JPH05258610A - Dielectric ceramic composition - Google Patents

Dielectric ceramic composition

Info

Publication number
JPH05258610A
JPH05258610A JP4057627A JP5762792A JPH05258610A JP H05258610 A JPH05258610 A JP H05258610A JP 4057627 A JP4057627 A JP 4057627A JP 5762792 A JP5762792 A JP 5762792A JP H05258610 A JPH05258610 A JP H05258610A
Authority
JP
Japan
Prior art keywords
oxide
weight
barium titanate
niobium pentoxide
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4057627A
Other languages
Japanese (ja)
Other versions
JP3225577B2 (en
Inventor
Hiroaki Matsuyama
広明 松山
Hiroshi Niwa
洋 丹羽
Takeshi Iino
猛 飯野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP05762792A priority Critical patent/JP3225577B2/en
Publication of JPH05258610A publication Critical patent/JPH05258610A/en
Application granted granted Critical
Publication of JP3225577B2 publication Critical patent/JP3225577B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To provide a dielectric ceramic composition having high dielectric constant, temperature coefficient, small dielectric loss, and good signal voltage properties. CONSTITUTION:Specified amounts of niobium pentoxide, nickel oxide, and cobalt oxide are added to barium titanate prepared by a hydrothermal sythetic method and having 0.8-2.4m<2>/g specific surface area adjusted by thermal treatment to give a composition. Optionally, specified amounts of niobium pentoxide, nickel oxide, and manganese oxide are added to the barium titanate to give a composition. Additionally a specified amount of silicon oxide is further added to the two compositions to give a composition. Dielectric constant becomes as high as 2700-4000 and alteration of the dielectric constant depending on temperature is small and dielectric loss at the time of applying 50Vrms/mm signal voltage is 2.5% or less. Addition of the silicon oxide is to improve sintering property.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は誘電率が高く、その温度
変化が少なく、かつ誘電損失の小さい誘電体磁器組成物
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric ceramic composition having a high dielectric constant, a small temperature change thereof and a small dielectric loss.

【0002】[0002]

【従来の技術】従来から高誘電率系のセラミックコンデ
ンサ用の材料として、チタン酸バリウムを主成分とした
誘電体磁器組成物が広く用いられている。その中でも誘
電率の温度変化が小さい材料としては、チタン酸バリウ
ム−ビスマス系、チタン酸バリウム−五酸化ニオブ−二
酸化マンガン系(特開昭51−76597号公報)をは
じめ、数多くの組成物が知られている。
2. Description of the Related Art Conventionally, a dielectric ceramic composition containing barium titanate as a main component has been widely used as a material for a high dielectric constant type ceramic capacitor. Among them, many compositions are known, including barium titanate-bismuth system, barium titanate-niobium pentoxide-manganese dioxide system (JP-A-51-76597). Has been.

【0003】また、近年の積層セラミックコンデンサに
対する小型大容量化の要求に応えるため、誘電体材料の
高誘電率化と誘電体層の薄層化が急激な勢いで進んでい
る。従って、高誘電率で、誘電率の温度変化が少なく、
かつ誘電損失の小さい誘電体材料に対する需要は非常に
大きくなっている。
Further, in order to meet the recent demand for smaller size and larger capacity of the monolithic ceramic capacitor, the dielectric constant of the dielectric material and the thinning of the dielectric layer are rapidly increasing. Therefore, it has a high dielectric constant and a small change in the dielectric constant with temperature,
In addition, the demand for dielectric materials with low dielectric loss is extremely high.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
従来の誘電体磁器組成物は、その多くは炭酸バリウムと
酸化チタンから固相反応により得られたチタン酸バリウ
ムを原料として使用しており、その誘電率は3000以
下である。
However, most of the above-mentioned conventional dielectric ceramic compositions use barium titanate obtained by solid phase reaction from barium carbonate and titanium oxide as a raw material. The dielectric constant is 3000 or less.

【0005】また、一般にチタン酸バリウムのような強
誘電体では印加される電界強度が大きくなると誘電率の
変化が大きくなり、誘電損失も大きくなる。そして、コ
ンデンサの特性は1Vrmsの信号電圧で評価されるた
め、誘電体層の薄層化が進むと高い信号電界が印加され
ることとなり、上記従来の誘電体磁器組成物では信号電
圧特性が悪く、信号電圧の増加とともに誘電損失も急激
に増加し、規格を満足し得なくなるといった課題があっ
た。
Further, in general, in a ferroelectric substance such as barium titanate, when the applied electric field strength increases, the change in the dielectric constant increases and the dielectric loss also increases. Since the characteristic of the capacitor is evaluated by the signal voltage of 1 Vrms, a high signal electric field is applied as the dielectric layer becomes thinner, and the signal voltage characteristic of the conventional dielectric ceramic composition is poor. However, there is a problem in that the dielectric loss rapidly increases as the signal voltage increases, and the standard cannot be satisfied.

【0006】本発明は上記従来の問題点を解決するもの
で、誘電率が高く、その温度変化が少なく、誘電損失が
小さく、かつ信号電圧特性の良好な誘電体磁器組成物を
提供することを目的とする。
The present invention solves the above conventional problems and provides a dielectric ceramic composition having a high dielectric constant, a small temperature change, a small dielectric loss, and a good signal voltage characteristic. To aim.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
に本発明の誘電体磁器組成物は、水熱合成法で生成し、
熱処理により、比表面積を0.8〜2.4m2/gに調整
したチタン酸バリウムと、五酸化ニオブ、酸化ニッケ
ル、及び必要に応じての酸化コバルトとからなり、チタ
ン酸バリウム100重量部に対して、五酸化ニオブ0.
8〜2.0重量部で、かつ、五酸化ニオブ、酸化ニッケ
ル、酸化コバルトの重量比が、3≦五酸化ニオブ/(酸
化ニッケル+酸化コバルト)≦8の関係(ただし、酸化
ニッケル0重量部を除き、酸化コバルト0重量部を含
む)であることを特徴とするものである。
In order to achieve this object, the dielectric ceramic composition of the present invention is produced by a hydrothermal synthesis method,
It is composed of barium titanate whose specific surface area is adjusted to 0.8 to 2.4 m 2 / g by heat treatment, niobium pentoxide, nickel oxide, and cobalt oxide as required, and makes 100 parts by weight of barium titanate. In contrast, niobium pentoxide 0.
8 to 2.0 parts by weight, and the weight ratio of niobium pentoxide, nickel oxide and cobalt oxide is 3 ≦ niobium pentoxide / (nickel oxide + cobalt oxide) ≦ 8 (provided that 0 part by weight of nickel oxide is used. Except for 0 parts by weight of cobalt oxide).

【0008】また本発明は、上記チタン酸バリウムと、
五酸化ニオブ、酸化ニッケル、酸化マンガンとからな
り、チタン酸バリウム100重量部に対して、五酸化ニ
オブ0.8〜1.5重量部、酸化ニッケルと酸化マンガ
ンを合計量で0.1重量部以上で、かつ、五酸化ニオ
ブ、酸化ニッケル、酸化マンガンの重量比が、3≦五酸
化ニオブ/(酸化ニッケル+酸化マンガン)の関係(た
だし、酸化ニッケル0重量部、酸化マンガン0重量部は
除く)であることを特徴とする誘電体磁器組成物を提案
するものである。
The present invention also provides the above barium titanate,
Consists of niobium pentoxide, nickel oxide, and manganese oxide, and 0.8 to 1.5 parts by weight of niobium pentoxide, and 0.1 parts by weight in total of nickel oxide and manganese oxide per 100 parts by weight of barium titanate. The weight ratio of niobium pentoxide, nickel oxide, and manganese oxide is 3 ≦ niobium pentoxide / (nickel oxide + manganese oxide) (excluding 0 part by weight of nickel oxide and 0 part by weight of manganese oxide). ) Is proposed, the dielectric porcelain composition is proposed.

【0009】さらに本発明は、上記2つの組成系におい
て、それぞれチタン酸バリウム100重量部に対して、
二酸化ケイ素を0.05〜0.30重量部添加した誘電
体磁器組成物を提案するものである。
The present invention further relates to the above-mentioned two composition systems, wherein each 100 parts by weight of barium titanate,
The present invention proposes a dielectric ceramic composition containing 0.05 to 0.30 parts by weight of silicon dioxide.

【0010】[0010]

【作用】本発明の誘電体磁器組成物によれば、水熱合成
法で生成し、熱処理によりその比表面積を0.8〜2.
4m2/gに調整した高純度で結晶性のよいチタン酸バリ
ウムを用いて、そこに特定量の五酸化ニオブ、酸化ニッ
ケル、酸化コバルトを添加することにより、2700以
上およそ4000までの高誘電率で、誘電率の温度変化
が少なく、50Vrms/mmの信号電圧印加時の誘電損
失が2.5%以下と小さい、優れた特性を得ることが可
能となる。
According to the dielectric porcelain composition of the present invention, it is produced by the hydrothermal synthesis method, and its specific surface area is 0.8-2.
By using barium titanate with high purity and good crystallinity adjusted to 4 m 2 / g and adding specific amounts of niobium pentoxide, nickel oxide and cobalt oxide, a high dielectric constant of 2700 to about 4000 can be obtained. Thus, it is possible to obtain excellent characteristics in which the dielectric constant changes little with temperature and the dielectric loss when a signal voltage of 50 Vrms / mm is applied is as small as 2.5% or less.

【0011】また、上記チタン酸バリウムに特定量の五
酸化ニオブ、酸化ニッケル、酸化マンガンを添加するこ
とにより、上記と同様の優れた効果を奏することが可能
となる。
Further, by adding a specific amount of niobium pentoxide, nickel oxide or manganese oxide to the barium titanate, the same excellent effects as described above can be obtained.

【0012】そして、酸化ケイ素をこれら組成系にさら
に添加することにより、焼結性を改善することができる
という効果が得られることとなる。
Then, by further adding silicon oxide to these composition systems, the effect that the sinterability can be improved can be obtained.

【0013】[0013]

【実施例】【Example】

(実施例1)以下、本発明の実施例について説明する。
本実施例は請求項1記載の発明に対応し、水熱合成法で
生成し、熱処理により比表面積を調整したチタン酸バリ
ウムに、特定量の五酸化ニオブ、酸化ニッケル、酸化コ
バルトを添加することにより、課題を解決したものであ
る。
Example 1 An example of the present invention will be described below.
This example corresponds to the invention described in claim 1, in which a specific amount of niobium pentoxide, nickel oxide or cobalt oxide is added to barium titanate produced by a hydrothermal synthesis method and having a specific surface area adjusted by heat treatment. The problem is solved by.

【0014】まず、水熱合成法で生成した、粒径0.1
μm、純度99.99%以上のチタン酸バリウム微粉末
を900〜1150℃で粉体仮焼し、その比表面積を
0.4〜2.6m2/gに調整したチタン酸バリウムを用
いた。比較例として、固相法で生成したチタン酸バリウ
ム、及びシュウ酸塩法で生成したチタン酸バリウムを用
いた。そして、下記の(表1)に示したように、上記の
チタン酸バリウム100重量部に対して、五酸化ニオブ
をNb25換算で、酸化ニッケルをNiO換算で、酸化
コバルトをCo34換算でそれぞれ(表1)に示した量
を秤量した。尚、使用した酸化コバルトは金属コバルト
としての純度が73〜74%のものを用いた。また、
(表1)では五酸化ニオブ、酸化ニッケル、酸化コバル
トをそれぞれ単にNb,Ni,Coと表した。これらを
ポリエチレン製の容器に直径5mmのジルコニア製玉石を
入れたボールミルにより、純水とともに20時間混合し
た。混合後、スラリーを乾燥した粉末に5%PVA(ポ
リビニルアルコール)水溶液を9重量%加えて造粒し
た。次いで、この造粒粉を金型に入れ、直径15mm、厚
さ0.5mmの円板状に1ton/cm3の圧力で成形し
た。こうして得られた成形体を1300〜1400℃で
2時間焼成し、その焼成体の両表面に銀電極を焼き付け
て付与し、測定用の試料とした。尚、1400℃以下の
焼成温度で焼結密度が理論密度の95%に達しない試料
は焼結せずとし、以下の電気特性の測定は省略した。そ
して、室温で試料の静電容量と誘電損失を1Vrms,
1kHzで測定し、静電容量から誘電率を求めた。一方、
誘電損失の信号電圧特性は1kHzの信号を50Vrms
/mm印加して測定した。また、誘電率の温度特性を−6
0〜135℃の範囲で、1Vrms,1kHzで測定し
た。下記の(表2)に室温での誘電率、誘電損失、誘電
損失の信号電圧特性、及び20℃での誘電率に対する各
温度(−55℃,−25℃,85℃,125℃)での変
化率を示す。尚、(表1),(表2)において、#を付
した試料は本発明の範囲外で比較例である。
First, a particle size of 0.1 produced by hydrothermal synthesis method
A barium titanate fine powder having a particle size of μm and a purity of 99.99% or more was calcined at 900 to 1150 ° C., and the specific surface area was adjusted to 0.4 to 2.6 m 2 / g. As a comparative example, barium titanate produced by the solid phase method and barium titanate produced by the oxalate method were used. Then, as shown in (Table 1) below, with respect to 100 parts by weight of the above barium titanate, niobium pentoxide was converted into Nb 2 O 5 , nickel oxide was converted into NiO, and cobalt oxide was converted into Co 3 O. The amounts shown in (Table 1) in terms of 4 were weighed. The cobalt oxide used had a purity of 73 to 74% as metallic cobalt. Also,
In Table 1, niobium pentoxide, nickel oxide, and cobalt oxide are simply represented as Nb, Ni, and Co, respectively. These were mixed with pure water for 20 hours in a ball mill in which a zirconia cobblestone having a diameter of 5 mm was placed in a polyethylene container. After mixing, 9% by weight of a 5% PVA (polyvinyl alcohol) aqueous solution was added to the dried powder to granulate. Next, this granulated powder was put into a mold and molded into a disk shape having a diameter of 15 mm and a thickness of 0.5 mm at a pressure of 1 ton / cm 3 . The molded body thus obtained was baked at 1300 to 1400 ° C. for 2 hours, and silver electrodes were baked on both surfaces of the baked body to give a sample for measurement. Samples whose sintered density did not reach 95% of the theoretical density at a firing temperature of 1400 ° C. or less were not sintered, and the following measurement of electrical characteristics was omitted. Then, at room temperature, the capacitance and dielectric loss of the sample are 1 Vrms,
The measurement was performed at 1 kHz, and the dielectric constant was obtained from the capacitance. on the other hand,
The signal voltage characteristic of the dielectric loss is 50 Vrms for a 1 kHz signal.
/ Mm was applied and measured. Moreover, the temperature characteristic of the dielectric constant is -6
It was measured at 1 Vrms and 1 kHz in the range of 0 to 135 ° C. The following (Table 2) shows the dielectric constant at room temperature, the dielectric loss, the signal voltage characteristics of the dielectric loss, and the dielectric constant at 20 ° C at each temperature (-55 ° C, -25 ° C, 85 ° C, 125 ° C). The rate of change is shown. In addition, in (Table 1) and (Table 2), the samples with # are comparative examples outside the scope of the present invention.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【表2】 [Table 2]

【0017】(表1),(表2)から明らかな通り、チ
タン酸バリウム100重量部に対する五酸化ニオブの添
加量が0.8重量部より少ないと焼結性が悪く、一方
2.0重量部を超えると誘電率が低くなる。また、五酸
化ニオブ/(酸化ニッケル+酸化コバルト)の重量比が
3より小さいと誘電率の温度に対する変化が大きく、8
より大きいと焼結性が悪い。さらに、水熱合成法で生成
したチタン酸バリウムの比表面積が0.8m2/gより小
さいと誘電損失が大きくなり、一方2.4m2/gより大
きいと誘電率の温度に対する変化が大きい。そして、固
相法で生成したチタン酸バリウム、及びシュウ酸塩法で
生成したチタン酸バリウムを用いると、水熱合成法で生
成したチタン酸バリウムを用いた時に比べ、誘電率が大
きくならない、または誘電損失が大きいという欠点があ
る。
As is apparent from (Table 1) and (Table 2), if the amount of niobium pentoxide added is less than 0.8 parts by weight based on 100 parts by weight of barium titanate, the sinterability will be poor, while 2.0 parts by weight will be obtained. When it exceeds the range, the dielectric constant becomes low. If the weight ratio of niobium pentoxide / (nickel oxide + cobalt oxide) is less than 3, the change in dielectric constant with temperature is large, and
If it is larger, the sinterability is poor. Furthermore, when the specific surface area of barium titanate produced by the hydrothermal synthesis method is smaller than 0.8 m 2 / g, the dielectric loss becomes large, while when it is larger than 2.4 m 2 / g, the change of the dielectric constant with temperature becomes large. Then, when using barium titanate produced by the solid phase method and barium titanate produced by the oxalate method, the permittivity does not become larger than when barium titanate produced by the hydrothermal synthesis method is used, or There is a drawback that the dielectric loss is large.

【0018】尚、本実施例では酸化コバルトはCo34
として添加したが、CoOなど他の形で添加してもよ
く、要は金属コバルトの量が同じであれば同様の効果が
得られる。
In this embodiment, cobalt oxide is Co 3 O 4
However, other forms such as CoO may be added, and the same effect can be obtained if the amount of metallic cobalt is the same.

【0019】(実施例2)本実施例は請求項2記載の発
明に対応し、水熱合成法で生成し、熱処理により比表面
積を調整したチタン酸バリウムに、特定量の五酸化ニオ
ブ、酸化ニッケル、酸化コバルトを添加し、さらに二酸
化ケイ素を添加することにより、課題を解決したもので
ある。
(Embodiment 2) This embodiment corresponds to the invention described in claim 2, in which barium titanate produced by a hydrothermal synthesis method and having a specific surface area adjusted by heat treatment is mixed with a specific amount of niobium pentoxide and an oxide. The problem was solved by adding nickel and cobalt oxide, and further adding silicon dioxide.

【0020】まず、水熱合成法で生成した、粒径0.1
μm、純度99.99%以上のチタン酸バリウム微粉末
を1050℃で粉体仮焼し、その比表面積を1.2m2
gに調整したチタン酸バリウムを用いた。上記のチタン
酸バリウム100重量部に対して、五酸化ニオブをNb
25換算で、酸化ニッケルをNiO換算で、酸化コバル
トをCo34換算で、二酸化ケイ素をSiO2換算でそ
れぞれ下記の(表3)に示した量を秤量した。尚、使用
した酸化コバルトは金属コバルトとしての純度が73〜
74%のものを用いた。(表3)でも五酸化ニオブ、酸
化ニッケル、酸化コバルト、酸化ケイ素をそれぞれ単に
Nb,Ni,Co、Siと表した。以下(実施例1)と
同様の手順により試料の作成、評価を行った。
First, the particle size of 0.1 produced by hydrothermal synthesis method
Fine barium titanate powder having a particle size of μm and a purity of 99.99% or more is calcined at 1050 ° C. and its specific surface area is 1.2 m 2 /
Barium titanate adjusted to g was used. Niobium pentoxide was added to Nb for 100 parts by weight of the above barium titanate.
The amounts shown in Table 3 below were weighed in terms of 2 O 5 , nickel oxide in terms of NiO, cobalt oxide in terms of Co 3 O 4 , and silicon dioxide in terms of SiO 2 . The cobalt oxide used has a purity of 73 to 80 as metallic cobalt.
74% was used. Also in (Table 3), niobium pentoxide, nickel oxide, cobalt oxide, and silicon oxide are simply represented as Nb, Ni, Co, and Si, respectively. A sample was prepared and evaluated by the same procedure as described below (Example 1).

【0021】下記の(表4)に1300℃及び1330
℃で焼成における焼結温度、1330℃焼成における室
温での誘電率、誘電損失、誘電損失の信号電圧特性を示
す。なお、(表3),(表4)において、#を付した試
料は本発明の範囲外で比較例である。
1300 ° C. and 1330
The signal voltage characteristics of the dielectric constant, the dielectric loss, and the dielectric loss at the sintering temperature of firing at 13O 0 C and the room temperature of firing at 1330 ° C are shown. In addition, in (Table 3) and (Table 4), the samples with # are comparative examples outside the scope of the present invention.

【0022】[0022]

【表3】 [Table 3]

【0023】[0023]

【表4】 [Table 4]

【0024】(表3),(表4)から明らかな通り、チ
タン酸バリウム100重量部に対して二酸化ケイ素を
0.05重量部以上さらに添加することにより、焼結性
が改善される。しかし、その添加量が0.3重量部を超
えると誘電率の低下が著しく、一方0.5重量部より少
ないと焼結性の改善効果がないため、請求の範囲から除
外した。
As is clear from (Table 3) and (Table 4), the sinterability is improved by further adding 0.05 part by weight or more of silicon dioxide to 100 parts by weight of barium titanate. However, when the addition amount exceeds 0.3 parts by weight, the dielectric constant is remarkably lowered, and when the addition amount is less than 0.5 parts by weight, there is no effect of improving the sinterability, and therefore it is excluded from the scope of the claims.

【0025】(実施例3)本実施例は請求項3記載の発
明に対応し、水熱合成法で生成し、熱処理により比表面
積を調整したチタン酸バリウムに、特定量の五酸化ニオ
ブ、酸化ニッケル、酸化マンガンを添加することによ
り、課題を解決したものである。
(Embodiment 3) This embodiment corresponds to the invention described in claim 3, in which barium titanate produced by a hydrothermal synthesis method and having a specific surface area adjusted by heat treatment is mixed with a specific amount of niobium pentoxide and an oxide. The problem is solved by adding nickel and manganese oxide.

【0026】まず、水熱合成法で生成した、粒径0.1
μm、純度99.99%以上のチタン酸バリウム微粉末
を900〜1150℃で粉体仮焼し、その比表面積を
0.4〜2.6m2/gに調整したチタン酸バリウムを用
いた。比較例として、固相法で生成したチタン酸バリウ
ム、及びシュウ酸塩法で生成したチタン酸バリウムを用
いた。そして、下記の(表5)に示したように、上記の
チタン酸バリウム100重量部に対して、五酸化ニオブ
をNb25換算で、酸化ニッケルをNiO換算で、酸化
マンガンをMnO2換算でそれぞれ(表5)に示した量
を秤量した。(表5)でも五酸化ニオブ、酸化ニッケ
ル、酸化マンガンをそれぞれ単にNb,Ni,Mnと表
した。以下、(実施例1)と同様の手順により試料の作
成、評価を行った。また、1400℃以下の焼成温度で
焼結密度が理論密度の95%に達しない試料は焼結せず
とし、以下の電気特性の測定は省略した。
First, a particle size of 0.1 produced by hydrothermal synthesis method
A barium titanate fine powder having a particle size of μm and a purity of 99.99% or more was calcined at 900 to 1150 ° C., and the specific surface area was adjusted to 0.4 to 2.6 m 2 / g. As a comparative example, barium titanate produced by the solid phase method and barium titanate produced by the oxalate method were used. Then, as shown in (Table 5) below, niobium pentoxide was converted into Nb 2 O 5 , nickel oxide was converted into NiO, and manganese oxide was converted into MnO 2 with respect to 100 parts by weight of barium titanate. The respective amounts shown in (Table 5) were weighed. Also in (Table 5), niobium pentoxide, nickel oxide, and manganese oxide are simply represented as Nb, Ni, and Mn, respectively. Hereinafter, a sample was prepared and evaluated by the same procedure as in (Example 1). A sample whose sintered density did not reach 95% of the theoretical density at a firing temperature of 1400 ° C. or lower was not sintered, and the following measurement of electrical characteristics was omitted.

【0027】下記の(表6)に室温での誘電率、誘電損
失、誘電損失の信号電圧特性、及び20℃での誘電率に
対する各温度(−55℃,−25℃,85℃,125
℃)での変化率を示す。尚、(表5),(表6)におい
て、#を付した試料は本発明の範囲外で比較例である。
The following (Table 6) shows the dielectric constant at room temperature, the dielectric loss, the signal voltage characteristics of the dielectric loss, and the respective temperatures (-55 ° C, -25 ° C, 85 ° C, 125) with respect to the dielectric constant at 20 ° C.
The change rate is shown. In addition, in (Table 5) and (Table 6), the samples with # are comparative examples outside the scope of the present invention.

【0028】[0028]

【表5】 [Table 5]

【0029】[0029]

【表6】 [Table 6]

【0030】(表5),(表6)から明らかな通り、チ
タン酸バリウム100重量部に対する五酸化ニオブの添
加量が0.8重量部より少ないと焼結性が悪く、一方
1.5重量部を超えると誘電率が低くなり、酸化ニッケ
ルと酸化マンガンの合計での添加量が0.1重量部少な
いと焼結性が悪い。また、五酸化ニオブ(酸化ニッケル
+酸化マンガン)の重量比が3より小さいと、誘電率の
温度に対する変化が大きい。さらに、水熱合成法で生成
したチタン酸バリウムの比表面積が0.8m2/gより小
さいと誘電損失が大きくなり、一方2.4m2/gより大
きいと誘電率の温度に対する変化が大きい。そして、固
相法で生成したチタン酸バリウム、及びシュウ酸塩法で
生成したチタン酸バリウムを用いると、水熱合成法で生
成したチタン酸バリウムを用いた時に比べ、誘電率の温
度に対する変化が大きく、誘電損失も大きくなる。
As is clear from (Table 5) and (Table 6), if the amount of niobium pentoxide added was less than 0.8 parts by weight based on 100 parts by weight of barium titanate, the sinterability was poor, while 1.5 parts by weight was used. If it exceeds 0.5 parts by weight, the dielectric constant becomes low, and if the total amount of nickel oxide and manganese oxide added is less than 0.1 parts by weight, the sinterability is poor. If the weight ratio of niobium pentoxide (nickel oxide + manganese oxide) is less than 3, the change in dielectric constant with temperature is large. Furthermore, when the specific surface area of barium titanate produced by the hydrothermal synthesis method is smaller than 0.8 m 2 / g, the dielectric loss becomes large, while when it is larger than 2.4 m 2 / g, the change of the dielectric constant with temperature becomes large. Then, when barium titanate produced by the solid-phase method and barium titanate produced by the oxalate method are used, the change in the dielectric constant with respect to temperature is different from that when barium titanate produced by the hydrothermal synthesis method is used. It also increases the dielectric loss.

【0031】尚、本実施例では酸化マンガンはMnO2
として添加したが、MnCO3など他の形で添加しても
よく、要は金属マンガンの量が同じであれば同様の効果
が得られる。
In this embodiment, manganese oxide is MnO 2
However, other forms such as MnCO 3 may be added, and the same effect can be obtained if the amount of manganese metal is the same.

【0032】(実施例4)本実施例は請求項4記載の発
明に対応し、水熱合成法で生成し、熱処理により比表面
積を調整したチタン酸バリウムに、特定量の五酸化ニオ
ブ、酸化ニッケル、酸化マンガンを添加し、さらに二酸
化ケイ素を添加することにより、課題を解決したもので
ある。
(Embodiment 4) This embodiment corresponds to the invention described in claim 4, in which barium titanate produced by a hydrothermal synthesis method and having a specific surface area adjusted by heat treatment is mixed with a specific amount of niobium pentoxide and an oxide. The problem is solved by adding nickel and manganese oxide, and further adding silicon dioxide.

【0033】まず、水熱合成法で生成した、粒径0.1
μm、純度99.99%以上のチタン酸バリウム微粉末
を1050℃で粉体仮焼し、その比表面積を1.2m2
gに調整したチタン酸バリウムを用いた。上記のチタン
酸バリウム100重量部に対して、五酸化ニオブをNb
25換算で、酸化ニッケルをNiO換算で、酸化マンガ
ンをMnO2換算で、二酸化ケイ素をSiO2換算でそれ
ぞれ(表7)に示した量を秤量した。(表7)でも五酸
化ニオブ、酸化ニッケル、酸化マンガン、酸化ケイ素を
それぞれ単にNb,Ni,Mn,Siと表した。以下
(実施例1)と同様の手順により試料の作成、評価を行
った。
First, the particle size of 0.1 produced by the hydrothermal synthesis method.
Fine barium titanate powder having a particle size of μm and a purity of 99.99% or more is calcined at 1050 ° C. and its specific surface area is 1.2 m 2 /
Barium titanate adjusted to g was used. Niobium pentoxide was added to Nb for 100 parts by weight of the above barium titanate.
The amounts shown in Table 7 were measured in terms of 2 O 5 , nickel oxide in terms of NiO, manganese oxide in terms of MnO 2 , and silicon dioxide in terms of SiO 2 . Also in (Table 7), niobium pentoxide, nickel oxide, manganese oxide, and silicon oxide are simply represented as Nb, Ni, Mn, and Si, respectively. A sample was prepared and evaluated by the same procedure as described below (Example 1).

【0034】下記の(表8)に1300℃及び1330
℃焼成における焼結密度、1330℃焼成における室温
での誘電率、誘電損失、誘電損失の信号電圧特性を示
す。尚、(表7),(表8)において、#を付した試料
は本発明の範囲外で比較例である。
See Table 8 below at 1300 ° C. and 1330
The signal voltage characteristics of the sintering density at ℃ firing, the dielectric constant at 1330 ° C. at room temperature, the dielectric loss, and the dielectric loss are shown. In addition, in (Table 7) and (Table 8), the samples with # are comparative examples outside the scope of the present invention.

【0035】[0035]

【表7】 [Table 7]

【0036】[0036]

【表8】 [Table 8]

【0037】(表7),(表8)から明らかな通り、チ
タン酸バリウム100重量部に対して二酸化ケイ素を
0.05重量部以上さらに添加することにより、焼結性
が改善される。しかし、添加量が0.3重量部を超える
と誘電率の低下が著しく、一方0.05重量部より少な
いと焼結性の改善効果がないため、請求の範囲から除外
した。
As is clear from (Table 7) and (Table 8), the sinterability is improved by further adding 0.05 part by weight or more of silicon dioxide to 100 parts by weight of barium titanate. However, when the addition amount exceeds 0.3 parts by weight, the dielectric constant is remarkably lowered, and when the addition amount is less than 0.05 parts by weight, there is no effect of improving the sinterability, and therefore it is excluded from the scope of the claims.

【0038】[0038]

【発明の効果】本発明の誘電体磁器組成物は、2700
以上およそ4000までの高い誘電率で、誘電率の温度
変化が少なく、50Vrms/mmの信号電圧印加時の誘
電損失が2.5%以下という優れた特性を有する。従っ
て、セラミックコンデンサ用の誘電体材料として実用化
が可能であり、特に積層セラミックコンデンサにおいて
は、誘電体層の薄層化が可能となるため、小型大容量化
を容易に実現できるものである。
The dielectric ceramic composition of the present invention is 2700
With the high dielectric constant up to about 4000, there is little change in the dielectric constant with temperature, and the dielectric loss is 2.5% or less when a signal voltage of 50 Vrms / mm is applied. Therefore, it can be put to practical use as a dielectric material for a ceramic capacitor, and particularly in a multilayer ceramic capacitor, the dielectric layer can be thinned, so that a small size and a large capacity can be easily realized.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】水熱合成法で生成し、熱処理により、比表
面積を0.8〜2.4m2/gに調整したチタン酸バリウ
ムと、五酸化ニオブ、酸化ニッケル、及び必要に応じて
の酸化コバルトとからなり、チタン酸バリウム100重
量部に対して、五酸化ニオブ0.8〜2.0重量部で、
かつ、五酸化ニオブ、酸化ニッケル、酸化コバルトの重
量比が、3≦五酸化ニオブ/(酸化ニッケル+酸化コバ
ルト)≦8の関係(ただし、酸化ニッケル0重量部を除
き、酸化コバルト0重量部を含む)であることを特徴と
する誘電体磁器組成物。
1. Barium titanate produced by hydrothermal synthesis and having a specific surface area adjusted to 0.8 to 2.4 m 2 / g by heat treatment, niobium pentoxide, nickel oxide and, if necessary, Consisting of cobalt oxide, and 0.8 to 2.0 parts by weight of niobium pentoxide per 100 parts by weight of barium titanate,
Further, the weight ratio of niobium pentoxide, nickel oxide, and cobalt oxide is 3 ≦ niobium pentoxide / (nickel oxide + cobalt oxide) ≦ 8 (provided that 0 part by weight of cobalt oxide is excluded except 0 part by weight of nickel oxide). Dielectric ceramic composition.
【請求項2】チタン酸バリウム100重量部に対して、
二酸化ケイ素を0.05〜0.30重量部添加したこと
を特徴とする請求項1記載の誘電体磁器組成物。
2. With respect to 100 parts by weight of barium titanate,
The dielectric ceramic composition according to claim 1, wherein 0.05 to 0.30 parts by weight of silicon dioxide is added.
【請求項3】水熱合成法で生成し、熱処理により、比表
面積を0.8〜2.4m2/gに調整したチタン酸バリウ
ムと、五酸化ニオブ、酸化ニッケル、酸化マンガンとか
らなり、チタン酸バリウム100重量部に対して、五酸
化ニオブ0.8〜1.5重量部、酸化ニッケルと酸化マ
ンガンを合計量で0.1重量部以上で、かつ、五酸化ニ
オブ、酸化ニッケル、酸化マンガンの重量比が、3≦五
酸化ニオブ/(酸化ニッケル+酸化マンガン)の関係
(ただし、酸化ニッケル0重量部、酸化マンガン0重量
部は除く)であることを特徴とする誘電体磁器組成物。
3. Barium titanate produced by a hydrothermal synthesis method and having a specific surface area adjusted to 0.8 to 2.4 m 2 / g by heat treatment, niobium pentoxide, nickel oxide and manganese oxide, 0.8 to 1.5 parts by weight of niobium pentoxide, 0.1 part by weight or more in total of nickel oxide and manganese oxide with respect to 100 parts by weight of barium titanate, and niobium pentoxide, nickel oxide, oxide A dielectric ceramic composition characterized in that the weight ratio of manganese has a relationship of 3 ≦ niobium pentoxide / (nickel oxide + manganese oxide) (excluding 0 part by weight of nickel oxide and 0 part by weight of manganese oxide). ..
【請求項4】チタン酸バリウム100重量部に対して、
二酸化ケイ素を0.05〜0.30重量部添加したこと
を特徴とする請求項3記載の誘電体磁器組成物。
4. With respect to 100 parts by weight of barium titanate,
The dielectric ceramic composition according to claim 3, wherein 0.05 to 0.30 part by weight of silicon dioxide is added.
JP05762792A 1992-03-16 1992-03-16 Dielectric porcelain composition Expired - Fee Related JP3225577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05762792A JP3225577B2 (en) 1992-03-16 1992-03-16 Dielectric porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05762792A JP3225577B2 (en) 1992-03-16 1992-03-16 Dielectric porcelain composition

Publications (2)

Publication Number Publication Date
JPH05258610A true JPH05258610A (en) 1993-10-08
JP3225577B2 JP3225577B2 (en) 2001-11-05

Family

ID=13061129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05762792A Expired - Fee Related JP3225577B2 (en) 1992-03-16 1992-03-16 Dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JP3225577B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113582681A (en) * 2021-08-26 2021-11-02 四川特锐祥科技股份有限公司 High-dielectric-constant high-dielectric-strength dielectric material and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113582681A (en) * 2021-08-26 2021-11-02 四川特锐祥科技股份有限公司 High-dielectric-constant high-dielectric-strength dielectric material and preparation method thereof

Also Published As

Publication number Publication date
JP3225577B2 (en) 2001-11-05

Similar Documents

Publication Publication Date Title
JPH05258610A (en) Dielectric ceramic composition
JP3397099B2 (en) Dielectric porcelain composition and method for producing the same
JPH03109256A (en) Dielectric porcelain composition
JPH06260020A (en) Dielectric ceramic composition
JP3562085B2 (en) Dielectric ceramic composition, capacitor using the same, and method for producing dielectric ceramic composition
JPH06260019A (en) Dielectric ceramic composition
JPH06260021A (en) Dielectric ceramic composition
JPH06260022A (en) Dielectric ceramic composition
JP2694209B2 (en) High dielectric constant porcelain composition
JPH07220524A (en) Dielectric ceramic composition
JPH08268757A (en) Porcelain composition
JP3389947B2 (en) Dielectric ceramic composition and thick film capacitor using the same
JPH04114919A (en) Production of multiple perovskite-type dielectric porcelain powder and porcelain capacitor using same
JP2568565B2 (en) Dielectric porcelain composition
JPS6211443B2 (en)
JP2000159573A (en) Dielectric porcelain composition and its production
JPH05339052A (en) Dielectric ceramic composition for temperature compensation
JPS6135144B2 (en)
JPS63185853A (en) High permittivity ceramic composition
JPH05339053A (en) Dielectric ceramic composition for temperature compensation
JPH08188467A (en) Production of ceramic composition
JPS6138140B2 (en)
JPS6211442B2 (en)
JPH09110524A (en) Nonreducing dielectric porcelain composition
JPH0757536A (en) Dielectric material for ceramic capacitor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070831

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080831

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080831

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090831

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees