JP2617608B2 - High-temperature reducing gas purification equipment - Google Patents

High-temperature reducing gas purification equipment

Info

Publication number
JP2617608B2
JP2617608B2 JP2149853A JP14985390A JP2617608B2 JP 2617608 B2 JP2617608 B2 JP 2617608B2 JP 2149853 A JP2149853 A JP 2149853A JP 14985390 A JP14985390 A JP 14985390A JP 2617608 B2 JP2617608 B2 JP 2617608B2
Authority
JP
Japan
Prior art keywords
gas
reducing gas
reaction tower
pipe
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2149853A
Other languages
Japanese (ja)
Other versions
JPH0445821A (en
Inventor
進 河野
和子 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2149853A priority Critical patent/JP2617608B2/en
Publication of JPH0445821A publication Critical patent/JPH0445821A/en
Application granted granted Critical
Publication of JP2617608B2 publication Critical patent/JP2617608B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Industrial Gases (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高温還元性ガス、例えば、石炭ガス化プロ
セスの生成ガス等に含まれる硫化水素、硫化カルボニル
等の硫黄化合物を除去するための精製装置に関する。
The present invention relates to a high-temperature reducing gas, for example, a method for removing sulfur compounds such as hydrogen sulfide and carbonyl sulfide contained in a product gas of a coal gasification process. It relates to a purification device.

(従来の技術) 近年、石油資源の枯渇、価格の高騰から燃料又は原料
の多様化が要請され、石炭や重質油(タールサンド油、
オイルシュール油、大慶原油、マヤ油あるいは減圧残油
など)の利用技術の開発が進められている。しかし、こ
のガス化生成ガスには、原料の石炭や重質油によって異
なるが、数100〜数1000ppmの硫化水素(H2S)、硫化カ
ルボニル(COS)等の硫黄化合物を含み、公害防止上あ
るいは後流機器の腐食防止のために除去する必要があ
る。この除去方法としては、乾式法が熱経済的にも有利
で、プロセス構成も簡素なことから、金属酸化物を主成
分とする吸収剤を高温で硫化物にして吸収除去する方法
が一般的になっている。
(Prior Art) In recent years, diversification of fuels or raw materials has been demanded due to depletion of petroleum resources and soaring prices, and coal and heavy oil (tar sand oil,
The development of utilization technologies for oil surreal oil, Daqing crude oil, maya oil, or vacuum residua is being pursued. However, this gasification product gas contains sulfur compounds such as hydrogen sulfide (H 2 S) and carbonyl sulfide (COS) of several hundreds to several thousand ppm, depending on the raw material coal and heavy oil, and is used to prevent pollution. Alternatively, it must be removed to prevent corrosion of downstream equipment. As a method for this removal, the dry method is thermoeconomically advantageous and the process configuration is simple, so that a method of absorbing and removing an absorbent mainly composed of a metal oxide at a high temperature into a sulfide at a high temperature is generally used. Has become.

吸収剤としては、Fe,Zn,Cu,Mo,Wなどの金属酸化物が
使用され、250〜500℃で硫化水素や硫化カルボニルと反
応させる。
As the absorbent, metal oxides such as Fe, Zn, Cu, Mo and W are used, and reacted with hydrogen sulfide and carbonyl sulfide at 250 to 500 ° C.

以下、Fe3O4吸収剤を用いてH2Sを除去する場合を例に
説明すると、吸収反応は(1)及び(2)式に示すよう
に進むとされている。
Hereinafter, a case where H 2 S is removed by using an Fe 3 O 4 absorbent will be described as an example. The absorption reaction proceeds as shown in equations (1) and (2).

Fe3O4+H2+3H2S→SFeS+4H2O ・・・(1) Fe3O4+CO+3H2S→SFeS+3H2O+CO2 ・・・(2) 次いで、吸収反応後の吸収剤は、酸素含有ガスで
(3)式に示すように反応して金属酸化物(Fe2O3)に
再生され、高温還元性ガス中の硫黄化合物は、SO2ガス
として回収除去される。
Fe 3 O 4 + H 2 + 3H 2 S → SFeS + 4H 2 O (1) Fe 3 O 4 + CO + 3H 2 S → SFeS + 3H 2 O + CO 2 (2) Next, the absorbent after the absorption reaction is an oxygen-containing gas. Then, the metal oxide (Fe 2 O 3 ) is regenerated by reacting as shown in equation (3), and the sulfur compound in the high-temperature reducing gas is recovered and removed as SO 2 gas.

4FeS+7O2→2Fe2O3+SO2 ・・・(3) さらに、再生反応後、H2、CO等の還元性ガスを通すこ
とにより、吸収剤は、(4)及び(5)式に示すように
元のFe3O4に変化する。このように、吸収反応、再生反
応、還元反応を繰り返すことにより、金属酸化物(Fe3O
4)を有効に利用して高温還元性ガスから硫化物を除去
することができる。
4FeS + 7O 2 → 2Fe 2 O 3 + SO 2 (3) Further, after the regenerating reaction, by passing a reducing gas such as H 2 , CO, etc., the absorbent becomes as shown in equations (4) and (5). To the original Fe 3 O 4 . Thus, by repeating the absorption reaction, the regeneration reaction, and the reduction reaction, the metal oxide (Fe 3 O
The sulfide can be removed from the high-temperature reducing gas by effectively utilizing 4 ).

3Fe2O3+H2→2Fe3O4+H2O ・・・(4) 3Fe2O3+CO→2Fe3O4+CO ・・・(5) このプロセスで使用される吸収剤は、上記の金属酸化
物を単独で、あるいは、耐熱性の多孔質物質に担持した
ものを、球状、円柱状、ハニカム状に成形したものが通
常使用される。
3Fe 2 O 3 + H 2 → 2Fe 3 O 4 + H 2 O (4) 3Fe 2 O 3 + CO → 2Fe 3 O 4 + CO (5) The absorbent used in this process is the above metal An oxide alone or a support made of a heat-resistant porous substance, which is formed into a spherical, cylindrical, or honeycomb shape, is usually used.

次に、従来装置について、第2図〜第5図を用いて説
明する。第2図は、反応塔1が吸収工程、反応塔2が還
元工程、反応塔3が再生工程にそれぞれ置かれた段階に
おける高温還元性ガスの精製装置のプロセスフローを示
した図であり、第3図は、反応塔1.2.3の配管とバルブ
の総ての関係を示した図であって、白抜きバルブは開放
を黒塗りバルブは閉鎖した状態を示しており、第2図に
対応した状態を示したものである。第4図は、3つの反
応塔が吸収工程、再生工程、還元工程に切り替えるサイ
クルのタイムチャートを示した図、第5図は、第3図の
総てのバルブの開閉状態を経時的に示した図である。
Next, a conventional apparatus will be described with reference to FIGS. FIG. 2 is a diagram showing a process flow of a high-temperature reducing gas purifying apparatus at a stage where the reaction tower 1 is placed in an absorption step, the reaction tower 2 is placed in a reduction step, and the reaction tower 3 is placed in a regeneration step. FIG. 3 is a diagram showing the relationship between all the pipes and valves of the reaction tower 1.2.3, in which the white valves indicate the open state and the black valves indicate the closed state, and correspond to FIG. It shows the state. FIG. 4 is a diagram showing a time chart of a cycle in which three reaction columns are switched to an absorption step, a regeneration step, and a reduction step, and FIG. 5 shows the open / closed state of all valves in FIG. 3 over time. FIG.

処理を受ける高温還元性ガスは、配管10及び配管44を
介して吸収工程の反応塔1に流入され、反応塔内に充填
された吸収剤(Fe3O4)100と接触して上記(1)及び
(2)式の反応により、被処理ガス中の硫化物は吸収除
去され、精製ガスは、配管45及び配管11を介して回収さ
れ、例えば燃料等として後続機器のタービン等に送られ
る。また、精製ガスの一部は、配管45から分岐された配
管13を介して還元工程の反応塔2に導入され、精製ガス
中の還元性成分(H2,CO)と再生工程を経た吸収剤(Fe2
O3)とを反応させて(4)及び(5)式の反応により、
吸収剤はFe3O4に還元される。その際、反応塔2に接続
される配管13に流量検出調節計30及びバルブ31を設置す
ることにより、反応塔2に供給される精製ガスの流量を
所定の一定量に制御することができる。他方、再生工程
にある反応塔3には、配管23,24,25及び15を介して酸素
含有ガスが導入され、(3)式により吸収剤に吸収され
ている硫黄成分(FeS)と酸素とを反応させ、SO2ガスを
発生させるとともに、吸収剤はFeSからFe2O3に再生され
る。再生された吸収剤は上記の還元工程に移され、Fe3O
4まで還元される。還元工程の反応塔2及び再生工程の
反応塔3からの排出ガスは、配管12,14及び16を介して
一体化され、再生工程で酸化反応熱で高温となった排出
ガスは、熱交換器4で上記酸素含有ガスと熱交換して冷
却され、さらに、配管17を介して冷却器5に送られる。
その際、被処理ガスの流入配管10を分岐した配管27を上
記配管17に接続して被処理ガスの一部を上記排出ガスに
添加する。この被処理ガスの添加量は、ガス流量検出調
節計32でバルブ33を操作して制御される。そして、外排
出ガスは冷却器5において、配管28に供給される冷媒で
冷却され、さらに配管18を介して還元反応器6に導入さ
れ、還元触媒101と接触して(6)及び(7)式のよう
に反応して、担体硫黄Sxを生成する。還元反応器内の温
度は(6)及び(7)式の反応が進み易い温度(例えば
250℃)になるように、温度検出調節計34と、冷却器5
の冷媒流量を操作するバルブ35によって制御される。
The high-temperature reducing gas subjected to the treatment flows into the reaction tower 1 in the absorption step via the pipe 10 and the pipe 44, and comes into contact with the absorbent (Fe 3 O 4 ) 100 filled in the reaction tower to make the (1) By the reactions of the formulas (2) and (2), the sulfide in the gas to be treated is absorbed and removed, and the purified gas is recovered through the pipe 45 and the pipe 11, and is sent as a fuel or the like to a turbine or the like of a subsequent device, for example. Further, a part of the purified gas is introduced into the reaction tower 2 in the reduction step through the pipe 13 branched from the pipe 45, and the reducing component (H 2 , CO) in the purified gas and the absorbent after the regeneration step (Fe 2
O 3 ) and by the reaction of formulas (4) and (5),
The absorbent is reduced to Fe 3 O 4 . At this time, by installing the flow rate detection controller 30 and the valve 31 in the pipe 13 connected to the reaction tower 2, the flow rate of the purified gas supplied to the reaction tower 2 can be controlled to a predetermined fixed amount. On the other hand, an oxygen-containing gas is introduced into the reaction tower 3 in the regeneration step via pipes 23, 24, 25, and 15, and the sulfur component (FeS) and oxygen absorbed by the absorbent according to the equation (3). To generate SO 2 gas, and the absorbent is regenerated from FeS to Fe 2 O 3 . The regenerated absorbent is transferred to the above-described reduction step, where Fe 3 O
Reduced to 4 . Exhaust gases from the reaction tower 2 in the reduction step and the reaction tower 3 in the regeneration step are integrated via pipes 12, 14, and 16, and the exhaust gas heated by the heat of oxidation reaction in the regeneration step is supplied to a heat exchanger. At 4, the gas is cooled by heat exchange with the oxygen-containing gas, and further sent to the cooler 5 via the pipe 17.
At this time, a pipe 27 branched from the inflow pipe 10 for the gas to be treated is connected to the pipe 17 and a part of the gas to be treated is added to the exhaust gas. The addition amount of the gas to be treated is controlled by operating the valve 33 by the gas flow rate detection controller 32. Then, the external exhaust gas is cooled by the refrigerant supplied to the pipe 28 in the cooler 5, further introduced into the reduction reactor 6 through the pipe 18, and comes into contact with the reduction catalyst 101 (6) and (7). It reacts according to the formula to produce the carrier sulfur Sx. The temperature in the reduction reactor is a temperature at which the reactions of equations (6) and (7) can easily proceed (for example,
250 ° C) and the temperature detection controller 34 and the cooler 5
Is controlled by a valve 35 that operates the refrigerant flow rate.

SO2+2H2→(1/x)Sx+2H2O (x=2〜8) ・・・(6) SO2+2CO→(1/x)Sx+2CO2 (x=2〜8) ・・・(7) 還元反応器6から流出した単体硫黄の蒸気を含むガス
は、冷却器7で配管29で供給される冷媒により冷却さ
れ、配管20を介してコンデンサー8に導入され、液状の
単体硫黄として配管77より回収される。その際、コンデ
ンサー8内の温度は、硫黄の凝縮温度以下になるように
温度検出調節計36と冷却器7の冷媒流量を操作するバル
ブ37によって制御される。一方、コンデンサー8で硫黄
を除いた不活性ガス(主成分N2)は、配管21を介して循
環ブロワ9に入り、配管21に設置したバルブ39と流量検
出調節計38によって、循環流量は一定に制御される。こ
の不活性ガスは、循環ブロワ9から配管22及び24を介
し、配管23からの空気又は酸素と一体化されて上記熱交
換器4に入り加熱される。配管24内の酸素濃度は、酸素
濃度検出調節計40とバルブ41によって所定の値に制御さ
れる。かかる酸素含有ガスは、熱交換器4によって加熱
され、配管25及び15を介して再生工程の反応器3に入
る。また、配管22の不活性ガスの一部は、配管26を介し
て被処理ガス導入用配管10に接続され、合流される。そ
して、配管26にはバルブ43が設置されており、循環ブロ
ワ9の圧力が一定になるように圧力検出調節計42で制御
される。
SO 2 + 2H 2 → (1 / x) Sx + 2H 2 O (x = 2-8) (6) SO 2 + 2CO → (1 / x) Sx + 2CO 2 (x = 2-8) (7) The gas containing elemental sulfur vapor flowing out of the reduction reactor 6 is cooled by the refrigerant supplied by the pipe 29 in the cooler 7, introduced into the condenser 8 through the pipe 20, and supplied as liquid elemental sulfur from the pipe 77 through the pipe 77. Collected. At this time, the temperature in the condenser 8 is controlled by the temperature detection controller 36 and the valve 37 for controlling the flow rate of the refrigerant in the cooler 7 so as to be lower than the condensation temperature of sulfur. On the other hand, the inert gas (main component N 2 ) from which sulfur has been removed by the condenser 8 enters the circulating blower 9 via the pipe 21, and the circulating flow is kept constant by the valve 39 and the flow rate detection controller 38 installed in the pipe 21. Is controlled. This inert gas is integrated with the air or oxygen from the pipe 23 through the pipes 22 and 24 from the circulation blower 9 and enters the heat exchanger 4 to be heated. The oxygen concentration in the pipe 24 is controlled to a predetermined value by the oxygen concentration detection controller 40 and the valve 41. The oxygen-containing gas is heated by the heat exchanger 4 and enters the reactor 3 in the regeneration step via the pipes 25 and 15. In addition, a part of the inert gas in the pipe 22 is connected to the pipe 10 for introducing the gas to be treated via the pipe 26, and merges. A valve 43 is provided in the pipe 26 and is controlled by a pressure detection controller 42 so that the pressure of the circulation blower 9 becomes constant.

吸収工程をある時間続けると、吸収剤のFe3O4は全量F
eSに変化するため、反応器1から硫化物が流出するよう
になる。そこで、硫化物が流出する以前に、第3図に示
したバルブ61,64,68,70,75を閉鎖し、バルブ62,63,69,7
1,73を開放することにより、反応器1を吸収工程から再
生工程に、反応器2を還元工程から吸収工程に、反応器
3を再生工程から還元工程に移行させる。第4図は、各
工程の持続時間を4時間として、各反応器の切り替えの
状況を示したもので、第5図は、第4図に対応して第3
図中のバルブ61〜75の開閉状態を示したものである。こ
のように3つの反応器を順次切り替えることにより、還
元性ガスの脱硫精製を連続的に行うものである。
If the absorption process is continued for a certain time, the total amount of Fe 3 O 4
Since it changes to eS, the sulfide flows out of the reactor 1. Therefore, before the sulfide flows out, the valves 61, 64, 68, 70, 75 shown in FIG. 3 are closed and the valves 62, 63, 69, 7
By opening 1,73, the reactor 1 is shifted from the absorption step to the regeneration step, the reactor 2 is shifted from the reduction step to the absorption step, and the reactor 3 is shifted from the regeneration step to the reduction step. FIG. 4 shows the switching situation of each reactor with the duration of each step being 4 hours, and FIG. 5 corresponds to FIG.
It shows the open / closed state of the valves 61 to 75 in the figure. By sequentially switching the three reactors in this way, the desulfurization purification of the reducing gas is continuously performed.

(発明が解決しようとする課題) 上記の精製装置では、還元工程にある反応器2に精製
済の高温還元性ガスの一部を一定流量で導入して(4)
(5)式の反応により、吸収剤をFe2O3からFe3O4に還元
させるが、この反応の終了を確認する手段を備えておら
ず、経験的に工程の切り替えを行うため、反応終了後も
高温還元性ガスを導入することがしばしばあり、貴重な
精製済みのガスをむだに消費していた。
(Problem to be Solved by the Invention) In the above-described purification apparatus, a part of the purified high-temperature reducing gas is introduced into the reactor 2 in the reduction step at a constant flow rate (4).
Although the absorbent is reduced from Fe 2 O 3 to Fe 3 O 4 by the reaction of the formula (5), there is no means for confirming the completion of the reaction. Even after the completion, high-temperature reducing gas was often introduced, wasting valuable purified gas.

そこで、本発明は、上記の精製装置の欠点を解消し、
精製済みの高温還元性ガスをむだにすることなく、吸収
剤の還元処理を確実に行うことのできる高温還元性ガス
の精製装置を提供しようとするものである。
Therefore, the present invention has solved the above-mentioned disadvantages of the purification apparatus,
An object of the present invention is to provide an apparatus for purifying a high-temperature reducing gas that can surely perform a reduction treatment of an absorbent without wasting purified high-temperature reducing gas.

(課題を解決するための手段) 本発明は、高温還元性ガス中の硫黄化合物を吸収する
吸収剤を充填した反応塔と、該反応塔に被処理ガス、酸
素含有再生ガス、並びに、高純度還元性ガスを供給及び
排出する配管をバルブを介して接続し、該バルブの開閉
により上記反応塔を吸収工程、再生工程、並びに、還元
工程に順次変更可能とし、還元工程における反応塔に高
純度還元性ガスを供給する配管に、ガス流量検出調節計
と該調節計の出力信号で操作されるガス流量調節バルブ
とを備えた高温還元性ガスの精製装置において、還元工
程における反応塔の排出配管に還元性ガス濃度検出器を
設置し、該検出器の検出信号を入力して設定値を出力す
る関数発生器を設け、該関数発生器からの出力信号を上
記ガス流量検出調節計に入力してガス流量調節バルブを
調節し、還元工程の反応塔への高純度還元性ガスの供給
を制御可能としたことを特徴とする高温還元性ガスの精
製装置である。
(Means for Solving the Problems) The present invention provides a reaction tower filled with an absorbent for absorbing a sulfur compound in a high-temperature reducing gas, a gas to be treated, an oxygen-containing regeneration gas, and a high-purity gas. A pipe for supplying and discharging the reducing gas is connected via a valve, and by opening and closing the valve, the reaction tower can be sequentially changed to an absorption step, a regeneration step, and a reduction step. In a high-temperature reducing gas purifying apparatus provided with a gas flow detection controller and a gas flow control valve operated by an output signal of the controller in a pipe for supplying a reducing gas, a discharge pipe of a reaction tower in a reduction step is provided. Is provided with a reducing gas concentration detector, a function generator for inputting a detection signal of the detector and outputting a set value is provided, and an output signal from the function generator is input to the gas flow rate detection controller. Gas flow control A high-temperature reducing gas purifying apparatus characterized in that a supply of a high-purity reducing gas to a reaction tower in a reduction step can be controlled by adjusting a node valve.

(作用) 本発明は、還元工程の反応塔に供給する高純度還元性
ガス、例えば、吸収工程の反応塔から排出される精製ガ
スを、吸収剤の還元に必要である最小限の供給にとどめ
ることによって、精製ガスのムダを抑えるようにしたも
のである。即ち、還元工程の反応塔から排出されるガス
に、還元性ガス成分が増大することは、還元反応の終了
を意味するところから、該排出ガス中の還元性ガス濃度
を検出することにより、還元工程の反応塔への高純度還
元性ガスの供給を停止させ、還元反応に寄与しない高純
度還元性ガスのムダを省こうとするものである。
(Operation) The present invention limits the supply of a high-purity reducing gas supplied to the reaction tower in the reduction step, for example, a purified gas discharged from the reaction tower in the absorption step, to a minimum supply necessary for reducing the absorbent. By doing so, waste of the purified gas is suppressed. That is, since an increase in the reducing gas component in the gas discharged from the reaction tower in the reduction step means the end of the reduction reaction, the reduction gas concentration in the exhaust gas is detected to reduce the reduction gas component. The purpose is to stop the supply of the high-purity reducing gas to the reaction tower in the process and eliminate waste of the high-purity reducing gas that does not contribute to the reduction reaction.

具体的には、還元工程にある反応塔の排出配管に還元
性ガス濃度検出器を設置し、該検出器の検出信号を関数
発生器に入力して設定値を出力し、該設定値の出力信号
を還元工程の反応塔入口配管に設けたガス流量検出調節
計に入力し、該入力配管のガス流量調節バルブを作動さ
せて、高純度還元性ガスの供給を制御可能にするもので
ある。
Specifically, a reducing gas concentration detector is installed in a discharge pipe of a reaction tower in a reduction step, a detection signal of the detector is input to a function generator, a set value is output, and a set value is output. A signal is input to a gas flow rate detection controller provided at a reaction tower inlet pipe in a reduction step, and a gas flow rate control valve of the input pipe is operated to control supply of a high-purity reducing gas.

(実施例) 本発明の実施例を第1図を参照して説明する。第1図
の装置は、第2図の従来装置において、還元工程にある
反応塔2の出口配管12に還元性ガス濃度検出器79を設置
し、該検出器79の検出信号を関数発生器80に入力して設
定値を出力し、該出力信号を反応塔2の入口配管13に設
けたガス流量検出調節計30に入力し、入口配管13のガス
流量調節バルブ31を調節して、還元工程にある反応塔2
に供給する還元性ガスの流量を制御するようにしたもの
で、その他の装置構成に違いはない。従って、その他の
装置構成については、第2図と同一の部材について、同
一の番号を付したので、説明を省略する。
(Example) An example of the present invention will be described with reference to FIG. The apparatus shown in FIG. 1 is different from the conventional apparatus shown in FIG. 2 in that a reducing gas concentration detector 79 is installed at an outlet pipe 12 of a reaction tower 2 in a reduction step, and a detection signal of the detector 79 is transmitted to a function generator 80. To output a set value. The output signal is input to a gas flow rate detection controller 30 provided at the inlet pipe 13 of the reaction tower 2, and the gas flow rate control valve 31 of the inlet pipe 13 is adjusted to perform a reduction process. Reaction tower 2
The flow rate of the reducing gas supplied to the device is controlled, and there is no difference in other device configurations. Therefore, as for the other device configurations, the same members as those in FIG. 2 are denoted by the same reference numerals, and description thereof will be omitted.

上記の関数発生器80に設定する関数の一例を第6図に
示す。再生工程から還元工程に切り換えた直後は、反応
塔2内の吸収剤100は全量Fe2O3の状態にあり、精製済み
のガス化生成ガス中に含まれるH2,COと上記(4)
(5)式のように反応する。このため、反応塔2内でH2
及びCOは総て反応に消費される。この結果、反応塔2の
出口からH2及びCOは流出しない。反応塔2にガス化生成
ガスの供給を続けると、吸収剤中のFe2O3は入口から還
元性されて次々にFe3O4に還元されてゆく。総て還元さ
れると、反応塔2の出口からH2及びCOが流出する。そこ
で、反応塔2出口配管12に設けた還元性ガス濃度検出器
79で還元性ガス濃度を検出するが、ガス化生成ガス中の
H2とCOの含有量の割合が一定であれば、いずれか一方を
検出して制御することが可能である。第1図及び第6図
は、H2濃度を検出して制御する場合について記載した
が、CO濃度で制御してもよい。第6図では、検出器で測
定するH2濃度が1.0%の間は、還元工程の反応塔へのガ
ス化生成ガスの流量Fを一定にし、H2濃度の増大にとも
ない、該流量Fを低下させ、H2濃度が2.0%になった時
点でガス化生成ガスの供給を停止した。第4図及び第5
図のサイクルで各操作を行うためには、4時間以内に上
記の還元操作を終了できる程度のH2及びCOの供給量を確
保する必要がある。
FIG. 6 shows an example of a function set in the function generator 80 described above. Immediately after switching from the regeneration step to the reduction step, the entire amount of the absorbent 100 in the reaction tower 2 is in the state of Fe 2 O 3 , and the amount of H 2 and CO contained in the purified gasification product gas and the above (4)
It reacts as shown in equation (5). For this reason, H 2
And CO are all consumed in the reaction. As a result, H 2 and CO do not flow out of the outlet of the reaction tower 2. When the supply of the gasification product gas to the reaction tower 2 is continued, Fe 2 O 3 in the absorbent is reduced from the inlet and is successively reduced to Fe 3 O 4 . When all are reduced, H 2 and CO flow out of the outlet of the reaction tower 2. Therefore, a reducing gas concentration detector installed at the outlet pipe 12 of the reaction tower 2
The reducing gas concentration is detected at 79,
If the ratio of the content of H 2 and CO is constant, it is possible to control by detecting either. Although FIGS. 1 and 6 describe the case where the H 2 concentration is detected and controlled, the control may be performed based on the CO concentration. In FIG. 6, while the H 2 concentration measured by the detector is 1.0%, the flow rate F of the gasification product gas to the reaction tower in the reduction step is kept constant, and as the H 2 concentration increases, the flow rate F is reduced. When the H 2 concentration reached 2.0%, the supply of the gasification product gas was stopped. FIG. 4 and FIG.
In order to perform each operation in the cycle shown in the figure, it is necessary to secure a sufficient supply of H 2 and CO so that the above reduction operation can be completed within 4 hours.

(発明の効果) 本発明は、上記の構成を採用することにより、還元工
程における還元反応の終了を検出して、精製された還元
性ガスの反応塔への供給を必要最小限に抑えることがで
き、貴重な燃料ガスである精製済みのガス化精製ガスを
ムダに浪費することがなくなる。
(Effect of the Invention) By adopting the above configuration, the present invention can detect the end of the reduction reaction in the reduction step, and suppress the supply of the purified reducing gas to the reaction tower to the minimum necessary. As a result, the purified gasified purified gas, which is a valuable fuel gas, is not wasted.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の1実施例の精製装置のプロセスフロー
を示した図、第2図は従来装置のプロセスフローを示し
た図、第3図は反応塔の配管とバルブの総ての関係を示
した図、第4図は3つの反応塔を各工程に切り換えるサ
イクルのタイムチャートを示した図、第5図は第3図の
総てのバルブの開閉状態を経時的に示した図、第6図は
実施例で関数発生器に設定する関数の1具体例を示した
図である。
FIG. 1 is a view showing a process flow of a purification apparatus according to one embodiment of the present invention, FIG. 2 is a view showing a process flow of a conventional apparatus, and FIG. 3 is a relation between all pipes and valves of a reaction tower. FIG. 4 is a diagram showing a time chart of a cycle in which three reaction towers are switched to each step. FIG. 5 is a diagram showing the open / closed state of all valves in FIG. 3 over time. FIG. 6 is a diagram showing one specific example of a function set in the function generator in the embodiment.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】高温還元性ガス中の硫黄化合物を吸収する
吸収剤を充填した反応塔と、該反応塔に被処理ガス、酸
素含有再生ガス、並びに、高純度還元性ガスを供給及び
排出する配管をバルブを介して接続し、該バルブの開閉
により上記反応塔を吸収工程、再生工程、並びに、還元
工程に順次変更可能とし、還元工程における反応塔に高
純度還元性ガスを供給する配管に、ガス流量検出調節計
と該調節計の出力信号で操作されるガス流量調節バルブ
とを備えた高温還元性ガスの精製装置において、還元工
程における反応塔の排出配管に還元性ガス濃度検出器を
設置し、該検出器の検出信号を入力して設定値を出力す
る関数発生器を設け、該関数発生器からの出力信号を上
記ガス流量検出調節計に入力してガス流量調節バルブを
調節し、還元工程の反応塔への高純度還元性ガスの供給
を制御可能としたことを特徴とする高温還元性ガスの精
製装置。
1. A reaction tower filled with an absorbent for absorbing a sulfur compound in a high-temperature reducing gas, and a gas to be treated, an oxygen-containing regeneration gas, and a high-purity reducing gas are supplied to and discharged from the reaction tower. A pipe is connected via a valve, and the reaction tower can be sequentially changed to an absorption step, a regeneration step, and a reduction step by opening and closing the valve, and a pipe for supplying a high-purity reducing gas to the reaction tower in the reduction step. In a high-temperature reducing gas purifying apparatus provided with a gas flow rate detection controller and a gas flow rate control valve operated by an output signal of the controller, a reducing gas concentration detector is provided in a discharge pipe of a reaction tower in a reduction step. A function generator for inputting a detection signal of the detector and outputting a set value, and inputting an output signal from the function generator to the gas flow rate detection controller to adjust a gas flow rate control valve. , Reduction process That the supply of high-purity reducing gas into the reaction tower was controllable apparatus for purifying high-temperature reducing gas which is characterized in.
JP2149853A 1990-06-11 1990-06-11 High-temperature reducing gas purification equipment Expired - Lifetime JP2617608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2149853A JP2617608B2 (en) 1990-06-11 1990-06-11 High-temperature reducing gas purification equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2149853A JP2617608B2 (en) 1990-06-11 1990-06-11 High-temperature reducing gas purification equipment

Publications (2)

Publication Number Publication Date
JPH0445821A JPH0445821A (en) 1992-02-14
JP2617608B2 true JP2617608B2 (en) 1997-06-04

Family

ID=15484081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2149853A Expired - Lifetime JP2617608B2 (en) 1990-06-11 1990-06-11 High-temperature reducing gas purification equipment

Country Status (1)

Country Link
JP (1) JP2617608B2 (en)

Also Published As

Publication number Publication date
JPH0445821A (en) 1992-02-14

Similar Documents

Publication Publication Date Title
TWI482656B (en) Process and system with multiple fixed-fluidized beds for contaminant removal
US4797268A (en) Sulfur recovery process using metal oxide absorbent with regenerator recycle to Claus catalytic reactor
WO2013129086A1 (en) Co-shift reaction device and gasification gas purification system
JP3831435B2 (en) Gas purification equipment
US4994257A (en) Method for purifying high-temperature reducing gas
JP2891577B2 (en) High-temperature reducing gas purification equipment
JP2617608B2 (en) High-temperature reducing gas purification equipment
JPH02180614A (en) Process for refining high temperature reducing gas
AU633760B2 (en) Process for purifying high-temperature reducing gases
CN105026524B (en) Gas purification facilities and gas purification method
JPH0394815A (en) Method for desulfurizing and denitrating exhaust gas from sintering apparatus
JP2647552B2 (en) High-temperature reducing gas purification equipment
US4769229A (en) Sulfur recovery process using metal oxide absorber feed for regeneration
JP2634328B2 (en) High-temperature reducing gas purification equipment
JP2647596B2 (en) High-temperature reducing gas purification equipment
JPH03238019A (en) Purification of high temperature reductive gas
JPH11104451A (en) Purification of gas and apparatus for purifying gas
JP2615307B2 (en) High-temperature reducing gas purification equipment
JP2001123184A (en) Method for gas purification
JPH11128659A (en) Device for treating waste gas in starting coal gasification plant
JP4658350B2 (en) Method and apparatus for reducing sulfur compounds
JP7222718B2 (en) Impurity removal device and combined coal gasification combined cycle facility
JPH0659377B2 (en) Refining method for high temperature reducing gas
JPH06228575A (en) Purification of high-temperature reducing gas
JPH1157402A (en) Method and facility for refining gas

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 14