JPS62252517A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPS62252517A
JPS62252517A JP9463686A JP9463686A JPS62252517A JP S62252517 A JPS62252517 A JP S62252517A JP 9463686 A JP9463686 A JP 9463686A JP 9463686 A JP9463686 A JP 9463686A JP S62252517 A JPS62252517 A JP S62252517A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic recording
recording medium
film
glass substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9463686A
Other languages
Japanese (ja)
Inventor
Toshio Ando
敏男 安藤
Toshikazu Nishihara
西原 敏和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP9463686A priority Critical patent/JPS62252517A/en
Publication of JPS62252517A publication Critical patent/JPS62252517A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain the title homogeneous magnetic recording medium appropriate for high-density recording in good yield by providing a Co magnetic film on a substrate to which >=about 20Angstrom etching is applied. CONSTITUTION:The glass substrate to be used as the substrate for a rigid disk is etched to >=about 20Angstrom by plasma etching. The etched glass substrate is taken out from the plasma etching chamber into the atmosphere, and transferred to a DC magnetron sputtering device wherein magnetron sputtering is carried out. The Co-Cr magnetic thin film is provided on the etched glass substrate surface in about 1mum thickness, and the rigid disk is obtained. Consequently, the homogeneous magnetic recording medium having high vertical magnetic anisotropy and suitable for high-density recording can be obtained.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、特に垂直磁気記録方式に適した磁気記録媒体
に関するものである。
The present invention relates to a magnetic recording medium particularly suitable for perpendicular magnetic recording.

【従来技術とその問題点】[Prior art and its problems]

垂直磁気記録方式は高密度磁気記録に適した方式として
注目されており、この方式に適した磁気記録媒体の研究
開発が盛に行なわれている。 この垂直磁気記録方式に用いられる磁気記録媒体は、情
報の記録が膜面に垂直に磁化されて行なわれるものであ
るから、膜面に垂直方向の磁気異方性を持つものでなけ
ればならず、しかもこの垂直方向の磁気異方性が強いも
のでなければならない。 特に、浮上式のリング型ヘッドを用いて記録再生するタ
イプのリジッドディスクの場合にあっては、垂直方向の
磁気異方性の強い条件がより一層必要とされている。 そして、このような垂直磁気異方性を強くして高密度記
録を達成する為には、C軸分散角Δθ、。 を小さくすることが必須用件であると言われてきている
。 このC軸分散角Δθ、。が小さな磁気記録媒体を得るム
、従来より、様々な研究開発が行なわれてきており、そ
の一つの大きな流れとして磁性膜の下地膜に対する研究
がある。 すなわち、磁性膜の垂直磁気異方性は磁性膜の成長具合
によって、大きく左右されると考えられ、そしてこの磁
性膜の成長具合は磁性膜が成長するベースとなる下地膜
の表面形態によって大きく左右されるであろうとの観点
から、磁性膜の下地膜に対する研究が行なわれてきたの
である。 このような研究の成果として、磁性膜の下地膜として、
例えばT;膜が提案(小林和雄他、東北大通研シンポジ
ウム「垂直磁気記録J198Z年3月、177〜187
頁)されたり、Ta膜が提案(11,s、に口I Ct
 ml。 IEEE TRANSACTIONS ON MΔGN
ETICS、 Vol、M^G−20゜No、5.5c
pL、1984.77[3〜778頁)されたり、ある
いはGc膜が提案(本多幸雄他、電子通信学会論文誌、
86/I Vol、J 6EICNo、1.85〜92
頁)されたりしている。 しかし、これらの提案による磁気記録媒体にあっても、
そのC軸分散角Δθ、。が充分に小さなものであるとは
言えず、さらなる研究が行なわれている。
The perpendicular magnetic recording method is attracting attention as a method suitable for high-density magnetic recording, and research and development of magnetic recording media suitable for this method is actively conducted. Since the magnetic recording medium used in this perpendicular magnetic recording method records information by being magnetized perpendicular to the film surface, it must have magnetic anisotropy in the direction perpendicular to the film surface. , and this perpendicular magnetic anisotropy must be strong. In particular, in the case of a rigid disk of the type in which recording and reproduction are performed using a flying ring type head, conditions of strong magnetic anisotropy in the vertical direction are even more required. In order to strengthen such perpendicular magnetic anisotropy and achieve high-density recording, the C-axis dispersion angle Δθ must be adjusted. It has been said that it is essential to make the size small. This C-axis dispersion angle Δθ,. Various research and developments have been carried out to obtain magnetic recording media with small size, and one of the major trends is research into the underlying film of the magnetic film. In other words, the perpendicular magnetic anisotropy of a magnetic film is thought to be greatly influenced by the growth condition of the magnetic film, and the growth condition of this magnetic film is greatly influenced by the surface morphology of the underlying film, which is the base on which the magnetic film is grown. From the viewpoint that the magnetic film may be used as a base film, research has been conducted on the underlying film of the magnetic film. As a result of such research, as a base film for magnetic films,
For example, the T;
Page), and a Ta film was proposed (11, s, Niguchi I Ct
ml. IEEE TRANSACTIONS ON MΔGN
ETICS, Vol, M^G-20°No, 5.5c
pL, 1984.77 [pp. 3-778], or a Gc film was proposed (Yukio Honda et al., Transactions of the Institute of Electronics and Communication Engineers,
86/I Vol, J 6EIC No., 1.85-92
page). However, even with magnetic recording media based on these proposals,
Its C-axis dispersion angle Δθ,. cannot be said to be small enough, and further research is being carried out.

【発明の開示】[Disclosure of the invention]

本発明者は、前述した垂直磁気記録方式に適した磁気記
録媒体の研究開発の大きな流れ、すなわち磁性膜の下地
膜に対する研究を鋭念押し進めていくうちに、例えばC
o−Cr、 Co−Ni、Co−Ni−Cr。 Co−V、 Co−No、 Co−W、Co−Ru、 
Co−Cr−NbあるいはCo−Cr −Ta等のb 
e p tfa造をしたCo系磁性膜が、スパッタ等の
メッキ手段で設けられる基板の表面が約20Å以上のエ
ツチングが行なわれたしのであると、この磁気記録媒体
における磁性膜のC軸分散角Δθ5゜は非常に小さく、
がっ(002)面がらのピーク強度(以下、単にピーク
強度という)I(。。2)は大きく、 しかもこれらの
特性は安定したものであって、高密度記録に適した均質
な磁気記録媒体が製造歩留りよく得られることを見出 
したのである。 尚、この基板表面のエツチングは、そのエツチング量が
約20Å以上のものであれば良く、例えば約5000人
といった程度のものでも差し支えないものである。 そして、このエツチング量が約20Å以上のエツチング
は、例えば反応性プラズマエツチング、イオンボンバー
ド、あるいはグロー放電等のプラズマエツチングの手段
を用いれば簡単に行なうことが出来るものである。
The present inventor has been diligently pursuing research and development of magnetic recording media suitable for the above-mentioned perpendicular magnetic recording system, that is, research into the underlying film of magnetic films, and discovered that, for example, C.
o-Cr, Co-Ni, Co-Ni-Cr. Co-V, Co-No, Co-W, Co-Ru,
b such as Co-Cr-Nb or Co-Cr-Ta
If the surface of the substrate on which the Co-based magnetic film with e p tfa structure is provided is etched by approximately 20 Å or more by plating means such as sputtering, the C-axis dispersion angle of the magnetic film in this magnetic recording medium will be Δθ5° is very small,
The peak intensity (hereinafter simply referred to as peak intensity) I(.2) of the (002) surface is large, and these characteristics are stable, making it a homogeneous magnetic recording medium suitable for high-density recording. It was found that a good manufacturing yield could be obtained.
That's what I did. It should be noted that the etching amount of the substrate surface may be approximately 20 Å or more, and may be etched by, for example, approximately 5,000 people. Etching with an etching amount of about 20 Å or more can be easily performed by using plasma etching means such as reactive plasma etching, ion bombardment, or glow discharge.

【実施例コ まず、リジッドディスクの基板となるガラス基板をプラ
ズマエツチング手段により所定深さだけエツチングする
。 このプラズマエツチングは、通常のRF7ラズマエツチ
ング装置を用い、すなわちガラス基板を250mIIl
φの電極に取り付け、そしてプラズマエツチングチャン
バ内を真空度が例えばLX 10−’Torr以上にな
るまで排気し、そして^「ガスを導入して八「ガス圧が
約5xlO−”Torr程度のものとなし、そのt!t
 RF電源によってガラス基板が取り付けられた電極に
電圧を印加し、プラズマエツチングチャンバ内にA「ガ
スによるプラズマを発生させることによって、ガラス基
板はエツチングされるようになる。 尚、このガラス基板のエツチング量は、エツチング時間
と電力密度とによってコントロールされる。 そして、次に、上記エツチング工程を経て所定量のエツ
チングが行なわれたガラス基板をプラズマエツチングチ
ャンバから大気中に取り出し、そしてDCマグネトロン
スパッタ装置に移しかえ、例えば6インチφのCows
Cr+sのターゲットを用いて、ターゲットとガラス基
板間の距離が5011II11、^rガス圧がzx 1
O−3Torr、D Cパワーが350 Vで1^、ス
パッタレートが1400人/min、ガラス基板温度が
約150℃の条件下でDCマグネトロンスパッタを行な
い、エツチングされたガラス基板面上に約1μ繭厚のC
o−Cr磁性薄膜を設け、リジッドディスクを得た。 このようにして得たリジッドディスクについて、X線回
折装置によりピーク強度■(。。2)とC軸分散角Δθ
s0とを測定すると、図面のグラフとして示す通りであ
る。 尚、X線はCuにα線、加速電圧が45にV、電流が2
51^である。 これによれば、エツチング量全く行なわれなかった場な
、及びエツチングが行なわれていてもこのエツチング量
が小さな場合には、C軸分散角Δθ5゜の値は大きく、
しがもバラツキが酷く、又、ピーク強度■(。。2)の
値は小さく、しかもバラツキが酷いものであって、垂直
磁気異方性に富んだ高性能な磁気記録媒体とならないば
かりか、均一な磁気記録媒体が得られていないことがわ
かる。 これに対して、エツチング時間X電力密度が約7 se
c、 W/c+o”以上の場合であるエツチング量が約
20Å以上のエツチングが行なわれたものである場合に
は、ピーク強度■(。。2)は大きな値を示しており、
そしてC軸分散角 ΔO1゜は約3°程度といった小さ
な、バラツキの少ない値におさまっており、垂直磁気異
方性が高くて、高密度記録に適した均質な磁気記録媒体
が得られていることがわかる。 【効果】 本発明に係る磁気記録媒体は、約20Å以上のエツチン
グが行なわれた基板上にCo系磁性膜を設けたものであ
るから、この磁気記録媒体の磁性膜はと、−り強度I(
。。2)が大きく、C軸分散角Δθツ。 が小さく、かつバラツキの少ないものとなり、従って垂
直磁気異方性の強い、高密度記録に適した、しかも均質
な特性の磁気記録媒体を提供できる等の01モを有する
[Example 1] First, a glass substrate to be used as a substrate for a rigid disk is etched to a predetermined depth using plasma etching means. This plasma etching was carried out using an ordinary RF7 plasma etching apparatus, that is, the glass substrate was etched at 250 mIIl.
φ electrode, and evacuate the plasma etching chamber until the degree of vacuum reaches, for example, LX 10-' Torr or higher, and then introduce gas until the gas pressure is about 5 x lO-' Torr. None, that t! t
The glass substrate is etched by applying a voltage to the electrode to which the glass substrate is attached using an RF power source and generating plasma using gas A in the plasma etching chamber. is controlled by the etching time and power density.Next, the glass substrate that has been etched by a predetermined amount through the above etching process is taken out of the plasma etching chamber into the atmosphere, and then transferred to a DC magnetron sputtering device. For example, 6 inch φ Cows
Using a Cr+s target, the distance between the target and the glass substrate is 5011II11, and the gas pressure is zx 1
DC magnetron sputtering was performed under the conditions of O-3 Torr, DC power of 350 V, sputter rate of 1400 people/min, and glass substrate temperature of approximately 150°C, and a cocoon of approximately 1μ was formed on the etched glass substrate surface. Thick C
A rigid disk was obtained by providing an o-Cr magnetic thin film. The rigid disk obtained in this way was analyzed using an X-ray diffraction device to determine the peak intensity ■(.2) and the C-axis dispersion angle Δθ.
The measurement of s0 is as shown in the graph of the drawing. In addition, the X-ray is α ray for Cu, the acceleration voltage is 45 V, and the current is 2.
It is 51^. According to this, when no amount of etching is performed at all, and when etching is performed but the amount of etching is small, the value of the C-axis dispersion angle Δθ5° is large;
However, the variation is severe, and the value of the peak intensity ■ (. It can be seen that a uniform magnetic recording medium was not obtained. On the other hand, the etching time x power density is about 7 se
c, W/c+o'' or more, where the etching amount is about 20 Å or more, the peak intensity ■ (...2) shows a large value,
The C-axis dispersion angle ΔO1° is kept to a small value of about 3° with little variation, and a homogeneous magnetic recording medium with high perpendicular magnetic anisotropy and suitable for high-density recording has been obtained. I understand. [Effect] Since the magnetic recording medium according to the present invention has a Co-based magnetic film provided on a substrate that has been etched to a thickness of about 20 Å or more, the magnetic film of this magnetic recording medium has a particularly high strength I. (
. . 2) is large, and the C-axis dispersion angle Δθtsu. It has the following advantages: it has a small magnetic field and has little variation, and therefore can provide a magnetic recording medium that has strong perpendicular magnetic anisotropy, is suitable for high-density recording, and has homogeneous characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、ガラス基板表面のエツチングm(エツチング時
間X電力密度)とCo−Cr磁性薄膜のxLA回折によ
る(002)面からのピーク強度”’IC002)及び
C11111分散角Δ05゜どの関係を示すグラフであ
る。
The figure is a graph showing the relationship between the etching m (etching time x power density) of the glass substrate surface, the peak intensity from the (002) plane by xLA diffraction of the Co-Cr magnetic thin film (IC002), and the C11111 dispersion angle Δ05°. be.

Claims (1)

【特許請求の範囲】[Claims] 約20Å以上のエッチングが行なわれた基板上にCo系
磁性膜を設けたことを特徴とする磁気記録媒体。
A magnetic recording medium characterized in that a Co-based magnetic film is provided on a substrate that has been etched to a depth of about 20 Å or more.
JP9463686A 1986-04-25 1986-04-25 Magnetic recording medium Pending JPS62252517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9463686A JPS62252517A (en) 1986-04-25 1986-04-25 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9463686A JPS62252517A (en) 1986-04-25 1986-04-25 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS62252517A true JPS62252517A (en) 1987-11-04

Family

ID=14115754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9463686A Pending JPS62252517A (en) 1986-04-25 1986-04-25 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS62252517A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0390512A2 (en) * 1989-03-29 1990-10-03 Asahi Glass Company Ltd. Method of texturing a glass substrate
US5087481A (en) * 1986-10-09 1992-02-11 Komag, Inc. Method for texturing a magnetic disk silicate glass substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5087481A (en) * 1986-10-09 1992-02-11 Komag, Inc. Method for texturing a magnetic disk silicate glass substrate
EP0390512A2 (en) * 1989-03-29 1990-10-03 Asahi Glass Company Ltd. Method of texturing a glass substrate

Similar Documents

Publication Publication Date Title
US5147734A (en) Magnetic recording media manufactured by a process in which a negative bias voltage is applied to the substrate during sputtering
JPH0363919A (en) Magnetic thin film recording medium and method of manufacturing the same
JPS62252517A (en) Magnetic recording medium
JPH10334444A (en) Magnetic recording medium
US6506508B1 (en) Magnetic recording medium, method of production and magnetic storage apparatus
JPS5936326A (en) Vertically magnetized recording medium and its production
Chen et al. Thin film media with and without bicrystal cluster structure on glass ceramic substrates
JPH02154323A (en) Production of magnetic recording medium
JPH0827927B2 (en) Magnetic recording media
JP2001202611A (en) Magnetic recording medium, method for producing same and information reproducing devce
JPH10241935A (en) Magnetic recording medium and its manufacture
JPH0512647A (en) Magnetic recording medium
JP2000348323A (en) Magnetic recording medium, production of same and magnetic memory device
JPH02154322A (en) Production of magnetic recording medium
JPS6126938A (en) Production of vertically magnetized recording medium
JPS6295739A (en) Production of magnetic recording medium
JPS6174141A (en) Production of magnetic recording medium
JPH02148417A (en) Production of perpendicular magnetic recording medium
JPS6379234A (en) Production of magnetic recording medium
JPS5868229A (en) Magnetic recording medium
JPH0572016B2 (en)
JPS63119017A (en) Perpendicular magnetic recording medium
JPS62245546A (en) Production of photomagnetic recording medium
JPH08129752A (en) Production of magnetic recording medium
JPH0447521A (en) Magnetic recording medium