JPS5860427A - Vertical magnetic recording media - Google Patents

Vertical magnetic recording media

Info

Publication number
JPS5860427A
JPS5860427A JP15757781A JP15757781A JPS5860427A JP S5860427 A JPS5860427 A JP S5860427A JP 15757781 A JP15757781 A JP 15757781A JP 15757781 A JP15757781 A JP 15757781A JP S5860427 A JPS5860427 A JP S5860427A
Authority
JP
Japan
Prior art keywords
substrate
magnetic
film
thin film
constitution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15757781A
Other languages
Japanese (ja)
Inventor
Yasushi Maeda
前田 安
Hiroaki Hiratsuka
平塚 廣明
Iwao Hatakeyama
畠山 巌
Shigeru Hirono
廣野 滋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP15757781A priority Critical patent/JPS5860427A/en
Publication of JPS5860427A publication Critical patent/JPS5860427A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/851Coating a support with a magnetic layer by sputtering

Landscapes

  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To obtain a vertical magnetic recording medium having high quality and efficiency, by forming a polymerized thin film by glow discharge on a nonmagnetic substrate and providing a Co(alloy) magnetic layer in constitution of hexagonal denseness having vertically magnetic anisotropy in a vertical direction to the substrate on this thin film. CONSTITUTION:On a rigid substrate such as glass, alumite and Si wafer or a nonmagnetic substrate 8 of a soft substrate etc. such as polyimide and polyethylene terephthalate, after the inside of a vacuum device 1 is evacuated to >=10<-5>, a gaseous org. compound of an org. silicone compound such as pentamethylcyclopentasiloxane or a fluorine compound such as tetrafluoroethylene is supplied from an introducing opening 3 and is dispersed from a porous ring 4 for dispersion and is plasma-polymerized by applying high frequency high voltage to upper and lower electrodes 6 to form a thin film. A magnetic film is formed on this thin film by sputtering Co or Co group alloy having vertically magnetic anisotropy and orientating C axis in constitution of hexagonal denseness vertically on the surface of the substrate 8. By this way, a magnetic recording medium of high quality in which the magnetic film is not stripped off etc. is obtained.

Description

【発明の詳細な説明】 本発明は、高品質・高性能な垂直磁気記録媒体に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high quality and high performance perpendicular magnetic recording medium.

従来の垂直磁気記録媒体は、ポリイミドあるいはポリエ
テレンテレフタレートなどのような軟質両分子フィルム
基板上に、りるいはガラス、石英。
Conventional perpendicular magnetic recording media are made of silica, glass, or quartz on a soft bimolecular film substrate such as polyimide or polyethylene terephthalate.

バイコール、陽極酸化アルマイト被覆アルミ合金。Vycor, anodized anodized aluminum alloy.

アルミ合金、黄銅、ステンレス、アルミナ焼結体。Aluminum alloy, brass, stainless steel, alumina sintered body.

単結晶Siウェハーなとのような硬質基板上に、匝接垂
直磁気異方性全有するコバルト−クローム。
Cobalt-chromium with full perpendicular magnetic anisotropy on a hard substrate such as a single crystal Si wafer.

コバルト−レニウム曾金換をスパッタ法あるいは蒸層法
などにより形成せしめる方法、あるいは軟磁性層として
パーマロイ層を形成した後層1耳磁気異方性を有する磁
性膜形成時る方法により製造されてさた〇 軟質基板は、スパッタリングや蒸着などによる磁性膜形
成時に基板の熱変形が生じるため、尚記録密度全得るた
めに必賛な微少なヘッド浮子を実状することが難しく、
実際にはヘッド全接触状態で使用せさる全得なく、媒体
・ヘッドの摩耗は激しい欠点があった。
It is manufactured by a method in which cobalt-rhenium is formed by a sputtering method or vapor layer method, or a method in which a permalloy layer is formed as a soft magnetic layer and a magnetic film having one-layer magnetic anisotropy is formed after that. 〇 With soft substrates, thermal deformation of the substrate occurs when forming a magnetic film by sputtering or vapor deposition, so it is difficult to create the tiny head float that is required to obtain the full recording density.
In reality, there was no advantage to using the head in a state where it was in full contact, and the disadvantage was that the media and head were subject to severe wear.

また硬質基板は、磁性膜形成時の熱変形かはとんとなく
、研磨によっても500A程度の表面柑度會40crn
径程度の大面積にわたり谷筋に得ることができ、^記録
密度會得るために必’! ’& 1500 A以下の磁
気ヘット゛の浮上あるいは接触状態を口]能とすること
かできる利点7治している。しかし、硬質基板ケ用いた
場合、フレギンプル々軟寅尚分子基板とは異なり、磁気
ヘッドと磁性媒体との接触時の応力集中によるヘッドク
ラッシュが生じ易い欠点があった01一基板と磁性膜と
の付着力か弱い場合が多く、磁性膜の剥離會防ぐために
’l”i−?Crなとの下地層全形成しなけfLばなら
ない欠点があった。
In addition, the hard substrate may be thermally deformed during the formation of the magnetic film, and even after polishing, the surface strength is 40crn, which is about 500A.
It can be obtained in valleys over a large area about the same as the diameter, which is necessary to obtain a recording density! It has the advantage of being able to maintain the floating or contact state of a magnetic head of 1500 A or less. However, when a hard substrate is used, unlike a flexible molecular substrate, there is a drawback that head crashes are likely to occur due to stress concentration when the magnetic head contacts the magnetic medium. The adhesion force is often weak, and there is a drawback that the entire underlayer of 'l''i-?Cr must be formed in order to prevent the magnetic film from peeling off.

[−尚性能垂直磁気Hピ録媒体には、大力最密構造Co
−Cr結晶の太さな結晶磁気異方性ケ有するC軸を基板
垂直方向にジ虫く配向さぜることが必要とされる。発明
者らは、C軸配向に及e−4、す基板の効釆金詳細に調
へた結果、50〜500 A 4%度のミクロな表面の
荒扛を南する硬質基板(例えば仙胎込nた基板やアルマ
イ)M覆基板)はC軸配向葡著しく低下させること?見
出した。さらに、硬質基板を用いた場合、膜付着強度を
上は6/こめに−1・地層としてスパッタ法あるいは蒸
宥法などで’L”l r Crなと紫下地層として形成
膜″しめる方法?用いた場合、このような下地層のミク
ロな結晶粒オーダの表面荒扛や多結晶下地に由来するミ
クロな不均質すらもC軸配向全署しく低下させることを
見出した。このことは、通常鋭面研Mさ扛基板として使
用される硬質林料においても、C軸配向性の低−Fが避
は得ない問題となる。
[-In addition, the perpendicular magnetic H-pyromagnetic recording medium has a large close-packed structure Co
It is necessary to align the C axis of the -Cr crystal, which has a large crystal magnetic anisotropy, in a direction perpendicular to the substrate. As a result of detailed investigation of the effect of substrates on C-axis orientation, the inventors found that hard substrates (e.g. Does the C-axis orientation of a laminated substrate or anodized aluminum (aluminium-coated substrate) significantly decrease? I found it. Furthermore, when using a hard substrate, the film adhesion strength can be increased to 6/1 to -1, and the layer can be formed using a sputtering method or an evaporation method to form a violet underlayer. It has been found that when used, even such surface roughness on the order of micro-crystalline grains of the underlayer and micro-heterogeneity originating from the polycrystalline underlayer can be completely reduced in the C-axis orientation. This causes an unavoidable problem of low -F C-axis orientation even in hard forest materials that are normally used as substrates for sharp-surfaced M-grills.

本発明ばこ7しらの欠点全除去するため、非磁性基板上
にカス状有機化合物のプラズマ1合薄膜膜層ロー放電ヶ
用いて形成し、ぢらにその上に垂直磁気異方性を有する
コバルトわるいはコバルト基合金磁性膜を形成すること
を特徴とし、その目的は、基板の材質に影響さ7するこ
となく尚い垂直磁気異方性を治し、耐ヘッドクラツシユ
性に優扛た高品質垂直磁気記録媒体全実現することeこ
ある0第1図は、非磁性基板上にガス状有機化合物を用
いてグロー放電によりプラズマ組合薄膜全形成する装置
の1例である。ペルジャー1内は真空ポンプ2により排
気され、化ツマカスは導入口3より多孔リンク4全通し
てペルジャー内に導入される。グロー放電は、上部電極
5と下部型&6に高周波電源7全用いて高電圧が印加さ
れ、電極間で行われる。基板8はクロー中の一ト部電極
6の上部に固定さ扛る0 グロー放電によるプラズマ重合膜の形成方法の1例を次
に述べる0到達真空度10  Torr以下とした後、
反応ガス全有機ガス単独またはHe、Arなどの不活性
ガス全ギヤリアガスとしてペルジャー内に導入し、圧力
f 0.1〜2 Torrに保ち、5〜100Wの高周
波電力を印加し、基板」−にプラズマ重合膜が形成され
る。
In order to eliminate all of the seven drawbacks of the present invention, a thin film layer of plasma of a scum-like organic compound is formed on a non-magnetic substrate using low discharge, and it also has perpendicular magnetic anisotropy thereon. It is characterized by forming a cobalt-based or cobalt-based alloy magnetic film, and its purpose is to cure perpendicular magnetic anisotropy without being affected by the material of the substrate, and to provide excellent head crash resistance. Figure 1 shows an example of an apparatus for forming a plasma-combined thin film on a non-magnetic substrate by glow discharge using a gaseous organic compound. The inside of the Pel jar 1 is evacuated by a vacuum pump 2, and the dried scum is introduced into the Pel jar from the inlet 3 through the entire porous link 4. Glow discharge is performed between the upper electrode 5 and the lower mold &6 by applying a high voltage to the upper electrode 5 and the lower mold &6 using the entire high frequency power supply 7. The substrate 8 is fixed to the upper part of the electrode 6 in the claw.An example of a method for forming a plasma polymerized film by glow discharge is described below after reducing the vacuum level to 10 Torr or less.
The reactant gas is introduced into the Pelger as an all-organic gas alone or an inert gas such as He or Ar as all the gear gas, and the pressure is maintained at f 0.1-2 Torr, and high-frequency power of 5-100 W is applied to generate plasma on the substrate. A polymeric film is formed.

ここに用いら扛る有機ガス(モノマ)は常温で気体でも
液体でもよく液体の場合&、J1、キA−リアガスを用
いて蒸気會運び入れ扛は良い□ i 7?:bンラズマ
重合法の特徴として、基板の神知葡問わず接着力が一般
に強くモノマはビニル基の′ような不飽和基を必ずしも
必要としない。具体例を幾つか列挙すると、ペンタメテ
ルシクロベ/タシロキサン、1.3.5− トリビニル
−1,,3,5−トリメチルシクロートリシロキザン、
ヘキサフェニルシクロトリシロキサン、フェニルトリエ
トキシシラン、l・リエトキシシランなどいわゆる廟槻
シリコン化合物や、テトラフルオロエチレン、り1−1
0トリフルオロエチレン、モノクロロペンタフルメロエ
タンなどのフッ素化合物、等、その形成膜が耐熱性がブ
ーぐれてい扛ば良い。
The organic gas (monomer) used here can be a gas or a liquid at room temperature. If it is a liquid, it is good to use a J1, carrier gas to carry it into a steam system □ i 7? The characteristics of the plasma polymerization method are that the adhesive strength is generally strong regardless of the substrate, and the monomer does not necessarily require an unsaturated group such as a vinyl group. Some specific examples include pentamethelcyclobe/tasiloxane, 1.3.5-trivinyl-1,,3,5-trimethylcyclotrisiloxane,
So-called Mirotsuki silicon compounds such as hexaphenylcyclotrisiloxane, phenyltriethoxysilane, l-ethoxysilane, tetrafluoroethylene, and 1-1
A fluorine compound such as 0 trifluoroethylene or monochloropentafluoromeroethane may be used as long as the formed film has poor heat resistance.

垂直磁気異方性磁性膜は、C軸力向に大きな結晶磁気異
方性を崩する六方最密構造のコノ(ルト。
The perpendicular magnetic anisotropy magnetic film has a hexagonal close-packed structure that breaks the large crystal magnetic anisotropy in the C-axis force direction.

コバルト−クロム、コバルト−ルテニウム、コノくルト
−レニウム、コバルトーオムミウム合金lx ト全、C
軸全基板垂直方向に強く配回させ膜形成することにより
作製される。作製法としては、スノくツタリンク(DC
、RF 、マグネトロン、イオンビーム)、真空蒸着、
イオンブレーティングなどが用いら扛る0 以下実施例について説明するが、本発明の範囲全例ら制
限するものでにない0〜 (実施例1つ 非磁性基板としては、1.ガラス(20mm X 20
 tan XO,5wn)、2.ボリイζド(20X2
0 Xo、05 )、3.単結晶Siウエノ・−(40
φX O,2、鏡面研磨された(1113面)、4.陽
極酸化アルマイトアルミ合金基板(アルマイト層は2I
#n厚)、5.T1スノくツタガラス(Ti下地は0.
3μm厚、ガラスは20X20X0.5)、6. Cr
スパッタカラス(Cr下地は0.3μm厚;ガラスは2
0X20XO05)の6柚類を用いた。
Cobalt-chromium, cobalt-ruthenium, cobalt-rhenium, cobalt-ommium alloy lx total, C
It is manufactured by forming a film by arranging the axis strongly in the vertical direction of the entire substrate. The production method is Sunoku Tsuta Link (DC
, RF, magnetron, ion beam), vacuum evaporation,
Examples are described below, but the scope of the present invention is not limited to all examples. 20
tan XO, 5wn), 2. Borii ζdo (20X2
0 Xo, 05), 3. Single crystal Si Ueno・-(40
φX O, 2, mirror polished (1113 surfaces), 4. Anodized alumite aluminum alloy substrate (the alumite layer is 2I
#n thickness), 5. T1 Sunoku Ivy Glass (Ti base is 0.
3μm thick, glass is 20X20X0.5), 6. Cr
Sputter glass (Cr base is 0.3 μm thick; glass is 2
Six citrons (0x20xo05) were used.

プラズマ重合膜は次のようにして形成した0到達真空度
25 x 10  Torr以下ど(7た後キャリアガ
スとしてArヲ用いてオクタメチルシクロテトラシロキ
サン全反応カスとしてペルジャー内に導入した。ArO
流坩は標準状態侠算でIll cc /分、圧力全1.
0Torrとし、13.56 MHzの篩周波−110
Wの′[イカで3分間印加し、約320入/分の膜形I
況速IWで約96OAの重合膜全形成した。
The plasma-polymerized film was formed as follows and was heated to a zero vacuum of 25 x 10 Torr (7), then introduced into a Pelger as the octamethylcyclotetrasiloxane reaction residue using Ar as a carrier gas.
The flow rate is Ill cc/min under standard conditions, and the total pressure is 1.
0 Torr, sieve frequency of 13.56 MHz -110
W' [Apply for 3 minutes with squid, about 320 in/min film type I
A polymer film of about 96 OA was completely formed at the IW speed.

垂曲峨気異万性膜はRFスパッタリンクによりCo−C
r合金膜を形成した。スパッタリングCJ119.4原
子%Cr−Co合金ターゲットケ用いて、到達真空度5
 X 10  Torr以下、暎形成速度閉〜90A/
分。
The curved-strength anisotropic film is made of Co-C by RF sputter link.
An r alloy film was formed. Sputtering using CJ119.4 atomic% Cr-Co alloy target, ultimate vacuum degree 5
X 10 Torr or less, pore formation speed close ~90A/
Minutes.

膜厚約1/aの采件下にて、基板温度’(m 110〜
160℃、スパッタAr圧f 1 、0〜40 X 1
.OTorrの範囲で変化させ、3水準のC軸配向の)
【なるCo−Cr合金膜全作製した。
Under the condition that the film thickness is approximately 1/a, the substrate temperature '(m110 ~
160°C, sputtering Ar pressure f1, 0~40X1
.. (3 levels of C-axis orientation)
A whole Co-Cr alloy film was prepared.

非磁性基板上に直接Co−Cr膜を形h’t L、、た
場合と。
When a Co-Cr film is formed directly on a non-magnetic substrate.

非磁性基板上にプラズマ重合膜rtヒ成した休・その上
にCo−Cr膜を形成した本発明の場合について、基板
Vこよる△θ+10 (六方稠密構造C軸の基板lF直
力方向分散角を表わし、X線ティフラクトメータによシ
測定された(0002)ピークのロッキングカーブの半
値幅で定収さrしる)の測定結果を表1〜3に示す。
In the case of the present invention in which a plasma polymerized film is formed on a non-magnetic substrate and a Co-Cr film is formed on it, the substrate V depends on △θ+10 (the dispersion angle in the normal direction of the substrate IF of the C axis of a hexagonal close-packed structure). The measurement results are shown in Tables 1 to 3.

表1 表2 表3 プラズマ重合膜を形成しない従来の方法においては、S
iウェハー、アルマイト下地、Ti下地、cl・下地の
△θ、。けカラス、ボリイdド基板より太さいO しかし、本発明のプラズマ重合膜を形成1−7た1合は
、基板あるいは下地の影響かマスクさfL 、△θ、0
は基板によらずほぼ一定の小部い値となる。
Table 1 Table 2 Table 3 In the conventional method that does not form a plasma polymerized film, S
△θ of i-wafer, alumite base, Ti base, CL/base. However, in cases 1-7 of forming the plasma polymerized film of the present invention, the mask fL, Δθ, 0 may be due to the influence of the substrate or underlying layer.
is a small value that is almost constant regardless of the substrate.

特に微測結晶粒オーク(50〜5ook)の表面荒扛や
不均質を有するアルマイト下地、 Ti 、 Cr下地
において△θso L7)減少効果が著しい。寸だ、ス
パッタ条件によっては宍3に示1〜たように、カラス基
板においても本発明上用いることにょ9△θ、。を減少
さぜることかできる。さらに、表2 VC示したように
磁性膜の剥離が観察される場合においても、本発明によ
る磁性膜については剥離は認められないO (実施例2) 非磁性基板として、実施例1において使用したアルマイ
ト下地アルミ合金基板を使用し、実施例1と同様のプラ
ズマ重合膜形成法とCo−Cr膜形成法を用いて、プラ
ズマ重合膜の厚さにょる△θ、。
In particular, the effect of reducing Δθso L7) is remarkable on alumite substrates, Ti, and Cr substrates with fine grain oak (50 to 5 ook) surface roughness and non-uniformity. Depending on the sputtering conditions, as shown in Figure 3, glass substrates can also be used in the present invention. Can be reduced or stirred. Furthermore, even when peeling of the magnetic film is observed as shown in Table 2 VC, no peeling is observed for the magnetic film according to the present invention. Using an aluminum alloy substrate with an alumite base and using the same plasma polymerized film forming method and Co-Cr film forming method as in Example 1, Δθ was determined depending on the thickness of the plasma polymerized film.

の変化を調べた結果を第2図に示す。△θ、0は、約0
.2μm厚のフ゛ラズマ重合膜を形成することにょシ8
.6°から4.8°にまで減少した。
Figure 2 shows the results of examining changes in . △θ, 0 is approximately 0
.. Step 8: Forming a 2 μm thick plasma polymer film
.. It decreased from 6° to 4.8°.

(実施例3) 非磁性基板として実施例1において使用したTiスパッ
タガラス基板を用い、実施例1と同じプラズマ台金膜形
成を行い垂直異方性を鳴する磁性薄膜としてはコバルト
−ルテニウム合金膜’kRFスパッタリングによυ形成
した。スパッタリングは、純コバルト円板上にルテニウ
ムベレソトヲ配置したターゲット(ルテニウムベレット
の占める面積はターク゛ット全面積の約30%である)
を用い、到達真空度5 X 10  Torr以丁、基
板温度200 ℃、膜形成速度200^/分、スパック
Ar圧5.OX川−2’l”orrにて用い、約1μm
のコバルト−ルテニウム合金膜を形成した0フラズマ1
L合膜紮形成ぜずT1スパッタガラス基板上にコバルト
−ルテニウム合金膜を形成した場合の△θ5oは−15
,4°で・(つったが、本発明のプラズマ重合膜全形h
スした場合は約8.5°に減少した。
(Example 3) Using the Ti sputtered glass substrate used in Example 1 as a nonmagnetic substrate, the same plasma base metal film as in Example 1 was formed, and a cobalt-ruthenium alloy film was used as the magnetic thin film exhibiting perpendicular anisotropy. 'K was formed by RF sputtering. Sputtering is performed using a target in which ruthenium pellets are placed on a pure cobalt disk (the area occupied by the ruthenium pellets is approximately 30% of the total area of the target).
using an ultimate vacuum of 5 x 10 Torr, a substrate temperature of 200°C, a film formation rate of 200^/min, and a spack Ar pressure of 5. Used at OX River - 2'l"orr, approximately 1 μm
0 plasma 1 with a cobalt-ruthenium alloy film formed
When forming a cobalt-ruthenium alloy film on a T1 sputtered glass substrate, Δθ5o is -15.
, at 4°.
The angle decreased to approximately 8.5° when

以上説明したように5本発明にょ)1.は非磁性基板上
にプラズマ重合膜を形成することにより、基板に原因し
たC軸配向の低−ト現象を防き゛、C軸配向全署しく改
善でさるとともに、磁性膜の剥離を生じせしめない効果
、軟質プラズマ重合11Qの介在によるヘッド接触によ
る応力集1月I杵放の幼果を得ることができる。従って
、本発明ケ用いることにより、磁性膜形成上からの制約
を受けることなく、垂直磁気記録媒体が使用される記録
・再生システムの形態(ティスク、テープ、カードなと
)、環境、コス)k考慮して基板選定が行なえるととも
に、高垂直磁気異方性葡治し而・1ヘツトクラツシユ性
に優れた高品質垂直磁気記録媒体金容易に実現できる利
点がある。
As explained above, five aspects of the present invention)1. By forming a plasma-polymerized film on a non-magnetic substrate, it prevents the low-toe phenomenon of C-axis orientation caused by the substrate, improves the overall C-axis orientation, and prevents peeling of the magnetic film. , stress concentration due to head contact through the intervention of soft plasma polymerization 11Q can be obtained. Therefore, by using the present invention, it is possible to create a recording/reproducing system in which a perpendicular magnetic recording medium is used without being subject to restrictions from the viewpoint of magnetic film formation (disk, tape, card, etc.), environment, and cost. In addition to being able to select a substrate with due consideration, there is an advantage that a high quality perpendicular magnetic recording medium having high perpendicular magnetic anisotropy and excellent hardness can be easily realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はプラズマ重合膜形成装置の概略図、第2図はプ
ラズマ重合膜厚による垂直磁気異方性C。 −Cr膜の△θI、oの変化全話す。 1・・・・・・ベルジャ、2・・・・・・真空ポンプ、
3・・・・モノマガス導入口、4・・・・・・モノマ拡
散用の多孔リング、5・・・・・上部電極、6・・・・
・下部電極、7・・・・・・高周波電源、8 ・・・・
基板 特許出願人 日本電信電話公社 丁 1 図 72図 アフス゛゛マ重8欄厚(メ笥)
Fig. 1 is a schematic diagram of a plasma polymerized film forming apparatus, and Fig. 2 shows perpendicular magnetic anisotropy C depending on the plasma polymerized film thickness. - Talk about all the changes in ΔθI and o of the Cr film. 1... Belljar, 2... Vacuum pump,
3... Monomer gas inlet, 4... Porous ring for monomer diffusion, 5... Upper electrode, 6...
・Lower electrode, 7...High frequency power supply, 8...
Substrate patent applicant Nippon Telegraph and Telephone Public Corporation 1 Figure 72

Claims (1)

【特許請求の範囲】[Claims] 非磁性基板上に、カス状有機化合物のグロー放電により
形成さ7した車台薄膜を設σ、さらIF−七の上に基板
垂直方向に垂直磁気異方性をMする六方最密構造のコバ
ルトメるいはコバルト基合金磁性膜を設けたこと全特徴
とする垂直磁気記録媒体。
On a non-magnetic substrate, a chassis thin film 7 formed by glow discharge of a scum-like organic compound is provided, and a hexagonal close-packed cobalt oxide film with perpendicular magnetic anisotropy M in the direction perpendicular to the substrate is placed on IF-7. is a perpendicular magnetic recording medium characterized by having a cobalt-based alloy magnetic film.
JP15757781A 1981-10-05 1981-10-05 Vertical magnetic recording media Pending JPS5860427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15757781A JPS5860427A (en) 1981-10-05 1981-10-05 Vertical magnetic recording media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15757781A JPS5860427A (en) 1981-10-05 1981-10-05 Vertical magnetic recording media

Publications (1)

Publication Number Publication Date
JPS5860427A true JPS5860427A (en) 1983-04-09

Family

ID=15652728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15757781A Pending JPS5860427A (en) 1981-10-05 1981-10-05 Vertical magnetic recording media

Country Status (1)

Country Link
JP (1) JPS5860427A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59167830A (en) * 1983-03-14 1984-09-21 Hitachi Maxell Ltd Magnetic recording medium
JPS60243818A (en) * 1984-05-18 1985-12-03 Matsushita Electric Ind Co Ltd Magnetic recording medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59167830A (en) * 1983-03-14 1984-09-21 Hitachi Maxell Ltd Magnetic recording medium
JPS60243818A (en) * 1984-05-18 1985-12-03 Matsushita Electric Ind Co Ltd Magnetic recording medium
JPH0522965B2 (en) * 1984-05-18 1993-03-31 Matsushita Electric Ind Co Ltd

Similar Documents

Publication Publication Date Title
US5066552A (en) Low noise thin film metal alloy magnetic recording disk
EP0710949A1 (en) Magnetic recording medium and its manufacture
EP0508478B1 (en) Process for forming metal film, and aluminium film coated matter
JPH08102033A (en) Thin-film magnetic recording disk and manufacture thereof
JPS62120629A (en) Magnetic disk and its production
JPS5860427A (en) Vertical magnetic recording media
JPS61253622A (en) Magnetic recording medium and its production
TW512323B (en) Method of manufacturing thin-film magnetic recording medium
JP2000212738A (en) Magnetron sputtering method and production of magnetic recording medium
JP2006127621A (en) Vertical magnetic recording medium and method of manufacturing the same
JPH06103573A (en) Production of magnetic recording medium
JPS58205926A (en) Magnetic disc
JPS6288131A (en) Magnetic disk
JPH01189024A (en) Substrate for magnetic recording medium
KR20020009629A (en) Magnetic recording medium, method of manufacture thereof, and magnetic disk device
JPH05120664A (en) Magnetic disk and production of the same
JPH07225943A (en) Magnetic recording medium
JPS63270463A (en) Method and device for sputtering
JPS60113320A (en) Base plate for recording medium and its production
JPH0278018A (en) Production of perpendicular magnetic recording medium
JPS59110796A (en) Manufacture of magnetic disk substrate
JPH0554173B2 (en)
JPS62252517A (en) Magnetic recording medium
JPH0528483A (en) Production of metallic thin film tape magnetic recording medium
JPH1139634A (en) Magnetic disk and its production