JPH05339052A - Dielectric ceramic composition for temperature compensation - Google Patents

Dielectric ceramic composition for temperature compensation

Info

Publication number
JPH05339052A
JPH05339052A JP4147742A JP14774292A JPH05339052A JP H05339052 A JPH05339052 A JP H05339052A JP 4147742 A JP4147742 A JP 4147742A JP 14774292 A JP14774292 A JP 14774292A JP H05339052 A JPH05339052 A JP H05339052A
Authority
JP
Japan
Prior art keywords
composition
reo3
temperature
value
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4147742A
Other languages
Japanese (ja)
Inventor
Makoto Saito
誠 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP4147742A priority Critical patent/JPH05339052A/en
Publication of JPH05339052A publication Critical patent/JPH05339052A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a dielectric ceramic composition having excellent Q value, high dielectric constant and small thermal coefft. of dielectric const. by specifying the ranges of main components BaO, BiO3/2 and ReO3/2 in the ternary phase diagram, specifying the proportion of TiO2, and further constituting ReO3/2 of Nd, La and Pr with a specified proportion. CONSTITUTION:This dielectric ceramic compsn. is expressed by general formula (x.BaO-y.BiO3/2-z.ReO3/2)-c.TiO2, wherein Re represents rare earth elements and x y and z satisfy x+y+z=100. The proportion of these components by mol amt. is shown in the ternary phase diagram, and its range is in the area (including the boundary) defined by lines connecting the compsn. points A, B, C, D, E, and F. The mol amt. c of TiO2 is 110-140 to the value in parentheses of the general formula. ReO3/2 consists of d.Nd-e.La-f.Pr, wherein d+e+f=z. If z=100, z=d'+e'+f' and d'=20 to 90, e'=10 to 80 and f'=0 to 30. the source materials are compounded in this range, calcined, compacted, and sintered.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、Q値に優れ、誘電率の
温度変化係数が小さく、誘電率の高い温度補償用誘電体
磁器組成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric ceramic composition for temperature compensation, which has an excellent Q value, a small coefficient of change in dielectric constant with temperature, and a high dielectric constant.

【0002】[0002]

【従来の技術】従来から、BaO−TiO2−Re23
系(Reは希土類元素を表す)から成る組成物は、Q値
に優れ、誘電率の温度変化係数が小さく、誘電率の高い
温度補償用誘電体磁器組成物として知られている。
2. Description of the Related Art Conventionally, BaO--TiO 2 --Re 2 O 3 has been used.
A composition composed of a system (Re represents a rare earth element) is known as a dielectric ceramic composition for temperature compensation, which has an excellent Q value, a small coefficient of change in dielectric constant with temperature, and a high dielectric constant.

【0003】[0003]

【発明が解決しようとする課題】前記従来のBaO−T
iO2−Re23系の温度補償用誘電体磁器組成物は、
誘電率が90以下、温度係数が−20ppm/℃、Q値
が4000程度が限界であり、これらの電気的特性値
は、円板コンデンサーや円筒コンデンサーのような単層
構造のコンデンサーを更に小型化、容量拡大として使用
するとき満足する値ではないという問題がある。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
The dielectric ceramic composition for temperature compensation of the iO 2 —Re 2 O 3 system is
The dielectric constant is 90 or less, the temperature coefficient is -20 ppm / ° C, and the Q value is about 4000. The electrical characteristics of these are further miniaturization of single-layer capacitors such as disk capacitors and cylindrical capacitors. However, there is a problem that it is not a satisfactory value when used as capacity expansion.

【0004】本発明はかかる問題点を解消し、Q値、誘
電率の温度特性が温度補償用コンデンサーとして満足す
る値を有する温度補償用誘電体磁器組成物を提供するこ
とを目的とする。
An object of the present invention is to solve the above problems and to provide a temperature-compensating dielectric porcelain composition having Q-value and dielectric constant temperature characteristics satisfying as a temperature-compensating capacitor.

【0005】[0005]

【課題を解決するための手段】本発明の温度補償用誘電
体磁器組成物は、一般式 (x・BaO−y・BiO 3/2−z・ReO 3/2)−c
・TiO2 からなり、Reは希土類元素を表し、x+y+z=10
0の組成を有する組成物であって、これらの成分割合が
三元系図において次の組成点A,B,C,D,E,F x・BaO y・BiO 3/2 z・ReO 3/2 A 35 30 35 B 30 30 40 C 25 35 40 D 20 35 45 E 20 30 50 F 35 15 50 を結ぶ線上およびこの線に囲まれる組成範囲内のモル量
であり、また、TiO2の値cが(x・BaO−y・B
iO 3/2−z・ReO 3/2)に対して110〜140の
範囲であり、また、ReO 3/2はd・Nd−e・La−
f・Prからなり、かつ、d+e+f=zであって、z
=100としたときz=d′+e′+f′の組成を有
し、更にd′=20〜90、e′=10〜80、f′=
0〜30の範囲であることを特徴とする。
The temperature-compensating dielectric ceramic composition of the present invention has the general formula (x.BaO-y.BiO3 / 2-z.ReO3 / 2) -c.
- consists TiO 2, Re represents a rare earth element, x + y + z = 10
A composition having a composition of 0, the proportions of these components being the following composition points A, B, C, D, E, Fx.BaOy.BiO3 / 2z.ReO3 / 2 in the ternary system diagram. A 35 30 35 B 30 30 40 C 25 35 40 D 20 35 45 E 20 30 50 F 35 35 50 is the molar amount on the line connecting and within the composition range surrounded by this line, and the value c of TiO 2 is (X ・ BaO-y ・ B
iO 3 / 2-z · ReO 3/2) is in the range of 110 to 140, and ReO 3/2 is d · Nd−e · La−.
f · Pr, and d + e + f = z, and z
= 100, it has a composition of z = d '+ e' + f ', and further d' = 20 to 90, e '= 10 to 80, f' =
It is characterized in that it is in the range of 0 to 30.

【0006】[0006]

【作用】温度補償用誘電体磁器組成物の主成分たるx・
BaO・yBiO 3/2・zReO 3/2の組成をx+y+
z=100とし、かつこれらの成分割合が三元系図にお
いて、各組成点A,B,C,D,E,Fを結ぶ線上およ
びこの線に囲まれる組成範囲内のモル量とした理由は、
図1に示す領域Lにおいては誘電率が従来の温度補償用
誘電体磁器組成物と比べて優位差がなく、また、領域M
においては焼結性が著しく困難となり実現性が低下し、
また、領域Nになると誘電率、温度係数が満足する値が
得られなくなるからである。
[Function] The main component of the dielectric ceramic composition for temperature compensation is x.
The composition of BaO · yBiO 3/2 · zReO 3/2 is x + y +
The reason why z = 100 and the proportion of these components is the molar amount on the line connecting the composition points A, B, C, D, E, and F in the ternary system diagram and within the composition range surrounded by this line is as follows.
In the region L shown in FIG. 1, there is no significant difference in the dielectric constant as compared with the conventional dielectric ceramic composition for temperature compensation, and in the region M
, The sinterability becomes extremely difficult and the feasibility decreases,
Further, in the region N, values satisfying the dielectric constant and the temperature coefficient cannot be obtained.

【0007】また、TiO2のcの値を(x・BaO−
y・BiO 3/2−z・ReO 3/2)に対して110〜1
40の範囲とした理由は、c値が110未満の場合は焼
結性が著しく悪化し、Q値が低下するからであり、c値
が140を超えた場合は誘電率が小さくなり、温度係数
がマイナス側に増大するからである。
In addition, the value of c of TiO 2 is (x.BaO-
y · BiO 3 / 2-z · ReO 3/2) 110-1
The reason for setting the range of 40 is that when the c value is less than 110, the sinterability is significantly deteriorated and the Q value is lowered, and when the c value exceeds 140, the dielectric constant is decreased and the temperature coefficient is increased. Is increased to the negative side.

【0008】また、Re(希土類元素)の組成を主成分
モル量範囲内で、かつ、d+e+f=zであって、z=
100としたときz=d′+e′+f′の組成を有し、
更にd′=20〜90、e′=10〜80、f′=0〜
30の範囲とした理由は、希土類元素の組成を前記組成
範囲内で選択すると誘電率、温度係数、Q値が向上する
からである。
Further, the composition of Re (rare earth element) is within the range of molar amount of the main component, and d + e + f = z, and z =
When it is 100, it has a composition of z = d '+ e' + f ',
Furthermore, d '= 20-90, e' = 10-80, f '= 0-
The reason for setting the range to 30 is that when the composition of the rare earth element is selected within the above composition range, the dielectric constant, temperature coefficient and Q value are improved.

【0009】即ち、d′=Ndが20未満であると温度
係数が満足する値が得られなくなり、また、e′=La
が10未満であると温度係数は向上するが、誘電率が満
足した値が得られなくなり、また、f′=Prが30を
超えると誘電率、温度係数ともに満足する値が得られ
ず、更に焼結性が悪く実用的ではないからである。ま
た、希土類元素をLa,Nd,Prに選択した理由は、
工業的に使用するのに安価であって、生産コストの低い
製品化を図ることが出来るからである。
That is, when d '= Nd is less than 20, a value satisfying the temperature coefficient cannot be obtained, and e' = La.
When is less than 10, the temperature coefficient is improved, but a value that satisfies the permittivity cannot be obtained, and when f ′ = Pr exceeds 30, values that satisfy both the permittivity and the temperature coefficient are not obtained. This is because the sinterability is poor and it is not practical. The reason for selecting the rare earth elements as La, Nd and Pr is as follows.
This is because it is cheap to be used industrially and can be manufactured into a product with low production cost.

【0010】[0010]

【実施例】先ず、添付図面について説明する。図1は本
発明の温度補償用誘電体磁器組成物の主成分の組成範囲
を示す三元系図を表し、組成点A,B,C,D,E,F
で囲まれた領域(太線)が本発明組成物の主成分の組成
範囲であり、図1中にプロットした番号は後記する表1
の試料番号を示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the attached drawings will be described. FIG. 1 is a ternary system diagram showing the composition range of the main components of the temperature-compensating dielectric ceramic composition of the present invention. The composition points A, B, C, D, E, F
The region surrounded by (thick line) is the composition range of the main component of the composition of the present invention, and the numbers plotted in FIG. 1 are shown in Table 1 below.
The sample number of is shown.

【0011】次に、本発明の具体的な実施例を比較例と
共に説明する。 実験例 先ず、出発原料として、高純度の炭酸バリウム(BaC
3)、酸化ビスマス(Bi23)、酸化チタン(Ti
2)、酸化ランタン(La23)、酸化プラセオジム
(Pr23)、酸化ネオジム(Nd23)の粉末を夫々
用意した。次に各原料を表1(試料番号1〜27)、表
2(試料番号28〜55)、表3(試料番号56〜8
3)、表4(試料番号84〜99)に示す量となるよう
に秤量した。
Next, specific examples of the present invention will be described together with comparative examples. Experimental Example First, as a starting material, high-purity barium carbonate (BaC) was used.
o 3 ), bismuth oxide (Bi 2 O 3 ), titanium oxide (Ti
O 2 ), lanthanum oxide (La 2 O 3 ), praseodymium oxide (Pr 2 O 3 ) and neodymium oxide (Nd 2 O 3 ) powders were prepared. Next, each raw material is shown in Table 1 (sample numbers 1-27), Table 2 (sample numbers 28-55), and Table 3 (sample numbers 56-8).
3) and weighed so as to obtain the amounts shown in Table 4 (Sample Nos. 84 to 99).

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【表2】 [Table 2]

【0014】[0014]

【表3】 [Table 3]

【0015】[0015]

【表4】 [Table 4]

【0016】尚、表1,2,3,4中で*印を付けたも
のは本発明の範囲内の組成物であり、その他は本発明の
範囲外の組成物である。また、表2,3,4中で*印と
同じ位置に付されている番号(6,9,14,23)は
表1の試料番号と同じものであり、他の試料と対比のた
めに記載した。そして、表1、表2、表3、表4に示す
ように配合された各原料を内壁を樹脂コーティングされ
たボールミルにジルコニア製のボールと、純水と共に入
れ、数時間の湿式混合後、脱水乾燥を施して、これを乾
式粉砕して、粉末混合物を得た。この粉末混合物を磁器
製の鞘に入れ、酸化雰囲気中で粉末混合物の組成に合わ
せて温度1100℃から1200℃の範囲で、2時間仮
焼して焼結体を作成した。作成された焼結体を再び乳鉢
で乾式粉砕した後、前記ボールミルにて湿式粉砕し、微
粉末とした。この微粉末に有機バインダーとしてポリビ
ニルアルコールを加え、造粒した後、乾式成型機を用い
て2t/cm2の圧力でプレス成形し、直径10mm、
厚さ0.5mmの円板状の成形物を作成した。
Those marked with * in Tables 1, 2, 3, and 4 are compositions within the scope of the present invention, and other compositions are outside the scope of the present invention. In addition, the numbers (6, 9, 14, 23) given in the same positions as * in Tables 2, 3 and 4 are the same as the sample numbers in Table 1, and are shown for comparison with other samples. Described. Then, each raw material blended as shown in Table 1, Table 2, Table 3, and Table 4 was put into a ball mill whose inner wall was resin-coated with zirconia balls and pure water, and after wet mixing for several hours, dehydration was performed. It was dried and dry-milled to obtain a powder mixture. This powder mixture was put in a porcelain sheath and calcined in an oxidizing atmosphere at a temperature in the range of 1100 ° C. to 1200 ° C. for 2 hours according to the composition of the powder mixture to prepare a sintered body. The produced sintered body was again dry-ground in a mortar and then wet-ground in the ball mill to obtain a fine powder. Polyvinyl alcohol was added as an organic binder to this fine powder, and the mixture was granulated and then press-molded using a dry molding machine at a pressure of 2 t / cm 2 , to obtain a diameter of 10 mm,
A disk-shaped molded product having a thickness of 0.5 mm was prepared.

【0017】作成された成形物をアルミナ製の鞘に入
れ、酸化雰囲気中で成形物の組成に合わせて温度130
0℃から1350℃の範囲で2時間焼結して、円板状の
温度補償用誘電体磁器組成物を作成した。作成された円
板状の各温度補償用誘電体磁器組成物の両面に一定面積
の銀電極を焼き付けし、YHP社製のインピーダンスア
ナライザー(型式4192A)により夫々の温度補償用
誘電体磁器組成物の静電容量、Q値、静電容量の温度特
性について測定した。また、各温度補償用誘電体磁器組
成物の形状と電極面積とから比誘電率(下記式参照)を
求めた。また、インピーダンスアナライザーでの測定条
件は、測定周波数1MHz、信号電圧1Vとした。ま
た、温度20℃と85℃で測定した静電容量値より温度
係数(下記式参照)を求めた。
The formed product is placed in an alumina sheath, and the temperature is adjusted to 130 according to the composition of the product in an oxidizing atmosphere.
A disc-shaped temperature compensating dielectric porcelain composition was prepared by sintering at 0 ° C to 1350 ° C for 2 hours. Each of the disk-shaped temperature compensating dielectric ceramic compositions was baked with silver electrodes having a certain area on both sides, and each temperature compensating dielectric ceramic composition was measured by an impedance analyzer (model 4192A) manufactured by YHP. The capacitance, Q value, and temperature characteristics of capacitance were measured. Further, the relative permittivity (see the following formula) was determined from the shape of each temperature-compensating dielectric ceramic composition and the electrode area. The measurement conditions with the impedance analyzer were a measurement frequency of 1 MHz and a signal voltage of 1V. Further, the temperature coefficient (see the following formula) was determined from the capacitance value measured at temperatures of 20 ° C and 85 ° C.

【0018】 比誘電率ε=(4/ε0/π)×C20×t/D2 温度係数Tc=(C85−C20)/C20/65×1
6 尚、式中、ε0 :真空中の誘電率、 π:円周
率、 t:焼結体の厚さ(mm)、 D:電極面積(m
2)、 C20:20℃の静電容量(pF)、 C85:85℃の静電容量(pF) を示す。
Specific permittivity ε = (4 / ε 0 / π) × C20 × t / D 2 Temperature coefficient Tc = (C85−C20) / C20 / 65 × 1
0 6 where ε 0 is the dielectric constant in vacuum, π is the circular constant, t is the thickness (mm) of the sintered body, and D is the electrode area (m.
m 2 ), C20: 20 ° C. capacitance (pF), and C85: 85 ° C capacitance (pF).

【0019】得られた結果を表1、表2、表3、表4の
夫々の試料番号に対応させて表5、表6、表7、表8に
示す。
The obtained results are shown in Table 5, Table 6, Table 7, and Table 8 corresponding to the sample numbers in Table 1, Table 2, Table 3, and Table 4, respectively.

【0020】[0020]

【表5】 [Table 5]

【0021】[0021]

【表6】 [Table 6]

【0022】[0022]

【表7】 [Table 7]

【0023】[0023]

【表8】 [Table 8]

【0024】尚、表5,6,7,8中で*印を付けたも
のは本発明の範囲内の組成物であり、その他は本発明の
範囲外の組成物である。また、表6,7,8中で*印と
同じ位置に付されている番号(6,9,14,23)は
表5の試料番号と同じものであり、他の試料と対比のた
めに記載した。また、表5,6中の温度係数Tcの欄で
データが記載されていないものは、温度に対する静電容
量の変化が直線的でないために測定出来なかった試料で
ある。表5,6,7,8から明らかなように、本発明の
組成範囲内(表1〜表8に*印で示した)にある温度補
償用誘電体磁器組成物は温度補償用コンデンサーとして
満足せるQ値、誘電率の温度特性を有していることが分
かる。これに対して本発明の組成範囲外にある組成、例
えば前記表における試料番号1,2,11,16,2
4,26等はQ値、誘電率、温度係数のいずれかが小さ
いか、または焼結性が悪く再現性に劣り実用に適しな
い。
Those marked with * in Tables 5, 6, 7, and 8 are compositions within the scope of the present invention, and other compositions are outside the scope of the present invention. In addition, the numbers (6, 9, 14, 23) given in the same positions as * in Tables 6, 7, and 8 are the same as the sample numbers in Table 5, and for comparison with other samples. Described. Further, in the columns of temperature coefficient Tc in Tables 5 and 6, for which no data is described, the samples which could not be measured because the change in capacitance with temperature was not linear. As is clear from Tables 5, 6, 7, and 8, the temperature-compensating dielectric ceramic composition within the composition range of the present invention (indicated by * in Tables 1 to 8) is satisfactory as a temperature-compensating capacitor. It can be seen that it has temperature characteristics of Q value and permittivity. On the other hand, compositions outside the composition range of the present invention, for example, sample numbers 1, 2, 11, 16, 2 in the above table
Nos. 4, 26, etc. are not suitable for practical use because they have a small Q value, dielectric constant, or temperature coefficient, or have poor sinterability and poor reproducibility.

【0025】[0025]

【発明の効果】このように本発明によるときは、Q値、
誘電率の温度特性が温度補償用コンデンサーとして満足
する値を有し、かつ誘電率が従来の温度補償用誘電体磁
器組成物より大きな値が得られるため、製品の小型化、
大容量化が可能な温度補償用誘電体磁器組成物を提供す
ることが出来る効果を有する。
As described above, according to the present invention, the Q value,
Since the temperature characteristic of the dielectric constant has a value satisfying as a temperature compensating capacitor, and the dielectric constant is larger than that of a conventional temperature compensating dielectric porcelain composition, product miniaturization,
It has the effect of providing a temperature-compensating dielectric porcelain composition capable of increasing the capacity.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の温度補償用誘電体磁器組成物の主成
分の組成範囲を示す三元系図であり、組成点A,B,
C,D,E,Fで囲まれた領域が本発明組成物の主成分
の組成範囲を示す。
FIG. 1 is a ternary system diagram showing a composition range of main components of a temperature-compensating dielectric ceramic composition of the present invention, showing composition points A, B,
The region surrounded by C, D, E and F shows the composition range of the main component of the composition of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一般式 (x・BaO−y・BiO 3/2−z・ReO 3/2)−c
・TiO2 からなり、Reは希土類元素を表し、x+y+z=10
0の組成を有する組成物であって、これらの成分割合が
三元系図において次の組成点A,B,C,D,E,F x・BaO y・BiO 3/2 z・ReO 3/2 A 35 30 35 B 30 30 40 C 25 35 40 D 20 35 45 E 20 30 50 F 35 15 50 を結ぶ線上およびこの線に囲まれる組成範囲内のモル量
であり、また、TiO2の値cが(x・BaO−y・B
iO 3/2−z・ReO 3/2)に対して110〜140の
範囲であり、また、ReO 3/2はd・Nd−e・La−
f・Prからなり、かつ、d+e+f=zであって、z
=100としたときz=d′+e′+f′の組成を有
し、更にd′=20〜90、e′=10〜80、f′=
0〜30の範囲であることを特徴とする温度補償用誘電
体磁器組成物。
1. The general formula (x.BaO-y.BiO3 / 2-z.ReO3 / 2) -c.
- consists TiO 2, Re represents a rare earth element, x + y + z = 10
A composition having a composition of 0, the proportions of these components being the following composition points A, B, C, D, E, Fx.BaOy.BiO3 / 2z.ReO3 / 2 in the ternary system diagram. A 35 30 35 B 30 30 40 C 25 35 40 D 20 35 45 E 20 30 50 F 35 35 50 is the molar amount on the line connecting and within the composition range surrounded by this line, and the value c of TiO 2 is (X ・ BaO-y ・ B
iO 3 / 2-z · ReO 3/2) is in the range of 110 to 140, and ReO 3/2 is d · Nd−e · La−.
f · Pr, and d + e + f = z, and z
= 100, it has a composition of z = d '+ e' + f ', and further d' = 20 to 90, e '= 10 to 80, f' =
A dielectric porcelain composition for temperature compensation, which is in the range of 0 to 30.
JP4147742A 1992-06-08 1992-06-08 Dielectric ceramic composition for temperature compensation Pending JPH05339052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4147742A JPH05339052A (en) 1992-06-08 1992-06-08 Dielectric ceramic composition for temperature compensation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4147742A JPH05339052A (en) 1992-06-08 1992-06-08 Dielectric ceramic composition for temperature compensation

Publications (1)

Publication Number Publication Date
JPH05339052A true JPH05339052A (en) 1993-12-21

Family

ID=15437122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4147742A Pending JPH05339052A (en) 1992-06-08 1992-06-08 Dielectric ceramic composition for temperature compensation

Country Status (1)

Country Link
JP (1) JPH05339052A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5951092A (en) * 1982-08-06 1984-03-24 ドウエ・エフベルツ・コニンクレユイケ・タバクスフアブリ−ク−コフイ−ブランデルエイン−テ−ハンデル・エヌ・ヴエ− Dispenser distributing drink

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5951092A (en) * 1982-08-06 1984-03-24 ドウエ・エフベルツ・コニンクレユイケ・タバクスフアブリ−ク−コフイ−ブランデルエイン−テ−ハンデル・エヌ・ヴエ− Dispenser distributing drink

Similar Documents

Publication Publication Date Title
JP2654113B2 (en) High dielectric constant porcelain composition
JP3064518B2 (en) Dielectric porcelain composition
JPH05339052A (en) Dielectric ceramic composition for temperature compensation
JP2568567B2 (en) Dielectric porcelain composition
JPH05339053A (en) Dielectric ceramic composition for temperature compensation
JPH0571538B2 (en)
JPH07211140A (en) Dielectric ceramic composition
JP3321929B2 (en) Electronic components
JP2568565B2 (en) Dielectric porcelain composition
JPH05250916A (en) Nonreducing dielectric porcelain composition
JP2621478B2 (en) High dielectric constant porcelain composition
JP3064519B2 (en) Dielectric porcelain composition
JP2568566B2 (en) Dielectric porcelain composition
JPH05266711A (en) Dielectric ceramic composition
JP3071529B2 (en) Dielectric porcelain composition
JP3130961B2 (en) Dielectric porcelain composition
KR940004381B1 (en) Composition of ceramic dielectric substance
JPS6223405B2 (en)
JPH0757536A (en) Dielectric material for ceramic capacitor
JPS6019606B2 (en) dielectric porcelain composition
JPH06283028A (en) Dielectric ceramic composite
JPH05258610A (en) Dielectric ceramic composition
JPH06260020A (en) Dielectric ceramic composition
JPH06267333A (en) High dielectric constant dielectric porcelain composition
JPH05330909A (en) Porcelain composition of high dielectric constant