JP2647596B2 - High-temperature reducing gas purification equipment - Google Patents

High-temperature reducing gas purification equipment

Info

Publication number
JP2647596B2
JP2647596B2 JP4055928A JP5592892A JP2647596B2 JP 2647596 B2 JP2647596 B2 JP 2647596B2 JP 4055928 A JP4055928 A JP 4055928A JP 5592892 A JP5592892 A JP 5592892A JP 2647596 B2 JP2647596 B2 JP 2647596B2
Authority
JP
Japan
Prior art keywords
gas
oxygen
absorbent
reaction tower
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4055928A
Other languages
Japanese (ja)
Other versions
JPH05255675A (en
Inventor
進 河野
和子 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4055928A priority Critical patent/JP2647596B2/en
Publication of JPH05255675A publication Critical patent/JPH05255675A/en
Application granted granted Critical
Publication of JP2647596B2 publication Critical patent/JP2647596B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Industrial Gases (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は高温還元性ガスの精製装
置に関し、例えば石炭ガス化プロセスの生成ガスのよう
な高温の還元性ガスに含まれる硫化水素、硫化カルボニ
ル等の硫黄化合物を合理的に除去する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for purifying a high-temperature reducing gas, and more particularly, to a method for reducing sulfur compounds such as hydrogen sulfide and carbonyl sulfide contained in a high-temperature reducing gas such as a product gas of a coal gasification process. And a device for removing the same.

【0002】[0002]

【従来の技術】近年、石油資源の枯渇、価格の高騰から
燃料(又は原料)の多様化が叫ばれ、石炭や重質油(タ
ールサンド油、オイルシェール油、大慶原油、マヤ原油
あるいは減圧残油など)の利用技術の開発が進められて
いる。しかし、このガス化生成ガスには原料の石炭や重
質油によって異なるが、数100〜数1000ppm の硫
化水素(H2 S)、硫化カルボニル(COS)等の硫黄
化合物を含み、公害防止上あるいは後流機器の腐食防止
のため除去する必要がある。この除去方法としては乾式
法が熱経済的にも有利で、プロセス構成も簡素なことか
ら、金属酸化物を主成分とする吸収剤を高温で硫化物と
して吸収除去する方法が一般的になっている。
2. Description of the Related Art In recent years, diversification of fuels (or raw materials) has been called out due to the depletion of petroleum resources and rising prices, and coal and heavy oils (tar sand oil, oil shale oil, Daqing crude oil, Maya crude oil or decompression residue) have been developed. (Eg oil) is being developed. However, this gasification product gas contains sulfur compounds such as hydrogen sulfide (H 2 S) and carbonyl sulfide (COS) of several hundred to several thousand ppm, depending on the raw material coal and heavy oil, and is used for pollution prevention or It must be removed to prevent corrosion of downstream equipment. As the removal method, the dry method is thermoeconomically advantageous and the process configuration is simple, so that a method of absorbing and removing an absorbent mainly composed of a metal oxide as a sulfide at a high temperature has become common. I have.

【0003】吸収剤としてはFe,Zn、Mn、Cu、
Mo、Wなどの金属酸化物が使用され、250〜500
℃で硫化水素(H2 S)、硫化カルボニル(COS)と
反応させるが、H2 SとFe3 4 の場合を例に説明す
ると、吸収反応は(1) 〜(2)式に示すように進むとされ
ている。 Fe3 4 +H2 +3H2 S → 3FeS+4H2 O ・・・(1) Fe3 4 +CO+3H2 S → 3FeS+3H2 O+CO2 ・・・(2)
As an absorbent, Fe, Zn, Mn, Cu,
Metal oxides such as Mo and W are used, and 250 to 500
It reacts with hydrogen sulfide (H 2 S) and carbonyl sulfide (COS) at ℃. When the case of H 2 S and Fe 3 O 4 is explained as an example, the absorption reaction is as shown in equations (1) to (2). It is said to proceed to. Fe 3 O 4 + H 2 + 3H 2 S → 3FeS + 4H 2 O ··· (1) Fe 3 O 4 + CO + 3H 2 S → 3FeS + 3H 2 O + CO 2 ··· (2)

【0004】次いで、吸収反応後の吸収剤は酸素含有ガ
スで(3) 式に示すように金属酸化物Fe2 3 に再生さ
れ、高温還元性ガス中の硫黄化合物SO2 ガスとして回
収除去される。 4FeS+7O2 → 2Fe2 3 +4SO2 ・・・(3)
Then, the absorbent after the absorption reaction is regenerated with an oxygen-containing gas into a metal oxide Fe 2 O 3 as shown in equation (3), and is recovered and removed as a sulfur compound SO 2 gas in a high-temperature reducing gas. You. 4FeS + 7O 2 → 2Fe 2 O 3 + 4SO 2 (3)

【0005】さらに、再生反応後、H2 SやCOを含む
還元性ガスを通すと吸収剤は(4) 〜(5) 式に示すよう
に、元のFe3 4 になり、この吸収反応、再生反応、
還元反応のくりかえしで、金属酸化物(Fe3 4 )は
有効利用される。 3Fe 2 3 +H2 → 2Fe3 4 +H2 O ・・・(4) 3Fe 2 3 +CO → 2Fe3 4 +CO2 ・・・(5)
Further, when a reducing gas containing H 2 S or CO is passed after the regeneration reaction, the absorbent becomes the original Fe 3 O 4 as shown in equations (4) to (5). , Regeneration reaction,
The metal oxide (Fe 3 O 4 ) is effectively used by repeating the reduction reaction. 3 Fe 2 O 3 + H 2 → 2Fe 3 O 4 + H 2 O (4) 3 Fe 2 O 3 + CO → 2Fe 3 O 4 + CO 2 (5)

【0006】このプロセスで使用される吸収剤は、前述
の金属酸化物を単独あるいは耐熱性の多孔質物質に担持
したものを、円柱状やハニカム状に成形したものが通常
使用される。
[0006] As the absorbent used in this process, those obtained by forming the above-mentioned metal oxide alone or on a heat-resistant porous material into a columnar or honeycomb shape are usually used.

【0007】従来装置の一例について、図2〜図5を用
いて具体的に説明する。図2は従来装置のプロセスフロ
ー図、図3は図2の従来装置の反応塔の切り換えを行う
バルブ配置図、図4は図2の従来装置の吸収、再生、還
元サイクルのタイムチャート図表、図5は図2の従来装
置の反応塔切り換えのためのバルブ開閉を示す図表であ
る。
An example of a conventional device will be specifically described with reference to FIGS. 2 is a process flow diagram of the conventional device, FIG. 3 is a valve arrangement diagram for switching the reaction tower of the conventional device of FIG. 2, and FIG. 4 is a time chart chart of an absorption, regeneration, and reduction cycle of the conventional device of FIG. 5 is a chart showing opening and closing of a valve for switching the reaction tower in the conventional apparatus of FIG.

【0008】図2において、未精製のガス化生成ガスは
配管10,44を介して反応塔1に流入し、反応塔1内
に充填された吸収剤(Fe3 4 )100と(1) 〜(2)
式の反応(この反応工程を吸収工程と呼ぶ)によりガス
化生成ガス中に含まれる硫化物(H2 S,COS)は吸
収除去され、配管45,11を介して精製されたガス化
生成ガスは燃料として図示省略の後続機器のガスタービ
ンに送られる。
In FIG. 2, the unpurified gasification product gas flows into the reaction tower 1 via pipes 10 and 44, and the absorbent (Fe 3 O 4 ) 100 filled in the reaction tower 1 and (1) ~ (2)
The sulfide (H 2 S, COS) contained in the gasification product gas is absorbed and removed by the reaction of the formula (this reaction process is referred to as an absorption process), and the gasification product gas purified via the pipes 45 and 11 is removed. Is sent as fuel to a gas turbine of a subsequent device (not shown).

【0009】配管45から分岐した精製済のガス化生成
ガスの一部は、配管13を介して反応塔2に流入し、ガ
ス化生成ガス中に含まれる還元性ガス(H2 ,CO)と
吸収剤(Fe2 3 )100が(4) ,(5) 式の反応によ
りFe3 4 に変化する。(この反応工程を還元工程と
呼ぶ。)反応塔2の流入ガス流量は流量検出調節計30
とバルブ31によって所定量一定に制御されている。
A part of the purified gasification product gas branched from the pipe 45 flows into the reaction tower 2 via the pipe 13 and is reduced with the reducing gas (H 2 , CO) contained in the gasification product gas. The absorbent (Fe 2 O 3 ) 100 changes to Fe 3 O 4 by the reaction of the formulas (4) and (5). (This reaction step is called a reduction step.) The flow rate of the gas flowing into the reaction tower 2 is controlled by the flow rate detection controller 30.
And the valve 31 is controlled to be constant by a predetermined amount.

【0010】酸素含有ガスは配管15を介して、反応塔
3に流入し、吸収剤に吸着しているFeSと(3) 式の反
応を起こす。その結果、SO2 ガスが発生すると共に吸
収剤100は金属酸化物(Fe2 3 )にもどり再生さ
れる。(この反応工程を再生工程と呼ぶ。)
The oxygen-containing gas flows into the reaction tower 3 via the pipe 15, and causes a reaction of the formula (3) with FeS adsorbed on the absorbent. As a result, the SO 2 gas is generated, and the absorbent 100 returns to the metal oxide (Fe 2 O 3 ) and is regenerated. (This reaction step is called a regeneration step.)

【0011】吸収工程を反応塔1である時間つづける
と、吸収剤であるFe3 4 は全量FeSに変化してし
まい、それ以上(1) 〜(2) 式の反応を起こすことができ
ず、反応塔1の出口から硫化物(H2 S,COS)が流
出するようになる。そこで、反応塔1を吸収工程から再
生工程とし、反応塔2を還元工程から吸収工程とし、反
応塔3を再生工程から還元工程とすることを考える。
If the absorption step is continued for a certain period of time in the reaction column 1, the total amount of Fe 3 O 4 as the absorbent is changed to FeS, and the reaction of the formulas (1) and (2) cannot be caused any more. Then, the sulfide (H 2 S, COS) flows out from the outlet of the reaction tower 1. Therefore, it is considered that the reaction tower 1 is changed from the absorption step to the regeneration step, the reaction tower 2 is changed from the reduction step to the absorption step, and the reaction tower 3 is changed from the regeneration step to the reduction step.

【0012】図4に各工程のタイムチャートを示す。図
4では吸収工程の持続時間を4時間としたものである。
FIG. 4 shows a time chart of each step. In FIG. 4, the duration of the absorption step is 4 hours.

【0013】各工程を変化させる操作は図5に示すバル
ブ61〜75の開閉で行う。図5に示したバルブ61〜
75の開閉状態(白:開;黒:閉)は図4のタイムチャ
ートの0〜4時間又は12〜16時間のものを示してい
る。図5において、反応塔1に関しては、バルブ61と
68が開であり、バルブ62,67,69が閉であるの
で、未精製のガス化生成ガスが配管10,46,44を
介して反応塔1に入り、配管53,11を介して後続機
器に流出しているので、図2で示す吸収工程に相当す
る。また、反応塔2に関しては、バルブ64,70が開
であり、バルブ63,71,72が閉であるので、精製
済のガス化生成ガスが配管78,55,13と介して反
応塔2に入り、配管12,49を介して配管16に流入
しているので、図2で示す還元工程に相当する。また、
反応塔3に関しては、バルブ66,75が開であり、バ
ルブ65,73,74が閉であるので、酸素含有ガスは
配管25,60,15を介して、反応塔3に入り、配管
14,51を介して配管16に流入しているので、図2
に示す再生工程に相当する。
The operation for changing each step is performed by opening and closing valves 61 to 75 shown in FIG. Valves 61 to 61 shown in FIG.
The open / closed state of 75 (white: open; black: closed) indicates a time chart of 0 to 4 hours or 12 to 16 hours in the time chart of FIG. In FIG. 5, regarding the reaction tower 1, since the valves 61 and 68 are open and the valves 62, 67 and 69 are closed, the unpurified gasification product gas flows through the pipes 10, 46 and 44 to the reaction tower 1. 1 and flows out to the subsequent equipment via the pipes 53 and 11, and thus corresponds to the absorption step shown in FIG. Further, regarding the reaction tower 2, since the valves 64 and 70 are open and the valves 63, 71 and 72 are closed, the purified gasification product gas is supplied to the reaction tower 2 via the pipes 78, 55 and 13. Since it enters and flows into the pipe 16 via the pipes 12 and 49, it corresponds to the reduction step shown in FIG. Also,
Regarding the reaction tower 3, since the valves 66 and 75 are open and the valves 65, 73 and 74 are closed, the oxygen-containing gas enters the reaction tower 3 via the pipes 25, 60 and 15, and the pipes 14 and Since the gas flows into the pipe 16 via 51, FIG.
Corresponds to the regeneration step shown in FIG.

【0014】したがって、図3のバルブの開閉状態が図
2に相当する。
Therefore, the open / closed state of the valve in FIG. 3 corresponds to FIG.

【0015】図5には図4のタイムチャートに示す時間
帯のバルブ61〜75の開閉状態を示す。図5に示すよ
うに、バルブ61〜75の操作を4時間ごとにすること
で、各反応塔1,2,3共に順次、脱流工程→再生工程
→還元工程→脱流工程というようにかえることができ
る。
FIG. 5 shows the open / closed state of the valves 61 to 75 in the time zone shown in the time chart of FIG. As shown in FIG. 5, by operating the valves 61 to 75 every 4 hours, each of the reaction towers 1, 2, and 3 sequentially changes in the order of the deflow step, the regeneration step, the reduction step, and the deflow step. be able to.

【0016】次に図2において、再生工程で発生したS
2 ガスの単体イオウとして回収するプロセスについて
説明する。反応塔3の再生工程で発生したSO2 ガスは
配管14,16を介して熱交換器4に入る。反応塔2の
還元工程の反応後のガスは配管12を介して配管16に
合流する。再生工程では酸化反応熱によって高温ガスと
なるが、熱交換器4で冷却され配管17を介してクーラ
5に入る。クーラ5によってさらに冷却され、配管18
を介して還元反応器6に入る。H2 とCOを主成分とす
る未精製のガス化生成ガスの一部は配管27を介して配
管17に合流する。前記ガス化生成ガスの一部は流量調
節計32とバルブ33によって常に一定流量に制御され
ている。還元反応器6には触媒101が充填されてお
り、(6) ,(7) 式の還元反応が起こり単体イオウSxが
生成される。 SO2 +2H2 → 1/xSx+2H2 O(x=2〜8) ・・・(6) SO2 +2CO → 1/xSx+2CO2 (x=2〜8) ・・・(7)
Next, referring to FIG. 2, the S
A process of recovering O 2 gas as single sulfur will be described. The SO 2 gas generated in the regeneration step of the reaction tower 3 enters the heat exchanger 4 via the pipes 14 and 16. The gas after the reaction in the reduction step of the reaction tower 2 joins the pipe 16 via the pipe 12. In the regeneration step, a high-temperature gas is generated by the heat of the oxidation reaction, but is cooled by the heat exchanger 4 and enters the cooler 5 via the pipe 17. It is further cooled by the cooler 5 and the piping 18
And enters the reduction reactor 6. Part of the unpurified gasification product gas containing H 2 and CO as main components joins the pipe 17 via the pipe 27. A part of the gasification product gas is constantly controlled at a constant flow rate by a flow controller 32 and a valve 33. The reduction reactor 6 is filled with the catalyst 101, and the reduction reactions of the equations (6) and (7) occur to generate single sulfur Sx. SO 2 + 2H 2 → 1 / xSx + 2H 2 O (x = 2 to 8) (6) SO 2 + 2CO → 1 / xSx + 2CO 2 (x = 2 to 8) (7)

【0017】還元反応器6内温度は(6) ,(7) 式の反応
が進みやすい温度(例えば250℃)になるように温度
検出計34とクーラ5に冷媒28流量を操作するバルブ
35によって制御されている。還元反応器6から流出し
た単体イオウの蒸気を含むガスは配管19を介してクー
ラ7に入り、ここでさらに冷却されて配管20を介して
イオウコンデンサ8に入り、凝縮し液状の単体イオウと
なる。イオウコンデンサ8内の温度はイオウの凝縮温度
以下となるように温度検出調節計36とクーラ7の冷媒
29流量の操作するバルブ37によって制御されてい
る。
The temperature in the reduction reactor 6 is controlled by the temperature detector 34 and the valve 35 for controlling the flow rate of the refrigerant 28 to the cooler 5 so that the reaction of the formulas (6) and (7) can easily proceed (for example, 250 ° C.). Is controlled. The gas containing the vapor of the elemental sulfur flowing out of the reduction reactor 6 enters the cooler 7 via the pipe 19, and is further cooled therein, enters the sulfur condenser 8 via the pipe 20, and condenses into liquid elemental sulfur. . The temperature inside the sulfur condenser 8 is controlled by a temperature detection controller 36 and a valve 37 for controlling the flow rate of the refrigerant 29 of the cooler 7 so that the temperature is lower than the condensation temperature of sulfur.

【0018】イオウコンデンサ8で液状となったイオウ
は配管77により系外に取出される。一方、イオウコン
デンサ8でイオウを除去された不活性ガス(主成分
2 )は配管21を介して循環ブロワ9に入る。配管2
1に設置したバルブ39と流量検出調節計38によって
循環流量は一定に制御されている。循環ブロワ9から配
管22,24を介して前記熱交換器4に入り加熱され
る。配管24には空気又は酸素を配管23を介して混入
させ、配管24内の酸素濃度は酸素濃度検出調節計40
とバルブ41によって所定の値に制御されている。
The sulfur liquefied by the sulfur condenser 8 is taken out of the system through a pipe 77. On the other hand, the inert gas (main component N 2 ) from which sulfur has been removed by the sulfur condenser 8 enters the circulation blower 9 via the pipe 21. Piping 2
The circulating flow rate is controlled to be constant by a valve 39 and a flow rate detection controller 38 installed at 1. The heat enters the heat exchanger 4 via the pipes 22 and 24 from the circulation blower 9 and is heated. Air or oxygen is mixed into the pipe 24 through the pipe 23, and the oxygen concentration in the pipe 24 is controlled by the oxygen concentration detection controller 40.
And the valve 41 is controlled to a predetermined value.

【0019】酸素含有ガスは熱交換器4によって加熱さ
れ、配管25,15を介して反応器3に入る。また、配
管22から一部分岐したガスは配管26を介して配管1
0に合流する。配管26にはバルブ43が設置されてお
り、循環ブロワ9の圧力が一定になるように圧力検出調
節計42とバルブ43で制御されている。
The oxygen-containing gas is heated by the heat exchanger 4 and enters the reactor 3 via the pipes 25 and 15. The gas partially branched from the pipe 22 is supplied to the pipe 1 via the pipe 26.
Merge to 0. A valve 43 is installed in the pipe 26, and is controlled by the pressure detection controller 42 and the valve 43 so that the pressure of the circulation blower 9 becomes constant.

【0020】[0020]

【発明が解決しようとする課題】図2で示した再生工程
に相当する反応塔3内では酸素含有ガスで(3) 式で示す
ように硫化鉄FeSが酸化され、金属酸化物Fe2 3
とSO2 ガスが生成される。ところが、反応塔3内のF
eSが全量酸化されると酸素と反応する物質がなくな
り、反応塔3の出口配管14から酸素が未反応のまま流
出することになる。反応塔3から流出したガスはSO2
ガスを還元する還元反応器6に流入する。この還元反応
器6内には触媒101が充填されており、仮に未反応の
酸素が還元反応器6内に流入すれば、触媒101が酸化
し劣化して、触媒として機能しなくなるという問題点が
ある。
In a reaction tower 3 corresponding to the regeneration step shown in FIG. 2, iron sulfide FeS is oxidized by an oxygen-containing gas as shown by equation (3), and a metal oxide Fe 2 O 3
And SO 2 gas are generated. However, F in the reaction tower 3
When the total amount of eS is oxidized, the substance that reacts with oxygen disappears, and the oxygen flows out of the outlet pipe 14 of the reaction tower 3 without reacting. The gas flowing out of the reaction tower 3 is SO 2
It flows into a reduction reactor 6 for reducing gas. This reduction reactor 6 is filled with the catalyst 101, and if unreacted oxygen flows into the reduction reactor 6, the catalyst 101 is oxidized and deteriorated, so that it does not function as a catalyst. is there.

【0021】本発明は上記技術水準に鑑み、従来技術に
おける不具合を解消し、還元反応器内の触媒の劣化を防
止する高温還元性ガスの精製装置を提供しようとするも
のである。
The present invention has been made in view of the above-mentioned state of the art, and has as its object to provide a high-temperature reducing gas purifying apparatus which solves the problems in the prior art and prevents deterioration of a catalyst in a reduction reactor.

【0022】[0022]

【課題を解決するための手段】本発明は高温還元性ガス
中に含まれる硫化水素、硫化カルボニル等の硫黄化合物
を吸収剤で除去するに当って、前記硫黄化合物を前記吸
収剤で吸収除去する吸収工程と、前記硫黄化合物を吸収
した前記吸収剤を酸素含有ガスで再生する再生工程と、
再生された前記吸収剤を前記高温還元性ガスで還元する
還元工程とを、出入口に設置された複数のバルブの開閉
によって順次変更できる吸収剤を充填した少なくとも3
塔の反応塔から構成される高温還元性ガスの精製装置に
おいて、各反応塔に接続され、再生工程にある反応塔か
らの出口ガスが流入する出口配管に設置したO2 濃度
計、前記O2 濃度計の検出信号を入力とする関数発生
器、各反応塔に接続され、再生工程にある反応塔へ酸素
含有ガスを供給する入口配管に設置したO2 濃度検出調
節計、前記O2 濃度検出調節計の出力信号と前記関数発
生器の出力信号とを入力とする最小値選択器、前記再生
工程にある反応塔へ酸素含有ガスを供給する入口配管に
空気又は酸素を混入させるための空気又は酸素供給配管
に設置され、かつ前記最小値選択器の出力信号で操作す
るバルブとを具備することを特徴とする高温還元性ガス
の精製装置である。
According to the present invention, in removing a sulfur compound such as hydrogen sulfide and carbonyl sulfide contained in a high-temperature reducing gas with an absorbent, the sulfur compound is absorbed and removed with the absorbent. Absorption step, a regeneration step of regenerating the absorbent that has absorbed the sulfur compound with an oxygen-containing gas,
And a reducing step of reducing the regenerated the absorbent in the high temperature reducing gas, at least filled with absorbent capable of sequential changes by the opening and closing <br/> a plurality of valves installed in a doorway 3
In a high-temperature reducing gas purifying apparatus consisting of reaction towers, the reaction towers connected to each reaction tower and in the regeneration step
O 2 concentration meter installed in the outlet pipe into which the outlet gas flows , a function generator that receives the detection signal of the O 2 concentration meter as an input , connected to each reaction column, and oxygen is supplied to the reaction column in the regeneration step.
An O 2 concentration detection controller installed in an inlet pipe for supplying a contained gas, a minimum value selector to which an output signal of the O 2 concentration detection controller and an output signal of the function generator are input, and the regeneration
A valve installed on an air or oxygen supply pipe for mixing air or oxygen into an inlet pipe for supplying an oxygen-containing gas to a reaction tower in a process , and operated by an output signal of the minimum value selector. And a high-temperature reducing gas purifying apparatus.

【0023】本発明はSO2 ガスの還元反応器内に酸素
が流入し、触媒が劣化することを防止したものである。
すなわち、還元反応器の入口(再生工程の出口)で酸素
が検知されたとき、空気又は酸素の供給配管のバルブを
全閉にして、系内に酸素が余分に流入するのを防ぎ、還
元反応器内の触媒の劣化を防止したものである。
The present invention prevents oxygen from flowing into the SO 2 gas reduction reactor and deteriorating the catalyst.
That is, when oxygen is detected at the inlet of the reduction reactor (outlet of the regeneration step), the valve of the air or oxygen supply pipe is fully closed to prevent excess oxygen from flowing into the system, This prevents deterioration of the catalyst in the vessel.

【0024】[0024]

【実施例】本発明の実施例を図1を参照して説明する。
図1の装置は図2の従来装置において、再生工程にある
反応塔3の出口に相当する配管16にO 2 濃度計79と
該O2 濃度計79の検出信号を入力とする関数発生器8
0とを設置し反応塔3の入口に相当する配管24に設
けられている2 濃度検出調節計40の出力信号と前記
関数発生器80の出力信号の小さい方を選択する最小値
選択器81を設け、該最小値選択器81の出力信号によ
って配管23のバルブ41を操作して、余分な酸素
内に流入しないようにしたもので、その他の装置構成に
違いはない。したがって、その他の装置構成については
図2と同一の部材について、同一符号を付したので説明
は省略する。
An embodiment of the present invention will be described with reference to FIG.
In the conventional device of the apparatus of FIG. 1 FIG. 2, the function generator 8 which receives the detection signal of the piping 16 O 2 concentration meter 79 and the O 2 concentration meter 79 corresponding to the outlet of the reaction column 3 in the regeneration step
0, and installed in a pipe 24 corresponding to the inlet of the reaction tower 3.
The minimum value selector 81 for selecting the smaller of vignetting in which the O 2 concentration detected adjusting meter 40 output signal and the output signal of the <br/> function generator 80 is provided, the output signal of the outermost minimum value selector 81 By operating the valve 41 of the pipe 23 to prevent excess oxygen from flowing into the system, there is no difference in other device configurations. Therefore, for the other device configurations, the same members as those in FIG.

【0025】上記の関数発生器80には一例として図6
に示す関数が設定されているものとする。
FIG. 6 shows an example of the function generator 80 shown in FIG.
It is assumed that the function shown in is set.

【0026】再生工程の出口配管16のO2 濃度の検出
値が0.2vol%以上の値を検知すると図6より関数発生器
80の出力信号はゼロ(バルブ全閉に相当する)となり
最小値選択器81の出力信号も当然ゼロとなる。このた
め、バルブ41は全閉となり、空気又は酸素の供給がな
くなり、再生工程出口から流出する酸素はとまることに
なる。このため、還元反応器6内の触媒の劣化は最小限
にとどまることになる。なお、図6において、全閉とな
るO2 濃度は検出誤差を考えて0.2vol%としているが、
基本的にはさらに小さい値でもよい。
When the detected value of the O 2 concentration in the outlet pipe 16 of the regeneration step detects a value of 0.2 vol% or more, the output signal of the function generator 80 becomes zero (corresponding to valve fully closed) from FIG. The output signal of the selector 81 is naturally zero. Therefore, the valve 41 is fully closed, supply of air or oxygen stops, and oxygen flowing out from the outlet of the regeneration step stops. Therefore, deterioration of the catalyst in the reduction reactor 6 is minimized. In FIG. 6, the O 2 concentration that is fully closed is set to 0.2 vol% in consideration of a detection error.
Basically, a smaller value may be used.

【0027】また、本発明の一実施例について述べた
が、要するに再生工程の出口でO2 濃度が検出されたと
き、酸素供給源を遮断するものであればよい。
Although the embodiment of the present invention has been described, it is sufficient that the oxygen supply source is shut off when the O 2 concentration is detected at the outlet of the regeneration step.

【0028】[0028]

【発明の効果】本発明により、高温還元性ガスの精製装
置から採取されるSO2 中に酸素が混入することがなく
なり、高温還元性ガスを還元してイオウにする還元反応
器中の触媒の劣化を防止することができる高温還元性ガ
スの精製装置が提供される。
According to the present invention, oxygen is prevented from being mixed into SO 2 collected from the high-temperature reducing gas purifier, and the catalyst in the reduction reactor for reducing the high-temperature reducing gas to sulfur is reduced. An apparatus for purifying a high-temperature reducing gas capable of preventing deterioration is provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に係る精製装置のプロセスフロ
ー図。
FIG. 1 is a process flow diagram of a purification device according to an embodiment of the present invention.

【図2】従来装置のプロセスフロー図。FIG. 2 is a process flow diagram of a conventional apparatus.

【図3】従来装置の反応塔の切り換えを行うバルブ配置
図。
FIG. 3 is a valve arrangement diagram for switching a reaction tower of a conventional apparatus.

【図4】従来装置の吸収・再生・還元サイクルのタイム
チャート図表。
FIG. 4 is a time chart chart of an absorption / regeneration / reduction cycle of a conventional apparatus.

【図5】従来装置の反応塔の切り換えのためのバルブ開
閉を示す図表。
FIG. 5 is a chart showing opening and closing of a valve for switching a reaction tower in a conventional apparatus.

【図6】図1に示す一実施例である本発明中の関数発生
器に設定する関数の一具体例を示す図。
FIG. 6 is a diagram showing a specific example of a function set in a function generator according to the present invention, which is one embodiment shown in FIG. 1;

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 高温還元性ガス中に含まれる硫化水素、
硫化カルボニル等の硫黄化合物を吸収剤で除去するに当
って、前記硫黄化合物を前記吸収剤で吸収除去する吸収
工程と、前記硫黄化合物を吸収した前記吸収剤を酸素含
有ガスで再生する再生工程と、再生された前記吸収剤を
前記高温還元性ガスで還元する還元工程とを、出入口に
設置された複数のバルブの開閉によって順次変更できる
吸収剤を充填した少なくとも3塔の反応塔から構成され
る高温還元性ガスの精製装置において、各反応塔に接続
され、再生工程にある反応塔からの出口ガスが流入する
出口配管に設置したO2 濃度計、前記O2 濃度計の検出
信号を入力とする関数発生器、各反応塔に接続され、再
生工程にある反応塔へ酸素含有ガスを供給する入口配管
に設置したO2 濃度検出調節計、前記O2 濃度検出調節
計の出力信号と前記関数発生器の出力信号とを入力とす
る最小値選択器、前記再生工程にある反応塔へ酸素含有
ガスを供給する入口配管に空気又は酸素を混入させるた
めの空気又は酸素供給配管に設置され、かつ前記最小値
選択器の出力信号で操作するバルブとを具備することを
特徴とする高温還元性ガスの精製装置。
1. A hydrogen sulfide contained in a high-temperature reducing gas,
In removing a sulfur compound such as carbonyl sulfide with an absorbent, an absorption step of absorbing and removing the sulfur compound with the absorbent, and a regeneration step of regenerating the absorbent having absorbed the sulfur compound with an oxygen-containing gas. and a reduction step of reducing the regenerated the absorbent in the high temperature reducing gas, the absorbent can sequential changed by the opening and closing of a plurality of valves installed in the doorway from the reaction column of at least 3 column packed Connected to each reaction tower in the configured high-temperature reducing gas purification device
Is, placed the O 2 concentration meter <br/> outlet pipe exit gas from the reaction tower in the regeneration step flows, function generator which receives the detection signal of the O 2 concentration meter, connected to each reaction column And re
O 2 concentration detection controller installed in an inlet pipe for supplying an oxygen-containing gas to a reaction tower in a raw process, a minimum value to which an output signal of the O 2 concentration detection controller and an output signal of the function generator are input. Selector, containing oxygen to the reaction tower in the regeneration step
A high-temperature reducing gas, comprising: a valve installed on an air or oxygen supply pipe for mixing air or oxygen into an inlet pipe for supplying gas , and operated by an output signal of the minimum value selector. Purification equipment.
JP4055928A 1992-03-16 1992-03-16 High-temperature reducing gas purification equipment Expired - Fee Related JP2647596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4055928A JP2647596B2 (en) 1992-03-16 1992-03-16 High-temperature reducing gas purification equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4055928A JP2647596B2 (en) 1992-03-16 1992-03-16 High-temperature reducing gas purification equipment

Publications (2)

Publication Number Publication Date
JPH05255675A JPH05255675A (en) 1993-10-05
JP2647596B2 true JP2647596B2 (en) 1997-08-27

Family

ID=13012757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4055928A Expired - Fee Related JP2647596B2 (en) 1992-03-16 1992-03-16 High-temperature reducing gas purification equipment

Country Status (1)

Country Link
JP (1) JP2647596B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5453666A (en) * 1977-10-07 1979-04-27 Hitachi Ltd Method and apparatus for purifying gas of high temperature
JPS5573785A (en) * 1978-11-29 1980-06-03 Hitachi Ltd Purification of hydrocarbon oil or gas

Also Published As

Publication number Publication date
JPH05255675A (en) 1993-10-05

Similar Documents

Publication Publication Date Title
US9624106B2 (en) Supersulf-a process with internal cooling and heating reactors in subdewpoint sulfur recovery and tail gas treating systems
EP1180544B1 (en) Method of manufacturing synthesis gas
US5440873A (en) Gasification-combined power plant
US4797268A (en) Sulfur recovery process using metal oxide absorbent with regenerator recycle to Claus catalytic reactor
EP2594328A1 (en) Process for the removal of hydrogen sulfide from a gas stream
CN101193690A (en) Treatment of fuel gas
AU633760B2 (en) Process for purifying high-temperature reducing gases
JP3831435B2 (en) Gas purification equipment
JP2647596B2 (en) High-temperature reducing gas purification equipment
US4957724A (en) Process and reactor for catalytic reaction of H2 S and SO2 to sulfur
JP2891577B2 (en) High-temperature reducing gas purification equipment
US4769229A (en) Sulfur recovery process using metal oxide absorber feed for regeneration
MXPA05001018A (en) Method for isolating hydrogen sulphide from coke-oven gas with the subsequent recovery of elemental sulphur in a claus plant.
US4954331A (en) Sulfur recovery process using metal oxide absorbent
JP2615307B2 (en) High-temperature reducing gas purification equipment
JP2647552B2 (en) High-temperature reducing gas purification equipment
JP2617608B2 (en) High-temperature reducing gas purification equipment
JP2634328B2 (en) High-temperature reducing gas purification equipment
JPS63501561A (en) Catalytic method to produce sulfur from acidic gas containing H↓2S
JP2651381B2 (en) Purification method of high-temperature reducing gas
JPH0776348B2 (en) Refining method for high temperature reducing gas
EP0260798A2 (en) Improved sulfur recovery process using metal oxide absorbent
US20240116756A1 (en) Process and System for Water-Gas Shift Conversion of Synthesis Gas with High CO Concentration
JP2001123184A (en) Method for gas purification
JPS61245819A (en) Method for purifying high temperature reductive gas

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970408

LAPS Cancellation because of no payment of annual fees