JPH0522965B2 - - Google Patents

Info

Publication number
JPH0522965B2
JPH0522965B2 JP59100946A JP10094684A JPH0522965B2 JP H0522965 B2 JPH0522965 B2 JP H0522965B2 JP 59100946 A JP59100946 A JP 59100946A JP 10094684 A JP10094684 A JP 10094684A JP H0522965 B2 JPH0522965 B2 JP H0522965B2
Authority
JP
Japan
Prior art keywords
film
magnetic recording
present
recording medium
polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59100946A
Other languages
Japanese (ja)
Other versions
JPS60243818A (en
Inventor
Koichi Shinohara
Shigeki Kawase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10094684A priority Critical patent/JPS60243818A/en
Publication of JPS60243818A publication Critical patent/JPS60243818A/en
Publication of JPH0522965B2 publication Critical patent/JPH0522965B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は垂直記録方式に適する磁気記録媒体に
関する。 従来例の構成とその問題点 垂直記録方式は、テープ、デイスク等の磁気記
録媒体の走行方向と垂直方向、即ち磁気記録層の
厚み方向に磁化容易軸をもつた磁気記録媒体を使
用し、磁気記録媒体を厚さ方向に磁化しかつ、こ
の方向に磁化を残留させるよう構成されたもの
で、こうすることで自己減磁界が短波長になる程
小さくでき、結果的に高密度化が可能になるもの
として注目されるものである。 以上のような垂直記録方式に使用される垂直磁
気記録媒体としては、第1図に示したように高分
子フイルム等の非磁性基板1上に軟磁性層2と
Co−Cr等の垂直磁化可能な強磁性金属薄膜3
(以下これを垂直磁化膜と呼ぶ)を積層したもの
が、記録感度が良好なことから、最も好ましい構
成であるとされている。 しかし乍ら、かかる垂直磁気記録媒体を量産す
る立場でみると、かかる構成のものは、量産に適
さない欠点を有している。 即ち、垂直磁化膜の性能の良し悪しの目安であ
る六方晶Co−Cr合金の結晶異方性を示す、C軸
配向性、(002)面によるX線回折線のロツキング
曲線の半値幅△θ50(度)が軟磁性層の影響を強く
受けるため、軟磁性層の結晶成長のめん密な制御
が必要になるからである。 そのため、広幅で、連続してかかる構成の媒体
を得ても、Δθ50のバラツキが大きく、信号対雑
音比(S/N)の良好な垂直磁気記録媒体が得ら
れないため改良が望まれていた。 特に、最も磁気記録媒体の基板としての物性が
調和のとれているポリエステル基板、特にテープ
用基板として破断伸びの面から好ましいとされる
結晶化度が40%以上のポリエステルフイルムでは
△θ50のバラツキが極端に大きくなる問題があつ
た。 発明の目的 本発明は上記事情に鑑みなされたもので、S/
Nの改良された汎用性の高いポリエステルフイル
ムを基板として垂直磁気記録媒体を提供するもの
である。 発明の構成 本発明の磁気記録媒体は、結晶化度が40%以上
のポリエステルフイルム上にプラズマ重合膜を配
した上に垂直磁化膜を直接、或いは、軟磁性層を
介して垂直磁化膜を配したことを特徴とし、磁性
のゆらぎによる雑音が改良されたS/Nの良好な
短波長記録用媒体である。 実施例の説明 以下に図面を参照しながら本発明の実施例につ
いて説明する。 第2図は本発明の磁気記録媒体の拡大断面図で
ある。第2図において4は結晶化度が40%以上で
あるポリエステル基板で、5はプラズマ重合膜、
6は軟磁性層、7は垂直磁化膜である。 尚、他の構成例として、軟磁性層を介さない場
合でも基本的に本発明の効果は得られるものであ
る。 更に垂直磁化膜表面に保護層を配することや、
かかる構成を基板4の両面に配すること等は本発
明の要旨を逸脱しない範囲で実施できるのは勿論
である。 本発明に用いられる基板は、ポリエチレンテレ
フタレート、ポリエチレンナフタレート等のポリ
エステルフイルムで、結晶化度が40%以上のもの
で、厚みは4μmから20μmが適している。 本発明に用いることの出来る軟磁性層は、電子
ビーム蒸着法、イオンプレーテイング法、スパツ
タリング法等で得られる、Ni−Fe,Ni−Fe−
Mo,Co−Mo−Zr,Co−Ti,Co−Fe−B膜等
であり、垂直磁化膜は、Co−Cr,Co−Ti,Co−
V,Co−Mo,Co−W,Co−P,Co−Cr−Rh等
で無電解めつき法、真空蒸着法、スパツタリング
法、イオンプレーテイング法により得られる。 本発明に用いられるプラズマ重合膜は、モノマ
ーとしてフルオロカーボン類、クロロフルオロハ
イドロカーボン類、フルオロハイドロカーボン
類、シラン類、等から適宜選択できるもので、厚
みは10Å以上であれば効果は再現よく得られる。 プラズマ重合膜は、極薄の膜でも物性が均一化
できるのが特徴であり、ポリエステルの結晶部分
と非晶部分とにより従来、軟磁性層の配向性が制
御されにくかつたためのバラツキが改良されたも
のであり、垂直磁化膜を軟磁性層を介さずに形成
する場合も同じであり、△θ50が小さくかつ均一
にできるため、雑音が小さくなり、短波長での
S/Nが改良されるものである。 以下、さらに具体的な一実施例を説明する。 結晶化度が46%の厚み12μmのポリエチレンテ
レフタレートフイルム上に高周波スパツタリング
法によりNi−Fe膜0.4μm(Ni:80wt%)、Co−
Cr膜0.15μm(Cr:20wt%)を形成して得た垂直
磁気記録媒体と、本発明のプラズマ重合膜を介し
て、同様にNi−Fe,Co−Crの2層膜を配した媒
体を比較検討した。 又他の構成としてNi−Fe膜を介さない場合に
ついても同様に比較検討した。 プラズマ重合膜の形成に用いた装置は、巻取蒸
着機を改造して、直径50cmの円筒状キヤンに沿つ
て、同心状に配置した曲率半径30cm、周長1mの
放電電極に高周波(13.56MHz)を印加する方式
のものである。 得られた薄膜の物性と、磁気テープとしての性
能を評価した結果を含めて表にまとめて示した。
INDUSTRIAL APPLICATION FIELD The present invention relates to a magnetic recording medium suitable for perpendicular recording. Conventional structure and its problems The perpendicular recording method uses a magnetic recording medium with an axis of easy magnetization perpendicular to the running direction of the magnetic recording medium such as a tape or disk, that is, in the thickness direction of the magnetic recording layer. It is configured to magnetize the recording medium in the thickness direction and leave magnetization to remain in this direction.By doing this, the self-demagnetizing field can be made smaller as the wavelength becomes shorter, resulting in higher density. This is something that is attracting attention. As shown in FIG. 1, the perpendicular magnetic recording medium used in the above perpendicular recording method consists of a soft magnetic layer 2 on a nonmagnetic substrate 1 such as a polymer film.
Perpendicularly magnetizable ferromagnetic metal thin film 3 such as Co-Cr
(hereinafter referred to as a perpendicular magnetization film) is said to be the most preferable structure because it has good recording sensitivity. However, from the perspective of mass-producing such perpendicular magnetic recording media, such a structure has a drawback that it is not suitable for mass production. That is, the half-value width △θ50 of the rocking curve of the X-ray diffraction line due to the C-axis orientation and (002) plane, which indicates the crystal anisotropy of the hexagonal Co-Cr alloy, which is a measure of the performance of the perpendicularly magnetized film. This is because the temperature (degrees) is strongly influenced by the soft magnetic layer, so careful control of the crystal growth of the soft magnetic layer is required. Therefore, even if a wide and continuous medium with such a configuration is obtained, the variation in Δθ50 is large and a perpendicular magnetic recording medium with a good signal-to-noise ratio (S/N) cannot be obtained, so improvements have been desired. . In particular, polyester substrates, which have the most harmonious physical properties as a substrate for magnetic recording media, and especially polyester films with a crystallinity of 40% or more, which are preferred as substrates for tapes in terms of elongation at break, have variations in △θ50. There was a problem that became extremely large. Purpose of the invention The present invention was made in view of the above circumstances, and
The present invention provides a perpendicular magnetic recording medium using a highly versatile polyester film with improved N content as a substrate. Structure of the Invention The magnetic recording medium of the present invention has a plasma polymerized film disposed on a polyester film having a crystallinity of 40% or more, and a perpendicular magnetization film is disposed directly or via a soft magnetic layer on the plasma polymerized film. This is a short wavelength recording medium with improved S/N ratio and improved noise due to magnetic fluctuations. DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 2 is an enlarged sectional view of the magnetic recording medium of the present invention. In Figure 2, 4 is a polyester substrate with a crystallinity of 40% or more, 5 is a plasma polymerized film,
6 is a soft magnetic layer, and 7 is a perpendicular magnetization film. As another example of the structure, the effects of the present invention can basically be obtained even when the soft magnetic layer is not used. Furthermore, placing a protective layer on the surface of the perpendicular magnetization film,
Of course, it is possible to arrange such a configuration on both sides of the substrate 4 without departing from the gist of the present invention. The substrate used in the present invention is a polyester film such as polyethylene terephthalate or polyethylene naphthalate, with a degree of crystallinity of 40% or more, and a thickness of 4 μm to 20 μm. The soft magnetic layer that can be used in the present invention includes Ni-Fe, Ni-Fe-
Mo, Co-Mo-Zr, Co-Ti, Co-Fe-B films, etc., and perpendicular magnetization films include Co-Cr, Co-Ti, Co-
It can be obtained from V, Co-Mo, Co-W, Co-P, Co-Cr-Rh, etc. by electroless plating, vacuum evaporation, sputtering, or ion plating. In the plasma polymerized film used in the present invention, the monomer can be appropriately selected from fluorocarbons, chlorofluorohydrocarbons, fluorohydrocarbons, silanes, etc., and the effect can be reproducibly obtained as long as the thickness is 10 Å or more. . Plasma-polymerized films are characterized by the ability to make the physical properties uniform even in ultra-thin films, and improve the dispersion that was previously caused by the difficulty in controlling the orientation of the soft magnetic layer due to the crystalline and amorphous parts of polyester. The same is true when a perpendicularly magnetized film is formed without a soft magnetic layer, and △θ50 can be made small and uniform, reducing noise and improving S/N at short wavelengths. It is something that A more specific example will be described below. A 0.4 μm thick Ni-Fe film (Ni: 80 wt%), Co-
A perpendicular magnetic recording medium obtained by forming a Cr film of 0.15 μm (Cr: 20 wt%) and a medium similarly arranged with two layers of Ni-Fe and Co-Cr via the plasma polymerized film of the present invention were used. A comparative study was conducted. In addition, other configurations in which the Ni--Fe film was not interposed were also compared and studied in the same manner. The apparatus used to form the plasma polymerized film was a modified winding evaporation machine that applied high frequency (13.56 MHz) to discharge electrodes with a radius of curvature of 30 cm and a circumference of 1 m arranged concentrically along a cylindrical can with a diameter of 50 cm. ) is applied. The physical properties of the obtained thin film and the results of evaluating its performance as a magnetic tape are summarized in a table.

【表】 以上のように本実施例によれば、高密度磁気記
録を行う上で重要なS/Nに対し改良がなされる
ことがわかる。 又、結晶化度が40%以下のポリエステルに直
接、Ni−Fe,Co−Crの2層膜を形成した従来知
られる磁気記録媒体に対してもS/Nでみて、約
2dB0.5μmから0.3μmの短波長で改良されている
ものである。 しかし、改善度合を3dB以上にするには結晶化
度40%以上(上限は57%までその効果の変わらな
いことを確認している)と薄い重合膜の組合せが
好ましい 勿論、Ni−Fe,Co−Crの2層媒体を、補助磁
極励磁型垂直ヘツドで記録再生しても本発明品と
従来品は3dBから5dBの差があり、本発明品の高
性能度合が理解できる。 尚、本発明の他の前記した材料の組み合わせは
勿論、磁気テープ以外のシート状、デイスク状の
媒体でもその効果は十分確認されている。 発明の効果 以上のように本発明の磁気記録媒体は、結晶化
度が40%以上のポリエステルフイルム上にプラズ
マ重合膜を配して垂直磁気記録層を形成すること
で、結晶配向性のバラツキを減らし、短波長での
S/Nを改良したものでその実用的効果は大き
い。
[Table] As described above, it can be seen that according to this example, the S/N, which is important in performing high-density magnetic recording, is improved. Furthermore, in terms of S/N, it is approximately
It has been improved with a short wavelength of 2dB from 0.5μm to 0.3μm. However, in order to achieve an improvement level of 3 dB or more, it is preferable to combine a crystallinity of 40% or more (we have confirmed that the effect does not change up to an upper limit of 57%) and a thin polymer film.Of course, Ni-Fe, Co Even when recording and reproducing a -Cr two-layer medium using an auxiliary magnetic pole excitation type vertical head, there is a difference of 3 to 5 dB between the product of the present invention and the conventional product, which shows the high performance of the product of the present invention. The effects of this invention have been sufficiently confirmed not only in combinations of the above-mentioned materials of the present invention but also in sheet-like and disk-like media other than magnetic tapes. Effects of the Invention As described above, the magnetic recording medium of the present invention eliminates variations in crystal orientation by disposing a plasma polymerized film on a polyester film with a crystallinity of 40% or more to form a perpendicular magnetic recording layer. The practical effect is great because the S/N ratio at short wavelengths has been improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の磁気記録媒体の拡大断面図、第
2図は本発明の磁気記録媒体の拡大断面図であ
る。 4…ポリエステルフイルム、5…プラズマ重合
膜、6…軟磁性層、7…垂直磁化膜。
FIG. 1 is an enlarged sectional view of a conventional magnetic recording medium, and FIG. 2 is an enlarged sectional view of a magnetic recording medium of the present invention. 4... Polyester film, 5... Plasma polymerized film, 6... Soft magnetic layer, 7... Perpendicular magnetization film.

Claims (1)

【特許請求の範囲】[Claims] 1 結晶化度が40%以上のポリエステルフイルム
上に10〜30Åのプラズマ重合膜を配した上に垂直
磁気記録層を配したことを特徴とする磁気記録媒
体。
1. A magnetic recording medium comprising a polyester film having a crystallinity of 40% or more, a plasma polymerized film of 10 to 30 Å on top of which a perpendicular magnetic recording layer is disposed.
JP10094684A 1984-05-18 1984-05-18 Magnetic recording medium Granted JPS60243818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10094684A JPS60243818A (en) 1984-05-18 1984-05-18 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10094684A JPS60243818A (en) 1984-05-18 1984-05-18 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS60243818A JPS60243818A (en) 1985-12-03
JPH0522965B2 true JPH0522965B2 (en) 1993-03-31

Family

ID=14287515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10094684A Granted JPS60243818A (en) 1984-05-18 1984-05-18 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS60243818A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860427A (en) * 1981-10-05 1983-04-09 Nippon Telegr & Teleph Corp <Ntt> Vertical magnetic recording media

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860427A (en) * 1981-10-05 1983-04-09 Nippon Telegr & Teleph Corp <Ntt> Vertical magnetic recording media

Also Published As

Publication number Publication date
JPS60243818A (en) 1985-12-03

Similar Documents

Publication Publication Date Title
JP3099790B2 (en) Perpendicular magnetic recording media
US5815343A (en) Magnetic recording medium, process for producing the same and magnetic recording system
US6387483B1 (en) Perpendicular magnetic recording medium and manufacturing process therefor
JP2524514B2 (en) Magnetic recording media
US5851656A (en) Magnetic recording medium
US5496606A (en) Magnetic recording medium
JPH056738B2 (en)
KR890003038B1 (en) Magnetic recording carrier
JPS61194625A (en) Magnetic recording medium
JPH0522965B2 (en)
JP2001189005A (en) Magnetic recording medium, method of producing the same and magnetic memory device
US20020001736A1 (en) Magnetic recording medium
JP3520751B2 (en) Perpendicular magnetic recording medium, method of manufacturing the same, and storage device using the same
JPS62128019A (en) Magnetic recording medium
JPH06103554A (en) Perpendicular magnetic recording medium
KR890004255B1 (en) Magnetic recording carrier
JPH0581967B2 (en)
JPH0737237A (en) Magnetic recording medium and its production and magnetic recorder
JPH07122931B2 (en) Perpendicular magnetic recording medium
JP2508639B2 (en) Perpendicular magnetic recording media
JPS63119017A (en) Perpendicular magnetic recording medium
JPH0462128B2 (en)
JPH0570205B2 (en)
JPS58171717A (en) Magnetic recording medium
JPH04291017A (en) Magnetic recording medium and magnetic memory device