JPH05255675A - Device for purifying high-temperature reducing gas - Google Patents

Device for purifying high-temperature reducing gas

Info

Publication number
JPH05255675A
JPH05255675A JP4055928A JP5592892A JPH05255675A JP H05255675 A JPH05255675 A JP H05255675A JP 4055928 A JP4055928 A JP 4055928A JP 5592892 A JP5592892 A JP 5592892A JP H05255675 A JPH05255675 A JP H05255675A
Authority
JP
Japan
Prior art keywords
absorbent
reducing gas
temperature reducing
reaction
output signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4055928A
Other languages
Japanese (ja)
Other versions
JP2647596B2 (en
Inventor
Susumu Kono
進 河野
Kazuko Shimada
和子 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4055928A priority Critical patent/JP2647596B2/en
Publication of JPH05255675A publication Critical patent/JPH05255675A/en
Application granted granted Critical
Publication of JP2647596B2 publication Critical patent/JP2647596B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Industrial Gases (AREA)

Abstract

PURPOSE:To obtain the subject device for efficiently removing S compounds by eliminating S compounds in a high-temperature reducing gas with an absorbent and regenerating the absorbent with an O2-containing gas under a condition of absence of remaining O2. CONSTITUTION:In a device of purifying a high-temperature reducing gas, comprising three reaction columns 1 to 3 packed with an absorbent 100 capable of successively changing three processes, wherein sulfur compounds such as hydrogen sulfide or carbonyl sulfide contained in a high-temperature reducing gas are successively introduced into the reaction columns 1-3 charged with the absorbent 100, absorbed and removed, the absorbent 100 is regenerated with an O2-containing gas and the regenerated absorbent 100 is reduced with the high-temperature reducing gas, by opening and closing of plural valves attached to inlets and outlets of the columns, the device is equipped with an O2 concentration meter 79 fixed to an outlet piping 16 of the reaction column of the regenerating process, a minimum value selector 81 for inputting the output signal of a function generator 80 having the detected signal of the concentration meter as an input and for inputting the output signal of an O2 concentration detecting and adjusting meter 40 and a valve 41 to be handled by the output signal of the detecting and adjusting meter to efficiently purify the high-temperature reducing gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高温還元性ガスの精製装
置に関し、例えば石炭ガス化プロセスの生成ガスのよう
な高温の還元性ガスに含まれる硫化水素、硫化カルボニ
ル等の硫黄化合物を合理的に除去する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-temperature reducing gas refining apparatus, and rationalizes sulfur compounds such as hydrogen sulfide and carbonyl sulfide contained in a high-temperature reducing gas such as a product gas of a coal gasification process. Related to the removal device.

【0002】[0002]

【従来の技術】近年、石油資源の枯渇、価格の高騰から
燃料(又は原料)の多様化が叫ばれ、石炭や重質油(タ
ールサンド油、オイルシェール油、大慶原油、マヤ原油
あるいは減圧残油など)の利用技術の開発が進められて
いる。しかし、このガス化生成ガスには原料の石炭や重
質油によって異なるが、数100〜数1000ppm の硫
化水素(H2 S)、硫化カルボニル(COS)等の硫黄
化合物を含み、公害防止上あるいは後流機器の腐食防止
のため除去する必要がある。この除去方法としては乾式
法が熱経済的にも有利で、プロセス構成も簡素なことか
ら、金属酸化物を主成分とする吸収剤を高温で硫化物と
して吸収除去する方法が一般的になっている。
2. Description of the Related Art In recent years, fuel resources (or raw materials) have been diversified due to depletion of petroleum resources and soaring prices, and coal and heavy oil (tar sand oil, oil shale oil, Daqing crude oil, Maya crude oil or vacuum residue). Development of utilization technology of oil etc. is in progress. However, this gasification product gas contains sulfur compounds such as hydrogen sulfide (H 2 S) and carbonyl sulfide (COS) of several hundreds to several thousand ppm, though it depends on the raw material coal or heavy oil. It must be removed to prevent corrosion of downstream equipment. As a method for removing this, the dry method is also advantageous in terms of thermo-economics and the process configuration is simple.Therefore, a method of absorbing and removing an absorbent containing a metal oxide as a main component as a sulfide at a high temperature has become common. There is.

【0003】吸収剤としてはFe,Zn、Mn、Cu、
Mo、Wなどの金属酸化物が使用され、250〜500
℃で硫化水素(H2 S)、硫化カルボニル(COS)と
反応させるが、H2 SとFe3 4 の場合を例に説明す
ると、吸収反応は(1) 〜(2)式に示すように進むとされ
ている。 Fe3 4 +H2 +3H2 S → 3FeS+4H2 O ・・・(1) Fe3 4 +CO+3H2 S → 3FeS+3H2 O+CO2 ・・・(2)
As the absorbent, Fe, Zn, Mn, Cu,
A metal oxide such as Mo or W is used, and is 250 to 500.
It is reacted with hydrogen sulfide (H 2 S) and carbonyl sulfide (COS) at ℃, but the case of H 2 S and Fe 3 O 4 is explained as an example, the absorption reaction is as shown in equations (1) to (2). It is supposed to proceed to. Fe 3 O 4 + H 2 + 3H 2 S → 3FeS + 4H 2 O ··· (1) Fe 3 O 4 + CO + 3H 2 S → 3FeS + 3H 2 O + CO 2 ··· (2)

【0004】次いで、吸収反応後の吸収剤は酸素含有ガ
スで(3) 式に示すように金属酸化物Fe2 3 に再生さ
れ、高温還元性ガス中の硫黄化合物SO2 ガスとして回
収除去される。 4FeS+7O2 → 2Fe2 3 +4SO2 ・・・(3)
Next, the absorbent after the absorption reaction is regenerated into a metal oxide Fe 2 O 3 by an oxygen-containing gas as shown in the formula (3), and is recovered and removed as a sulfur compound SO 2 gas in the high temperature reducing gas. It 4FeS + 7O 2 → 2Fe 2 O 3 + 4SO 2 (3)

【0005】さらに、再生反応後、H2 SやCOを含む
還元性ガスを通すと吸収剤は(4) 〜(5) 式に示すよう
に、元のFe3 4 になり、この吸収反応、再生反応、
還元反応のくりかえしで、金属酸化物(Fe3 4 )は
有効利用される。 3Fe3 4 +H2 → 2Fe3 4 +H2 O ・・・(4) 3Fe3 4 +CO → 2Fe3 4 +CO2 ・・・(5)
Furthermore, after the regeneration reaction, when a reducing gas containing H 2 S and CO is passed through, the absorbent becomes the original Fe 3 O 4 as shown in equations (4) to (5), and this absorption reaction , Regeneration reaction,
The metal oxide (Fe 3 O 4 ) is effectively used by repeating the reduction reaction. 3Fe 3 O 4 + H 2 → 2Fe 3 O 4 + H 2 O (4) 3Fe 3 O 4 + CO → 2Fe 3 O 4 + CO 2 (5)

【0006】このプロセスで使用される吸収剤は、前述
の金属酸化物を単独あるいは耐熱性の多孔質物質に担持
したものを、円柱状やハニカム状に成形したものが通常
使用される。
The absorbent used in this process is usually one in which the above-mentioned metal oxide is supported alone or supported on a heat resistant porous material and formed into a columnar shape or a honeycomb shape.

【0007】従来装置の一例について、図2〜図5を用
いて具体的に説明する。図2は従来装置のプロセスフロ
ー図、図3は図2の従来装置の反応塔の切り換えを行う
バルブ配置図、図4は図2の従来装置の吸収、再生、還
元サイクルのタイムチャート図表、図5は図2の従来装
置の反応塔切り換えのためのバルブ開閉を示す図表であ
る。
An example of the conventional device will be specifically described with reference to FIGS. 2 is a process flow diagram of the conventional apparatus, FIG. 3 is a valve arrangement diagram for switching the reaction tower of the conventional apparatus of FIG. 2, FIG. 4 is a time chart diagram of absorption, regeneration and reduction cycles of the conventional apparatus of FIG. 5 is a diagram showing opening and closing of valves for switching the reaction tower of the conventional apparatus of FIG.

【0008】図2において、未精製のガス化生成ガスは
配管10,44を介して反応塔1に流入し、反応塔1内
に充填された吸収剤(Fe3 4 )100と(1) 〜(2)
式の反応(この反応工程を吸収工程と呼ぶ)によりガス
化生成ガス中に含まれる硫化物(H2 S,COS)は吸
収除去され、配管45,11を介して精製されたガス化
生成ガスは燃料として図示省略の後続機器のガスタービ
ンに送られる。
In FIG. 2, the unrefined gasification product gas flows into the reaction tower 1 through the pipes 10 and 44, and the absorbent (Fe 3 O 4 ) 100 and (1) filled in the reaction tower 1 are used. ~ (2)
The sulfide (H 2 S, COS) contained in the gasification product gas is absorbed and removed by the reaction of the formula (this reaction process is referred to as an absorption process), and the purified gasification product gas is supplied through the pipes 45 and 11. Is sent as fuel to a gas turbine of a subsequent device (not shown).

【0009】配管45から分岐した精製済のガス化生成
ガスの一部は、配管13を介して反応塔2に流入し、ガ
ス化生成ガス中に含まれる還元性ガス(H2 ,CO)と
吸収剤(Fe2 3 )100が(4) ,(5) 式の反応によ
りFe3 4 に変化する。(この反応工程を還元工程と
呼ぶ。)反応塔2の流入ガス流量は流量検出調節計30
とバルブ31によって所定量一定に制御されている。
A part of the purified gasification product gas branched from the pipe 45 flows into the reaction tower 2 through the pipe 13 and is converted to a reducing gas (H 2 , CO) contained in the gasification product gas. The absorber (Fe 2 O 3 ) 100 is changed to Fe 3 O 4 by the reaction of the equations (4) and (5). (This reaction process is called a reduction process.) The flow rate of the gas flowing into the reaction tower 2 is determined by the flow rate detection controller 30.
The valve 31 is controlled to be constant by a predetermined amount.

【0010】酸素含有ガスは配管15を介して、反応塔
3に流入し、吸収剤に吸着しているFeSと(3) 式の反
応を起こす。その結果、SO2 ガスが発生すると共に吸
収剤100は金属酸化物(Fe2 3 )にもどり再生さ
れる。(この反応工程を再生工程と呼ぶ。)
The oxygen-containing gas flows into the reaction tower 3 through the pipe 15 and causes the reaction of the formula (3) with FeS adsorbed on the absorbent. As a result, SO 2 gas is generated and the absorbent 100 is returned to the metal oxide (Fe 2 O 3 ) and regenerated. (This reaction step is called a regeneration step.)

【0011】吸収工程を反応塔1である時間つづける
と、吸収剤であるFe3 4 は全量FeSに変化してし
まい、それ以上(1) 〜(2) 式の反応を起こすことができ
ず、反応塔1の出口から硫化物(H2 S,COS)が流
出するようになる。そこで、反応塔1を吸収工程から再
生工程とし、反応塔2を還元工程から吸収工程とし、反
応塔3を再生工程から還元工程とすることを考える。
If the absorption step is continued for the reaction tower 1 for a certain period of time, the total amount of Fe 3 O 4 as an absorbent is changed to FeS, and the reaction of the formulas (1) to (2) cannot be further caused. The sulfide (H 2 S, COS) comes to flow out from the outlet of the reaction tower 1. Therefore, it is considered that the reaction tower 1 is changed from the absorption step to the regeneration step, the reaction tower 2 is changed from the reduction step to the absorption step, and the reaction tower 3 is changed from the regeneration step to the reduction step.

【0012】図4に各工程のタイムチャートを示す。図
4では吸収工程の持続時間を4時間としたものである。
FIG. 4 shows a time chart of each step. In FIG. 4, the duration of the absorption process is 4 hours.

【0013】各工程を変化させる操作は図5に示すバル
ブ61〜75の開閉で行う。図5に示したバルブ61〜
75の開閉状態(白:開;黒:閉)は図4のタイムチャ
ートの0〜4時間又は12〜16時間のものを示してい
る。図5において、反応塔1に関しては、バルブ61と
68が開であり、バルブ62,67,69が閉であるの
で、未精製のガス化生成ガスが配管10,46,44を
介して反応塔1に入り、配管53,11を介して後続機
器に流出しているので、図2で示す吸収工程に相当す
る。また、反応塔2に関しては、バルブ64,70が開
であり、バルブ63,71,72が閉であるので、精製
済のガス化生成ガスが配管78,55,13と介して反
応塔2に入り、配管12,49を介して配管16に流入
しているので、図2で示す還元工程に相当する。また、
反応塔3に関しては、バルブ66,75が開であり、バ
ルブ65,73,74が閉であるので、酸素含有ガスは
配管25,60,15を介して、反応塔3に入り、配管
14,51を介して配管16に流入しているので、図2
に示す再生工程に相当する。
The operation for changing each step is performed by opening and closing the valves 61 to 75 shown in FIG. Valves 61-shown in FIG.
The open / closed state of 75 (white: open; black: closed) is 0 to 4 hours or 12 to 16 hours in the time chart of FIG. In FIG. 5, with respect to the reaction tower 1, since the valves 61 and 68 are open and the valves 62, 67 and 69 are closed, unrefined gasification product gas is passed through the pipes 10, 46 and 44 to the reaction tower 1. 1 and flows out to the succeeding device through the pipes 53 and 11, which corresponds to the absorbing step shown in FIG. Further, regarding the reaction tower 2, since the valves 64 and 70 are open and the valves 63, 71 and 72 are closed, the purified gasification product gas is supplied to the reaction tower 2 through the pipes 78, 55 and 13. Since it enters and flows into the pipe 16 via the pipes 12 and 49, it corresponds to the reduction step shown in FIG. Also,
With respect to the reaction tower 3, since the valves 66 and 75 are open and the valves 65, 73 and 74 are closed, the oxygen-containing gas enters the reaction tower 3 through the pipes 25, 60 and 15, and the pipe 14, Since it is flowing into the pipe 16 via 51, FIG.
Corresponds to the regeneration step shown in.

【0014】したがって、図3のバルブの開閉状態が図
2に相当する。
Therefore, the open / closed state of the valve of FIG. 3 corresponds to FIG.

【0015】図5には図4のタイムチャートに示す時間
帯のバルブ61〜75の開閉状態を示す。図5に示すよ
うに、バルブ61〜75の操作を4時間ごとにすること
で、各反応塔1,2,3共に順次、脱流工程→再生工程
→還元工程→脱流工程というようにかえることができ
る。
FIG. 5 shows the open / closed state of the valves 61 to 75 in the time zone shown in the time chart of FIG. As shown in FIG. 5, by operating the valves 61 to 75 every 4 hours, the reaction towers 1, 2 and 3 are sequentially changed in the order of a deflow step → a regeneration step → a reduction step → a deflow step. be able to.

【0016】次に図2において、再生工程で発生したS
2 ガスの単体イオウとして回収するプロセスについて
説明する。反応塔3の再生工程で発生したSO2 ガスは
配管14,16を介して熱交換器4に入る。反応塔2の
還元工程の反応後のガスは配管12を介して配管16に
合流する。再生工程では酸化反応熱によって高温ガスと
なるが、熱交換器4で冷却され配管17を介してクーラ
5に入る。クーラ5によってさらに冷却され、配管18
を介して還元反応器6に入る。H2 とCOを主成分とす
る未精製のガス化生成ガスの一部は配管27を介して配
管17に合流する。前記ガス化生成ガスの一部は流量調
節計32とバルブ33によって常に一定流量に制御され
ている。還元反応器6には触媒101が充填されてお
り、(6) ,(7) 式の還元反応が起こり単体イオウSxが
生成される。 SO2 +2H2 → 1/xSx+2H2 O(x=2〜8) ・・・(6) SO2 +2CO → 1/xSx+2CO2 (x=2〜8) ・・・(7)
Next, referring to FIG. 2, S generated in the regeneration process
A process of recovering O 2 gas as a simple substance of sulfur will be described. The SO 2 gas generated in the regeneration process of the reaction tower 3 enters the heat exchanger 4 via the pipes 14 and 16. The gas after the reaction in the reducing step of the reaction tower 2 joins the pipe 16 through the pipe 12. In the regeneration process, high temperature gas is generated due to the heat of oxidation reaction, but is cooled by the heat exchanger 4 and enters the cooler 5 through the pipe 17. Further cooled by the cooler 5, the pipe 18
Into the reduction reactor 6 via. Part of the unrefined gasification product gas containing H 2 and CO as main components joins the pipe 17 via the pipe 27. A part of the gasification product gas is always controlled to a constant flow rate by the flow rate controller 32 and the valve 33. The reduction reactor 6 is filled with the catalyst 101, and the reduction reactions of the formulas (6) and (7) occur to generate the elemental sulfur Sx. SO 2 + 2H 2 → 1 / xSx + 2H 2 O (x = 2 to 8) (6) SO 2 + 2CO → 1 / xSx + 2CO 2 (x = 2 to 8) (7)

【0017】還元反応器6内温度は(6) ,(7) 式の反応
が進みやすい温度(例えば250℃)になるように温度
検出計34とクーラ5に冷媒28流量を操作するバルブ
35によって制御されている。還元反応器6から流出し
た単体イオウの蒸気を含むガスは配管19を介してクー
ラ7に入り、ここでさらに冷却されて配管20を介して
イオウコンデンサ8に入り、凝縮し液状の単体イオウと
なる。イオウコンデンサ8内の温度はイオウの凝縮温度
以下となるように温度検出調節計36とクーラ7の冷媒
29流量の操作するバルブ37によって制御されてい
る。
The temperature in the reduction reactor 6 is controlled by the temperature detector 34 and the valve 35 for controlling the flow rate of the refrigerant 28 in the cooler 5 so that the reaction of the formulas (6) and (7) is likely to proceed (eg, 250 ° C.). Controlled. The gas containing the vapor of elemental sulfur flowing out from the reduction reactor 6 enters the cooler 7 via the pipe 19, is further cooled here, and enters the sulfur condenser 8 via the pipe 20 to be condensed into liquid elemental sulfur. .. The temperature inside the sulfur condenser 8 is controlled by the temperature detection controller 36 and the valve 37 that controls the flow rate of the refrigerant 29 in the cooler 7 so that the temperature becomes equal to or lower than the condensation temperature of sulfur.

【0018】イオウコンデンサ8で液状となったイオウ
は配管77により系外に取出される。一方、イオウコン
デンサ8でイオウを除去された不活性ガス(主成分
2 )は配管21を介して循環ブロワ9に入る。配管2
1に設置したバルブ39と流量検出調節計38によって
循環流量は一定に制御されている。循環ブロワ9から配
管22,24を介して前記熱交換器4に入り加熱され
る。配管24には空気又は酸素を配管23を介して混入
させ、配管24内の酸素濃度は酸素濃度検出調節計40
とバルブ41によって所定の値に制御されている。
The liquid sulfur in the sulfur condenser 8 is taken out of the system by the pipe 77. On the other hand, the inert gas (main component N 2 ) from which sulfur has been removed by the sulfur condenser 8 enters the circulation blower 9 via the pipe 21. Piping 2
The circulation flow rate is controlled to be constant by the valve 39 and the flow rate detection controller 38 installed at 1. It enters the heat exchanger 4 from the circulation blower 9 through the pipes 22 and 24 and is heated. Air or oxygen is mixed into the pipe 24 through the pipe 23, and the oxygen concentration in the pipe 24 is controlled by the oxygen concentration detection controller 40.
Is controlled to a predetermined value by the valve 41.

【0019】酸素含有ガスは熱交換器4によって加熱さ
れ、配管25,15を介して反応器3に入る。また、配
管22から一部分岐したガスは配管26を介して配管1
0に合流する。配管26にはバルブ43が設置されてお
り、循環ブロワ9の圧力が一定になるように圧力検出調
節計42とバルブ43で制御されている。
The oxygen-containing gas is heated by the heat exchanger 4 and enters the reactor 3 via the pipes 25 and 15. Further, the gas partially branched from the pipe 22 is passed through the pipe 26 to the pipe 1
Join 0. A valve 43 is installed in the pipe 26, and is controlled by the pressure detection controller 42 and the valve 43 so that the pressure of the circulation blower 9 becomes constant.

【0020】[0020]

【発明が解決しようとする課題】図2で示した再生工程
に相当する反応塔3内では酸素含有ガスで(3) 式で示す
ように硫化鉄FeSが酸化され、金属酸化物Fe2 3
とSO2 ガスが生成される。ところが、反応塔3内のF
eSが全量酸化されると酸素と反応する物質がなくな
り、反応塔3の出口配管14から酸素が未反応のまま流
出することになる。反応塔3から流出したガスはSO2
ガスを還元する還元反応器6に流入する。この還元反応
器6内には触媒101が充填されており、仮に未反応の
酸素が還元反応器6内に流入すれば、触媒101が酸化
し劣化して、触媒として機能しなくなるという問題点が
ある。
In the reaction column 3 corresponding to the regeneration step shown in FIG. 2, iron sulfide FeS is oxidized by the oxygen-containing gas as shown by the equation (3), and the metal oxide Fe 2 O 3 is added.
And SO 2 gas is generated. However, F in the reaction tower 3
When eS is completely oxidized, there is no substance that reacts with oxygen, and oxygen will flow out from the outlet pipe 14 of the reaction tower 3 in an unreacted state. The gas flowing out from the reaction tower 3 is SO 2
It flows into the reduction reactor 6 which reduces the gas. The reduction reactor 6 is filled with the catalyst 101, and if unreacted oxygen flows into the reduction reactor 6, the catalyst 101 will be oxidized and deteriorated, and the catalyst will not function as a catalyst. is there.

【0021】本発明は上記技術水準に鑑み、従来技術に
おける不具合を解消し、還元反応器内の触媒の劣化を防
止する高温還元性ガスの精製装置を提供しようとするも
のである。
In view of the above-mentioned state of the art, the present invention intends to solve the problems in the prior art and to provide a refining apparatus for high-temperature reducing gas which prevents deterioration of the catalyst in the reduction reactor.

【0022】[0022]

【課題を解決するための手段】本発明は高温還元性ガス
中に含まれる硫化水素、硫化カルボニル等の硫黄化合物
を吸収剤で除去するに当って、前記硫黄化合物を前記吸
収剤で吸収除去する吸収工程と、前記硫黄化合物を吸収
した前記吸収剤を酸素含有ガスで再生する再生工程と、
再生された前記吸収剤を前記高温還元性ガスで還元する
還元工程とを、出入口に設置された複数のバルブの開閉
によって前記の3工程を順次変更できる吸収剤を充填し
た少なくとも3塔の反応塔から構成される高温還元性ガ
スの精製装置において、再生工程に相当する反応塔の出
口配管に設置したO2 濃度計、前記O2 濃度計の検出信
号を入力とする関数発生器、再生工程に相当する反応塔
の入口配管に設置したO2 濃度検出調節計、前記O2
度検出調節計の出力信号と前記関数発生器の出力信号と
を入力とする最小値選択器(ローセレクタ)、再生工程
に相当する反応器の入口配管に空気又は酸素を混入させ
るための空気又は酸素供給配管に設置され、かつ前記最
小値選択器の出力信号で操作するバルブとを具備するこ
とを特徴とする高温還元性ガスの精製装置である。
According to the present invention, when a sulfur compound such as hydrogen sulfide or carbonyl sulfide contained in a high temperature reducing gas is removed by an absorbent, the sulfur compound is removed by absorption by the absorbent. An absorption step, a regeneration step of regenerating the absorbent having absorbed the sulfur compound with an oxygen-containing gas,
At least three reaction towers filled with an absorbent capable of sequentially changing the regenerated absorbent with the high-temperature reducing gas, and the opening and closing of a plurality of valves installed in the inlet and outlet. In the refining apparatus for high-temperature reducing gas, the O 2 concentration meter installed in the outlet pipe of the reaction tower corresponding to the regeneration step, the function generator receiving the detection signal of the O 2 concentration meter as an input, and the regeneration step O 2 concentration detection controller installed in the inlet pipe of the corresponding reaction tower, minimum value selector (low selector) which receives the output signal of the O 2 concentration detection controller and the output signal of the function generator, and regeneration A high temperature characterized by comprising a valve installed in the air or oxygen supply pipe for mixing air or oxygen into the inlet pipe of the reactor corresponding to the step and operated by the output signal of the minimum value selector A purification unit of the original gas.

【0023】[0023]

【作用】本発明はSO2 ガスの還元反応器内に酸素が流
入し、触媒が劣化することを防止したものである。すな
わち、還元反応器の入口(再生工程の出口)で酸素が検
知されたとき、空気又は酸素の供給配管のバルブを全閉
にして、系内に酸素が充分に流入するのを防ぎ、還元反
応器内の触媒の劣化を防止したものである。
The present invention prevents oxygen from flowing into the SO 2 gas reduction reactor to deteriorate the catalyst. That is, when oxygen is detected at the inlet of the reduction reactor (outlet of the regeneration process), the valve of the air or oxygen supply pipe is fully closed to prevent sufficient oxygen from flowing into the system, and to carry out the reduction reaction. This prevents deterioration of the catalyst inside the vessel.

【0024】[0024]

【実施例】本発明の実施例を図1を参照して説明する。
図1の装置は図2の従来装置において、再生工程にある
反応塔3の出口に相当する配管16に、O2 濃度計79
と該O2 濃度計79の検出信号を入力とする関数発生器
80と、O2 濃度検出調節計40の出力信号と該関数発
生器80の出力信号の小さい方を選択する最小値選択器
81と、該最小値選択器81の出力信号によって配管2
3のバルブ41を操作して、余分な酸素を系内に流入し
たようにしたもので、その他の装置構成に違いはない。
したがって、その他の装置構成については図2と同一の
部材について、同一符号を付したので説明は省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIG.
The apparatus of FIG. 1 differs from the conventional apparatus of FIG. 2 in that a pipe 16 corresponding to the outlet of the reaction tower 3 in the regeneration step is provided with an O 2 concentration meter 79
And a function generator 80 that receives the detection signal of the O 2 concentration meter 79, and a minimum value selector 81 that selects the smaller of the output signal of the O 2 concentration detection controller 40 and the output signal of the function generator 80. And the pipe 2 according to the output signal of the minimum value selector 81.
The valve 41 of No. 3 was operated so that the excess oxygen was made to flow into the system, and there is no difference in other device configurations.
Therefore, with respect to the other device configurations, the same members as those in FIG. 2 are denoted by the same reference numerals, and the description thereof will be omitted.

【0025】上記の関数発生器80には一例として図6
に示す関数が設定されているものとする。
The above function generator 80 is shown in FIG. 6 as an example.
It is assumed that the function shown in is set.

【0026】再生工程の出口配管16のO2 濃度の検出
値が0.2vol%以上の値を検知すると図6より関数発生器
80の出力信号はゼロ(バルブ全閉に相当する)となり
最小値選択器81の出力信号も当然ゼロとなる。このた
め、バルブ41は全閉となり、空気又は酸素の供給がな
くなり、再生工程出口から流出する酸素はとまることに
なる。このため、還元反応器6内の触媒の劣化は最小限
にとどまることになる。なお、図6において、全閉とな
るO2 濃度は検出誤差を考えて0.2vol%としているが、
基本的にはさらに小さい値でもよい。
When the detected value of the O 2 concentration in the outlet pipe 16 in the regeneration step is 0.2 vol% or more, the output signal of the function generator 80 becomes zero (corresponding to the valve fully closed) from FIG. 6 and becomes the minimum value. The output signal of the selector 81 is naturally zero. Therefore, the valve 41 is fully closed, the supply of air or oxygen is stopped, and oxygen flowing out from the regeneration process outlet is stopped. Therefore, the deterioration of the catalyst in the reduction reactor 6 is minimized. In addition, in FIG. 6, the O 2 concentration when the valve is fully closed is set to 0.2 vol% in consideration of a detection error.
Basically, a smaller value may be used.

【0027】また、本発明の一実施例について述べた
が、要するに再生工程の出口でO2 濃度が検出されたと
き、酸素供給源を遮断するものであればよい。
Although one embodiment of the present invention has been described, the oxygen supply source may be shut off when the O 2 concentration is detected at the outlet of the regeneration process.

【0028】[0028]

【発明の効果】本発明により、高温還元性ガスの精製装
置から採取されるSO2 中に酸素が混入することがなく
なり、高温還元性ガスを還元してイオウにする還元反応
器中の触媒の劣化を防止することができる高温還元性ガ
スの精製装置が提供される。
EFFECTS OF THE INVENTION According to the present invention, oxygen is prevented from being mixed in SO 2 collected from a high-temperature reducing gas purification apparatus, and the catalyst in the reduction reactor of the high-temperature reducing gas is reduced to sulfur. Provided is a refining device for high-temperature reducing gas that can prevent deterioration.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る精製装置のプロセスフロ
ー図。
FIG. 1 is a process flow diagram of a refining device according to an embodiment of the present invention.

【図2】従来装置のプロセスフロー図。FIG. 2 is a process flow diagram of a conventional device.

【図3】従来装置の反応塔の切り換えを行うバルブ配置
図。
FIG. 3 is a valve arrangement view for switching a reaction tower of a conventional apparatus.

【図4】従来装置の吸収・再生・還元サイクルのタイム
チャート図表。
FIG. 4 is a time chart diagram of an absorption / regeneration / reduction cycle of a conventional device.

【図5】従来装置の反応塔の切り換えのためのバルブ開
閉を示す図表。
FIG. 5 is a chart showing opening and closing of valves for switching a reaction tower of a conventional apparatus.

【図6】図1に示す一実施例である本発明中の関数発生
器に設定する関数の一具体例を示す図。
FIG. 6 is a diagram showing a specific example of a function set in the function generator in the present invention, which is an embodiment shown in FIG. 1.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 高温還元性ガス中に含まれる硫化水素、
硫化カルボニル等の硫黄化合物を吸収剤で除去するに当
って、前記硫黄化合物を前記吸収剤で吸収除去する吸収
工程と、前記硫黄化合物を吸収した前記吸収剤を酸素含
有ガスで再生する再生工程と、再生された前記吸収剤を
前記高温還元性ガスで還元する還元工程とを、出入口に
設置された複数のバルブの開閉によって前記の3工程を
順次変更できる吸収剤を充填した少なくとも3塔の反応
塔から構成される高温還元性ガスの精製装置において、
再生工程に相当する反応塔の出口配管に設置したO2
度計、前記O2 濃度計の検出信号を入力とする関数発生
器、再生工程に相当する反応塔の入口配管に設置したO
2 濃度検出調節計、前記O2 濃度検出調節計の出力信号
と前記関数発生器の出力信号とを入力とする最小値選択
器、再生工程に相当する反応器の入口配管に空気又は酸
素を混入させるための空気又は酸素供給配管に設置さ
れ、かつ前記最小値選択器の出力信号で操作するバルブ
とを具備することを特徴とする高温還元性ガスの精製装
置。
1. Hydrogen sulfide contained in a high-temperature reducing gas,
In removing a sulfur compound such as carbonyl sulfide with an absorbent, an absorption step of absorbing and removing the sulfur compound with the absorbent, and a regeneration step of regenerating the absorbent having absorbed the sulfur compound with an oxygen-containing gas. A reduction step of reducing the regenerated absorbent with the high-temperature reducing gas, and a reaction of at least three columns filled with an absorbent capable of sequentially changing the three steps by opening and closing a plurality of valves installed at the inlet and outlet In a high-temperature reducing gas purification device composed of a tower,
O 2 concentration meter installed in the outlet pipe of the reaction tower corresponding to the regeneration step, a function generator which receives the detection signal of the O 2 concentration meter as an input, O installed in the inlet pipe of the reaction tower corresponding to the regeneration step
2 Concentration detection controller, minimum value selector that receives the output signal of the O 2 concentration detection controller and the output signal of the function generator, and air or oxygen is mixed into the inlet pipe of the reactor corresponding to the regeneration step And a valve which is installed in the air or oxygen supply pipe for controlling the temperature and which is operated by the output signal of the minimum value selector.
JP4055928A 1992-03-16 1992-03-16 High-temperature reducing gas purification equipment Expired - Fee Related JP2647596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4055928A JP2647596B2 (en) 1992-03-16 1992-03-16 High-temperature reducing gas purification equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4055928A JP2647596B2 (en) 1992-03-16 1992-03-16 High-temperature reducing gas purification equipment

Publications (2)

Publication Number Publication Date
JPH05255675A true JPH05255675A (en) 1993-10-05
JP2647596B2 JP2647596B2 (en) 1997-08-27

Family

ID=13012757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4055928A Expired - Fee Related JP2647596B2 (en) 1992-03-16 1992-03-16 High-temperature reducing gas purification equipment

Country Status (1)

Country Link
JP (1) JP2647596B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5453666A (en) * 1977-10-07 1979-04-27 Hitachi Ltd Method and apparatus for purifying gas of high temperature
JPS5573785A (en) * 1978-11-29 1980-06-03 Hitachi Ltd Purification of hydrocarbon oil or gas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5453666A (en) * 1977-10-07 1979-04-27 Hitachi Ltd Method and apparatus for purifying gas of high temperature
JPS5573785A (en) * 1978-11-29 1980-06-03 Hitachi Ltd Purification of hydrocarbon oil or gas

Also Published As

Publication number Publication date
JP2647596B2 (en) 1997-08-27

Similar Documents

Publication Publication Date Title
US6027545A (en) Method and apparatus for producing direct reduced iron with improved reducing gas utilization
EP1180544B1 (en) Method of manufacturing synthesis gas
RU2650371C2 (en) Direct reduction process with improved product quality and process gas efficiency
KR20140054314A (en) Process for producing direct reduced iron(dri) utilizing gases derived from coal
AU633760B2 (en) Process for purifying high-temperature reducing gases
US4957724A (en) Process and reactor for catalytic reaction of H2 S and SO2 to sulfur
JP2891577B2 (en) High-temperature reducing gas purification equipment
US6190632B1 (en) Method and apparatus for the production of ammonia utilizing cryogenic rectification
JP3831435B2 (en) Gas purification equipment
KR20050042469A (en) Method for isolating hydrogen sulphide from coke-oven gas with the subsequent recovery of elemental sulphur in a claus plant
JPH05255675A (en) Device for purifying high-temperature reducing gas
US4954331A (en) Sulfur recovery process using metal oxide absorbent
JPS6241701A (en) Pressure swing type gas separator in methanol decomposition apparatus
JP2617608B2 (en) High-temperature reducing gas purification equipment
JP2634328B2 (en) High-temperature reducing gas purification equipment
JP2615307B2 (en) High-temperature reducing gas purification equipment
JP2647552B2 (en) High-temperature reducing gas purification equipment
Fleming et al. High Purity Sulfur from Smelter Gases
JP2651381B2 (en) Purification method of high-temperature reducing gas
EP0260798A2 (en) Improved sulfur recovery process using metal oxide absorbent
JP2001123184A (en) Method for gas purification
JPS61245819A (en) Method for purifying high temperature reductive gas
JPH09271625A (en) Gas refining apparatus and gas refining method
JPS60101193A (en) Gas purification and apparatus therefor
JPH06228575A (en) Purification of high-temperature reducing gas

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970408

LAPS Cancellation because of no payment of annual fees