体
を電子価制御や還元焼成により半導体化し、これにL
i,Kの酸化物,又はそれらの化合物を拡散させること
によって、結晶粒界に電気的障壁を形成し、これにより
大きな誘電率と電圧非直線特性を得ている。このような
バリスタを製造する場合、従来、SrTiO3 系半導体
セラミックからなる成形体を還元性雰囲気中にて焼成し
て半導体磁器を形成し、この半導体磁器にLi等の酸化
物,あるいはその化合物からなるペーストを塗布し、こ
の後該半導体磁器を皿状の匣に並べ、この状態で熱処理
することによって上記酸化物を半導体磁器に熱拡散させ
る方法が一般的である。2. Description of the Related Art Generally, varistors containing SrTiO 3 based semiconductor ceramics as a main component are widely used as surge absorbing elements and noise absorbing elements in electronic devices and the like. In this varistor, a perovskite-based polycrystalline sintered body in which SrTiO 3 and Sr are partially replaced with Ca or Ba as main components is converted into a semiconductor by electron valence control or reduction firing, and L
By diffusing the oxides of i and K, or their compounds, an electrical barrier is formed at the crystal grain boundary, and thereby a large dielectric constant and voltage non-linear characteristic are obtained. In the case of manufacturing such a varistor, conventionally, a molded body made of a SrTiO 3 based semiconductor ceramic is fired in a reducing atmosphere to form a semiconductor porcelain, and the semiconductor porcelain is formed from an oxide such as Li or a compound thereof. A general method is to apply the above paste, then arrange the semiconductor porcelain in a dish-shaped box, and heat-treat in this state to thermally diffuse the oxide into the semiconductor porcelain.
【0003】[0003]
【発明が解決しようとする課題】ところで、高誘電率,
高サージ耐量,及び寿命特性に優れたバリスタを得るに
は、バリスタを構成する半導体粒子径や粒界の状態を微
妙にコントロールする必要があり、そのためには熱処理
時の温度や保持時間,あるいは雰囲気にばらつきが生じ
ないよう均一にコントロールする必要がある。しかしな
がら、上記従来の製造方法では、温度や雰囲気を均一に
コントロールするには限界があり、その結果、バリスタ
電圧,非直線係数,静電容量等の電気的特性にばらつき
が生じ易いという問題点がある。また、上記従来の製造
方法では、熱処理時の冷却過程において、Li,Kの酸
化物が半導体磁器の表面に付着し易く、このためイオン
化し易いままの状態で残ることから、寿命特性やサージ
耐量を低下させる要因となっているという問題点があ
る。By the way, a high dielectric constant,
In order to obtain a varistor with high surge resistance and excellent life characteristics, it is necessary to delicately control the diameter of semiconductor particles and the state of grain boundaries that make up the varistor. It is necessary to control it uniformly so that there is no variation in temperature. However, the above-mentioned conventional manufacturing method has a limit in controlling the temperature and the atmosphere uniformly, and as a result, there is a problem that variations in electrical characteristics such as varistor voltage, nonlinear coefficient, and capacitance are likely to occur. is there. Further, in the above conventional manufacturing method, during the cooling process during the heat treatment, the oxides of Li and K tend to adhere to the surface of the semiconductor porcelain and thus remain in the state of being easily ionized. There is a problem that it is a factor that lowers the
【0004】本発明は、上記従来の状況に鑑みてなされ
たもので、熱処理時の温度,雰囲気を均一化して電気的
特性のばらつきを回避できるとともに、冷却時の酸化物
の付着を防止して寿命特性,サージ耐量を改善できるバ
リスタの製造方法を提供することを目的としている。The present invention has been made in view of the above-mentioned conventional circumstances. The temperature and atmosphere during heat treatment can be made uniform to avoid variations in electrical characteristics and to prevent oxides from adhering during cooling. It is an object of the present invention to provide a varistor manufacturing method capable of improving life characteristics and surge resistance.
【0005】[0005]
【課題を解決するための手段】本件発明者らは、半導体
磁器に酸化物等を熱拡散させる熱処理工程が電気的特性
を決定づける重要な工程であるという観点から、この熱
処理時の過程について検討した。即ち、従来方法は匣上
に半導体磁器を載置し、該匣を熱処理炉内に固定した状
態で行っていることから、熱処理時の昇温からトップ温
度にかけて半導体磁器に塗布した酸化物が飛散し、該酸
化物が主たる雰囲気を形成している。その結果、粒界へ
の酸化物の拡散が抑制されていることに着目した。この
ことから、上記半導体磁器を容器内に収容して酸化物の
飛散を防止し、さらにこの容器ごと回転させることによ
って半導体磁器が移動し、これにより温度,雰囲気を均
一化でき、ばらつきを解消できることを見出した。ま
た、冷却時における酸化物の付着を防止するには、この
冷却時に空気や酸素を積極的に供給することによって、
上記酸化物の付着を取り除くことができ、しかも粒界に
拡散した酸化物に酸素を与えて安定化できることに想到
し、発明を成したものである。Means for Solving the Problems The inventors of the present invention examined the process of heat treatment from the viewpoint that the heat treatment process of thermally diffusing an oxide or the like into a semiconductor porcelain is an important process that determines the electrical characteristics. .. That is, in the conventional method, since the semiconductor porcelain is placed on the box and the box is fixed in the heat treatment furnace, the oxide applied to the semiconductor porcelain scatters from the temperature rise during the heat treatment to the top temperature. However, the oxide forms the main atmosphere. As a result, we paid attention to the fact that the diffusion of oxides to the grain boundaries was suppressed. Therefore, the semiconductor porcelain is housed in a container to prevent the oxide from scattering, and the semiconductor porcelain is moved by rotating the container together, whereby the temperature and the atmosphere can be made uniform and variations can be eliminated. Found. Further, in order to prevent the adhesion of oxides during cooling, by actively supplying air or oxygen during this cooling,
The present invention is based on the idea that the above oxide can be removed and oxygen can be applied to the oxide diffused in the grain boundary to stabilize the oxide.
【0006】そこで本発明は、半導体磁器にLi,Kの
酸化物,又はその化合物を熱拡散させることによって電
圧非直線特性を得るようにしたバリスタの製造方法にお
いて、上記半導体磁器と上記Li,Kの酸化物,又はそ
の化合物とを、磁性容器内で該容器を回転させながら熱
処理するとともに、この熱処理時の冷却過程における90
0 ℃から700 ℃の間で空気, 又は酸素を導入したことを
特徴としている。Therefore, the present invention provides a method for producing a varistor in which a voltage non-linear characteristic is obtained by thermally diffusing Li, K oxides or their compounds into a semiconductor ceramic, and in the method, the semiconductor ceramic and the Li, K are combined. The oxide or its compound is heat-treated in a magnetic container while rotating the container, and the
It is characterized by introducing air or oxygen between 0 ℃ and 700 ℃.
【0007】ここで、上記空気又は酸素を導入する時期
を900 ℃から700 ℃の間にしたのは、この範囲以外では
付着防止効果が得られないからである。即ち、900 ℃を
越えると結晶粒界に拡散した酸化物が再度外部に放出さ
れることとなり、その結果電気的特性が不安定になるか
らである。また、700 ℃より低すぎると酸化物が半導体
磁器の表面に付着した後になってしまい、導入した効果
が得られなくなるからである。The reason why the air or oxygen is introduced is between 900 ° C. and 700 ° C. because the anti-adhesion effect cannot be obtained outside this range. That is, when the temperature exceeds 900 ° C., the oxide diffused in the crystal grain boundaries is released again to the outside, and as a result, the electrical characteristics become unstable. On the other hand, if the temperature is lower than 700 ° C., the oxide will adhere to the surface of the semiconductor porcelain, and the effect introduced will not be obtained.
【0008】[0008]
【作用】本発明に係るバリスタの製造方法によれば、半
導体磁器,及びLi,Kの酸化物等を磁性容器内に収容
し、該容器を回転させながら熱処理したので、上記酸化
物の飛散を防止して粒界への酸素拡散を向上でき、しか
も磁性容器の回転に伴って半導体磁器が移動することか
ら、該容器内の温度,及び雰囲気を均一にできる。その
結果、バリスタ電圧,非直線係数,静電容量等の電気的
特性のばらつきを抑制でき、かつ一度に大量の熱処理が
可能となり、コストを低減できるとともに、生産性を向
上できる。According to the varistor manufacturing method of the present invention, the semiconductor porcelain, the oxides of Li and K, and the like are housed in the magnetic container, and the heat treatment is performed while rotating the container. Oxygen diffusion to the grain boundaries can be prevented and the semiconductor porcelain moves with the rotation of the magnetic container, so that the temperature and atmosphere in the container can be made uniform. As a result, variations in electrical characteristics such as varistor voltage, non-linear coefficient, and electrostatic capacitance can be suppressed, and a large amount of heat treatments can be performed at one time, cost can be reduced, and productivity can be improved.
【0009】また、本発明では、上記熱処理時の冷却過
程における900 ℃から700 ℃の間で空気, 又は酸素を導
入したので、半導体磁器に付着する酸化物を取り除くこ
とができるとともに、結晶粒界に拡散した酸化物に酸素
を供給でき、この結果寿命特性,及びサージ耐量を向上
できる。Further, according to the present invention, since air or oxygen is introduced between 900 ° C. and 700 ° C. in the cooling process during the heat treatment, oxides adhering to the semiconductor porcelain can be removed and the grain boundaries can be removed. Oxygen can be supplied to the oxides diffused into the substrate, and as a result, life characteristics and surge withstand capability can be improved.
【0010】[0010]
【実施例】以下、本発明の実施例を説明する。本実施例
では、本発明に係る製造方法によりバリスタを製造し、
これにより得られたバリスタの効果を確認するために行
った試験について説明する。まず、本実施例のSrTi
O3 系バリスタを得るための一製造方法を説明する。S
rCO3 ,CaCO3 ,TiO2 ,及びEr2 O3 の各
原料粉を、それぞれSr0.9 Ca0.1 Er0.003 TiO
3 となるよう配合し、これに純水を加えてボールミルで
混合する。これをフィルタで脱水,乾燥させるととも
に、メッシュで造粒した後、1200℃で2時間仮焼成す
る。EXAMPLES Examples of the present invention will be described below. In this embodiment, a varistor is manufactured by the manufacturing method according to the present invention,
The test conducted for confirming the effect of the varistor thus obtained will be described. First, SrTi of this example
One manufacturing method for obtaining an O 3 -based varistor will be described. S
Raw material powders of rCO 3 , CaCO 3 , TiO 2 , and Er 2 O 3 were respectively added to Sr 0.9 Ca 0.1 Er 0.003 TiO 2.
Mix so as to be 3 , add pure water to this, and mix with a ball mill. This is dehydrated and dried with a filter, granulated with a mesh, and then calcined at 1200 ° C for 2 hours.
【0011】次に、上記仮焼成体を乾式粉砕して仮焼成
粉末を形成し、該粉末にSiO2 を0.5 wt%の割合で添
加し、これにポリビニルアルコールをバインダとして5
%加えるとともに、さらに純水を加えてボールミルで混
合し、スラリーを形成する。次いで、このスラリーをス
プレードライヤで乾燥させた後、造粒する。次いで、こ
の造粒粉を、2t/cm2の圧力を加えて直径10mmφ, 厚さ
1.5mm のディスク状の成形体を形成する。Next, the above calcined body is dry pulverized to form a calcined powder, and SiO 2 is added to the powder in a proportion of 0.5 wt%, and polyvinyl alcohol is added as a binder to the powder.
%, At the same time, pure water is further added and mixed by a ball mill to form a slurry. Next, this slurry is dried with a spray dryer and then granulated. Next, this granulated powder was applied with a pressure of 2 t / cm 2 to obtain a diameter of 10 mmφ and a thickness of
Form a 1.5 mm disc-shaped body.
【0012】次に、上記成形体を、空気中にて400 ℃か
ら600 ℃に加熱してバインダを燃焼させた後、これに続
いて還元性雰囲気に置換して1400℃に加熱昇温して2時
間焼成し、これにより半導体磁器を得る。Next, the above-mentioned molded body is heated in air from 400 ° C. to 600 ° C. to burn the binder, and subsequently, it is replaced with a reducing atmosphere and heated to 1400 ° C. It is fired for 2 hours to obtain a semiconductor ceramic.
【0013】また、Li2 CO3 ,TiO2 を2対1の
mol 比で混合してなる酸化物粉末にワニスを加えて酸化
ペーストを形成し、このペーストを上記半導体磁器に1
wt%塗布する。Further, Li 2 CO 3 and TiO 2 are mixed in a ratio of 2: 1.
Varnish is added to the oxide powder mixed at a mol ratio to form an oxidation paste, and this paste is applied to the above semiconductor porcelain.
Apply wt%.
【0014】そして、蓋部と底部とに直径10mmφの導入
孔が形成された直径150mm φの円筒形のアルミナ磁器ポ
ットを準備し、このアルミナ磁器ポット内に上記酸化ペ
ーストを塗布した半導体磁器を収容する。この場合、上
記磁器ポットの形状は、角筒形でも多角形でも良い。Then, a cylindrical alumina porcelain pot having a diameter of 150 mm, in which an introduction hole having a diameter of 10 mm is formed in the lid and the bottom, is prepared, and the alumina porcelain pot is filled with the semiconductor porcelain coated with the above-mentioned oxidation paste. To do. In this case, the shape of the porcelain pot may be a prismatic shape or a polygonal shape.
【0015】次いで、上記アルミナ磁器ポットを0.5rpm
の回転速度で回転させながら、1200℃に昇温し、5時間
熱処理する。そして、この冷却時の900 ℃から700 ℃に
降下する間に空気, あるいは酸素を100 l/ 時間導入す
る。この熱処理により、上記磁器ポット内で半導体磁器
が撹拌され、該半導体磁器の結晶粒界に酸化物が熱拡散
されて電気的障壁が形成される。さらに上記冷却時にお
いて半導体磁器に付着する酸化物を吹き飛ばすととも
に、結晶粒界に拡散した酸化物に酸素を供給することと
なる。Then, the alumina porcelain pot is placed at 0.5 rpm.
While rotating at a rotation speed of 1, the temperature is raised to 1200 ° C. and heat treatment is performed for 5 hours. Then, air or oxygen is introduced at 100 l / hour while the temperature drops from 900 ° C to 700 ° C during the cooling. By this heat treatment, the semiconductor porcelain is agitated in the porcelain pot, and the oxide is thermally diffused in the crystal grain boundaries of the semiconductor porcelain to form an electrical barrier. Further, during the cooling, the oxide attached to the semiconductor porcelain is blown off, and oxygen is supplied to the oxide diffused in the crystal grain boundaries.
【0016】最後に、上記半導体磁器の両主面に直径7
mmφの銀ペーストを塗布した後、800 ℃で10分間焼き付
けて電極を形成する。これにより本実施例のバリスタが
製造される。Finally, a diameter of 7 is formed on both main surfaces of the semiconductor porcelain.
After applying mmφ silver paste, bake at 800 ℃ for 10 minutes to form the electrode. As a result, the varistor of this embodiment is manufactured.
【0017】[0017]
【表1】 [Table 1]
【0018】[0018]
【表2】 [Table 2]
【0019】[0019]
【表3】 [Table 3]
【0020】表1ないし表3は、上記実施例方法により
製造されたバリスタの効果を確認するために行った試験
結果を示す。この試験は、アルミナ磁器ポットを回転さ
せながら熱処理を行うとともに、これの冷却時に空気,
及び酸素を導入し、これらの導入時期を1100℃から100
℃のステップで500 ℃まで変化させて多数の試料を作成
した。そして、この各試料のバリスタ電圧V1mA ,非直
線係数α,及び静電容量nFを測定するとともに、これ
らのばらつきを調べた(表1参照)。このばらつきは3
σ/平均×100 (%)で示す。また、上記各試料の2000
A サージ後の静電容量, 非直線係数, 及びバリスタ電圧
の変化率を測定した(表2参照)。この2000A サージは
8×20μsec の三角電流波を5分間隔で2回印加し、こ
の印加前と印加後30分後の特性を比較した。さらに、15
0 ℃の温度でバリスタ電圧の85%の直流電圧を100 時間
印加し、この負荷前後の各特性の変化率を測定し、各試
料の寿命特性を調べた(表3参照)。なお、比較するた
めにモニターを作成し、これについても同様の測定を行
った。このモニターは、上述の半導体磁器を共生地のセ
ッター(匣)上に並べ、これを箱型バッチ炉により1200
℃で5時間焼成し、かつ冷却時に空気,酸素を導入しな
いで作成した。Tables 1 to 3 show the results of tests conducted to confirm the effect of the varistor manufactured by the method of the above embodiment. In this test, heat treatment was performed while rotating the alumina porcelain pot, and at the time of cooling this, air,
And oxygen are introduced, and the introduction timing of these is from 1100 ° C to 100
A large number of samples were prepared by changing the temperature to 500 ° C in steps of ° C. Then, the varistor voltage V 1mA , the non-linear coefficient α, and the capacitance nF of each sample were measured and their variations were examined (see Table 1). This variation is 3
Shown as σ / average × 100 (%). In addition, 2000 of each sample above
The capacitance, non-linear coefficient, and varistor voltage change rate after A surge were measured (see Table 2). This 2000A surge was applied twice with a triangular current wave of 8 × 20 μsec at 5 minute intervals, and the characteristics before and 30 minutes after the application were compared. In addition, 15
A DC voltage of 85% of the varistor voltage was applied for 100 hours at a temperature of 0 ° C, the rate of change of each characteristic before and after this load was measured, and the life characteristics of each sample were investigated (see Table 3). Note that a monitor was prepared for comparison, and the same measurement was performed for this. In this monitor, the above-mentioned semiconductor porcelain is lined up on a co-fabric setter (box), and this is set to 1200 by a box-type batch furnace.
It was fired at 5 ° C. for 5 hours and prepared without introducing air and oxygen during cooling.
【0021】各表からも明らかなように、空気,酸素を
導入しない従来試料の場合は、バリスタ電圧のばらつき
が26.8%と大きく、サージ印加後の各変化率が−12.5〜
18.1%と大きく、しかも寿命特性においても7.1 〜−2
4.3%と低い。また、空気, 酸素の導入時期が1100,1000
℃と高い場合は、バリスタ電圧で44.1,38.2 %、静電
容量で13.8,23.9 %とばらつきが大きい。さらにサージ
印加後の各変化率ではそれぞれ−28.4〜−9.5 %と大き
く、寿命特性ではそれぞれ4.6 〜−17.3%と低く、これ
は粒界に拡散された酸化物が放出されているからであ
る。一方、上記導入時期が600 ℃,500℃と低い場合は、
各特性のばらつき, サージ印加後の変化率,及び寿命特
性とも大きくなる傾向があり、酸化物の一部が付着して
いることがいえる。As is clear from each table, in the case of the conventional sample in which air and oxygen were not introduced, the variation of the varistor voltage was as large as 26.8%, and the rate of change after the surge application was -12.5 to
Large at 18.1%, and the life characteristics are 7.1 to −2.
It is as low as 4.3%. Also, the introduction time of air and oxygen is 1100,1000.
When the temperature is as high as ℃, the varistor voltage is 44.1,38.2%, and the capacitance is 13.8,23.9%. Furthermore, the rate of change after application of surge was large at -28.4 to -9.5%, and the life characteristics were low at 4.6 to -17.3%, respectively, because oxides diffused to the grain boundaries were released. On the other hand, if the above introduction time is as low as 600 ℃ and 500 ℃,
The variation in each characteristic, the rate of change after the application of surge, and the life characteristic tend to increase, and it can be said that a part of the oxide is attached.
【0022】これに対して導入時期を900 ℃〜700 ℃の
間にした本実施例試料の場合は、バリスタ電圧,静電容
量ともばらつきが8.6 〜7.6 %と小さくなっている。ま
た、サージ印加後の変化率は、それぞれΔV1mA が−3.
1 〜−1.1 %, Δαが−4.4〜0.3 %, ΔCap が−5.3
〜1.8 %と大幅に低減できている。さらに、寿命特性で
は、ΔV1mA が−3.2 〜2.3 %, Δαが−6.2 〜0.1
%, ΔCap が−4.6 〜−1.9 %と大幅に向上しており、
なかでも800 ℃前後が最も安定しており、この±100 ℃
で各特性の変化が5%未満となっている。これにより、
磁器ポットで回転させながら熱処理を行うとともに、冷
却時の900 〜700 ℃の間で空気, 酸素を導入することに
よって、電気的特性のばらつきを大幅に低減できるとと
もに、サージ耐量, 寿命特性を大幅に改善できることが
わかる。On the other hand, in the case of the sample of this embodiment in which the introduction time was between 900 ° C. and 700 ° C., the variations in both varistor voltage and electrostatic capacitance were small at 8.6% to 7.6%. In addition, the rate of change after applying surge is −3 for ΔV 1mA .
1 to −1.1%, Δα is −4.4 to 0.3%, ΔCap is −5.3
It is significantly reduced to ~ 1.8%. Furthermore, in the life characteristics, ΔV 1mA is -3.2 to 2.3%, Δα is -6.2 to 0.1%.
%, ΔCap is significantly improved from -4.6 to -1.9%,
Above all, the temperature around 800 ℃ is the most stable, and this ± 100 ℃
The change in each characteristic is less than 5%. This allows
By performing heat treatment while rotating in a porcelain pot, and introducing air and oxygen between 900 and 700 ° C during cooling, it is possible to greatly reduce variations in electrical characteristics and to significantly improve surge withstand and life characteristics. You can see that it can be improved.
【0023】[0023]
【発明の効果】以上のように本発明に係るバリスタの製
造方法によれば、半導体磁器とLi,あるいはKの酸化
物等とを磁性容器内に収容し、該容器を回転させながら
熱処理するとともに、冷却過程における900 ℃から700
℃の間で空気, 又は酸素を導入したので、熱処理時の温
度,及び雰囲気を均一にでき、バリスタ電圧,非直線係
数,静電容量等の電気的特性のばらつきを防止できる効
果があるとともに、半導体磁器に付着する酸化物を取り
除くことができ、寿命特性,及びサージ耐量を向上でき
る効果がある。As described above, according to the method of manufacturing a varistor of the present invention, the semiconductor porcelain and the oxide of Li or K, etc. are housed in a magnetic container, and the container is heat-treated while rotating the container. , 900 ℃ -700 in the cooling process
Since air or oxygen was introduced between ℃, the temperature and atmosphere during heat treatment can be made uniform, and there is the effect that variations in electrical characteristics such as varistor voltage, nonlinear coefficient, and capacitance can be prevented. Oxides adhering to the semiconductor porcelain can be removed, and the life characteristics and surge withstand capability can be improved.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 米田 康信 京都府長岡京市天神2丁目26番10号 株式 会社村田製作所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Yasunobu Yoneda 2-26-10 Tenjin Tenjin, Nagaokakyo-shi, Kyoto Murata Manufacturing Co., Ltd.
Claims (1)
に、Li,あるいはKの酸化物,又はその化合物を熱拡
散させることによって電圧非直線特性を得るようにした
バリスタの製造方法において、還元焼成後の上記半導体
磁器と、上記Li,Kの酸化物,又はその化合物とを、
磁性容器内で該容器を回転させながら熱処理するととも
に、この熱処理時の冷却過程における900 ℃から700 ℃
の間で空気, 又は酸素を導入したことを特徴とするバリ
スタの製造方法。1. A method for producing a varistor in which a voltage nonlinear characteristic is obtained by thermally diffusing Li or K oxide or a compound thereof into a semiconductor ceramic containing SrTiO 3 as a main component. The semiconductor porcelain and the oxide of Li or K, or a compound thereof,
While heat-treating the magnetic container in a magnetic container while rotating the container, the cooling process during this heat treatment should be performed at 900 ℃ to 700 ℃.
A method of manufacturing a varistor, characterized in that air or oxygen is introduced between the two.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4158724A JPH05326216A (en) | 1992-05-25 | 1992-05-25 | Manufacture of varistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4158724A JPH05326216A (en) | 1992-05-25 | 1992-05-25 | Manufacture of varistor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05326216A true JPH05326216A (en) | 1993-12-10 |
Family
ID=15677957
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4158724A Withdrawn JPH05326216A (en) | 1992-05-25 | 1992-05-25 | Manufacture of varistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05326216A (en) |
-
1992
- 1992-05-25 JP JP4158724A patent/JPH05326216A/en not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0731065B1 (en) | Zinc oxide ceramics and method for producing the same | |
JPH0867555A (en) | Production of zinc oxide sintered compact | |
JPH05326216A (en) | Manufacture of varistor | |
JPS6243522B2 (en) | ||
JPH07183104A (en) | Manufacture of barium titanate semiconductor porcelain | |
JP2506286B2 (en) | Method for manufacturing grain boundary insulated semiconductor porcelain | |
JP2689439B2 (en) | Grain boundary insulation type semiconductor porcelain body | |
JPH05190307A (en) | Production of varistor | |
JPH05258922A (en) | Manufacture of varistor | |
JPH01289206A (en) | Voltage-dependent nonlinear resistance element and manufacture thereof | |
JP2990627B2 (en) | Varistor manufacturing method | |
JP3313533B2 (en) | Zinc oxide-based porcelain composition and method for producing the same | |
JP3185301B2 (en) | Varistor manufacturing method | |
JPH0630284B2 (en) | Method for manufacturing voltage non-linear resistance element | |
JP2634838B2 (en) | Method of manufacturing voltage non-linear resistor | |
JP3237502B2 (en) | Manufacturing method of grain boundary insulated semiconductor ceramic capacitor | |
JPS58123714A (en) | Grain boundary layer type porcelain dielectric material and method of producing same | |
JP2725405B2 (en) | Voltage-dependent nonlinear resistor porcelain and method of manufacturing the same | |
JPH0684611A (en) | Production of varistor | |
JP2000016866A (en) | Production of barium titanate-based semiconductor material | |
JPH0561221B2 (en) | ||
JPH08293403A (en) | Manufacture of voltage nonlinear resistor element | |
JPH0536560A (en) | Manufacture of grain boundary insulation type semiconductor porcelain | |
JPH06271354A (en) | Intergranular insulation type semiconductor porcelain composition | |
JPH01289207A (en) | Voltage-dependent nonlinear resistance element and manufacture thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19990803 |