JPH10241935A - Magnetic recording medium and its manufacture - Google Patents

Magnetic recording medium and its manufacture

Info

Publication number
JPH10241935A
JPH10241935A JP4668497A JP4668497A JPH10241935A JP H10241935 A JPH10241935 A JP H10241935A JP 4668497 A JP4668497 A JP 4668497A JP 4668497 A JP4668497 A JP 4668497A JP H10241935 A JPH10241935 A JP H10241935A
Authority
JP
Japan
Prior art keywords
magnetic
base material
recording medium
magnetic particles
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4668497A
Other languages
Japanese (ja)
Inventor
Hideo Ogiwara
英夫 荻原
Keiichirou Yuzusu
圭一郎 柚須
Katsutaro Ichihara
勝太郎 市原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4668497A priority Critical patent/JPH10241935A/en
Publication of JPH10241935A publication Critical patent/JPH10241935A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic recording medium which does not produce much noise, has high resolution, an average particle diameter which is controlled to reduce particle size fluctuation, an appropriate Hc (coercive force), and an improved S* (coercive force squareness ratio). SOLUTION: A magnetic recording medium has a base layer 21 and a magnetic thin film 22 in which magnetic particles 22b are scattered in a nonmagnetic base material 22a on a substrate 11. In a method for manufacturing the medium, the magnetic particles 22b are deposited on the base layer 21 in a state where the main component of the nonmagnetic base material 22a is preferentially deposited on the base layer 21 material by supplying the main component of the base layer 21 and the raw material of the magnetic particles 22b and accelerating the surface movement of the material to be deposited on the base layer 21 after the base layer 21 is formed. Therefore, a magnetic recording medium having the magnetic thin film 22 formed by selectively depositing the nonmagnetic base material 22a on the base layer 21 containing the nonmagnetic base material as a main component and depositing the magnetic particles 22b and the nonmagnetic base material 22a on the selectively deposited nonmagnetic base material 22a is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は磁気ディスク装置に
搭載される磁気記録媒体およびその製造方法に関する。
The present invention relates to a magnetic recording medium mounted on a magnetic disk drive and a method for manufacturing the same.

【0002】[0002]

【従来の技術】ハードディスクドライブ(HDD)に代
表される磁気ディスク装置は、大容量性、高速アクセス
性および高速データ転送性を兼備する周辺記憶装置であ
り、大型計算機、サーバなどの商用システムから、パー
ソナルコンピュータなどの個人用情報システムに幅広く
利用されている。さらに、動画像を中心とするデータ量
の増大から、HDDに対する記憶容量増加の要請は大き
い。HDDの記憶容量を増加するためには、媒体の面記
録密度を向上させる必要がある。一方、高密度化につれ
て記録ビットが非常に小さくなるため、高感度な磁気抵
抗効果型の再生ヘッドを用いて再生が行なわれるように
なってきている。しかし、高感度の再生ヘッドを用いる
と、媒体ノイズの影響が顕著になるため、今後の磁気記
録の発展には、媒体ノイズを低減させることが重要な課
題となる。
2. Description of the Related Art A magnetic disk device represented by a hard disk drive (HDD) is a peripheral storage device having both large capacity, high-speed access, and high-speed data transfer. It is widely used in personal information systems such as personal computers. Further, due to an increase in the amount of data centered on moving images, there is a great demand for increasing the storage capacity of HDDs. In order to increase the storage capacity of the HDD, it is necessary to improve the areal recording density of the medium. On the other hand, since the recording bit becomes very small as the density increases, reproduction is performed using a high-sensitivity magnetoresistive read head. However, when a high-sensitivity reproducing head is used, the influence of medium noise becomes remarkable. Therefore, it is important to reduce the medium noise in the future development of magnetic recording.

【0003】高密度・低ノイズを実現するためには、磁
性薄膜中で磁性粒子間の交換相互作用を十分に分断する
必要がある。粒間相互作用を減少させることは、磁性薄
膜全体のHcが増加し、高分解能が得られる急峻な磁化
転移を形成でき、しかも磁化転移部の形状が良好にな
り、媒体ノイズが低減する。
In order to realize high density and low noise, it is necessary to sufficiently separate the exchange interaction between magnetic particles in a magnetic thin film. Decreasing the intergranular interaction increases the Hc of the entire magnetic thin film, enables formation of a steep magnetization transition capable of obtaining high resolution, and improves the shape of the magnetization transition portion, thereby reducing medium noise.

【0004】磁性粒子間の交換相互作用を分断するため
には、磁性粒子間に非磁性体を介在させて、物理的に磁
性粒子を分離する方法が効果的である。例えば、メタル
スパッタ媒体では、Co−Cr系合金ターゲットをAr
ガス中でスパッタし、Co結晶粒子間にCrを析出させ
ている。Crの析出量を制御するために、下地層にコー
ン状に成長させたCrを用いたり、磁性膜の成膜時に基
板を加熱して相分離を促進させることが行なわれてい
る。しかし、このような微細構造を有するメタルスパッ
タ媒体では、粒間相互作用の分断は不十分であり、数十
個〜数百個の磁性粒子の集合体(磁気クラスター)が磁
化反転の最小単位となっている。このことは、メタルス
パッタ媒体の媒体ノイズを上昇させ、分解能を低下させ
る要因となっている。
In order to separate the exchange interaction between magnetic particles, it is effective to physically separate the magnetic particles by interposing a non-magnetic material between the magnetic particles. For example, in a metal sputtering medium, a Co—Cr-based alloy target is Ar
Sputtering is performed in a gas to precipitate Cr between Co crystal particles. In order to control the amount of Cr precipitated, Cr grown in a cone shape is used as an underlayer, or the substrate is heated during the formation of a magnetic film to promote phase separation. However, in a metal sputtering medium having such a fine structure, the separation of the intergranular interaction is insufficient, and an aggregate (magnetic cluster) of several tens to several hundreds of magnetic particles is regarded as a minimum unit of magnetization reversal. Has become. This raises the medium noise of the metal sputtering medium and causes a reduction in resolution.

【0005】近年、粒間相互作用を低減でき、しかも薄
膜化および高出力特性を実現できる磁気記録媒体とし
て、グラニュラー構造の媒体が注目されている。グラニ
ュラー媒体は、磁性粒子と非磁性材料との複合材料であ
り、非磁性体中に所定の大きさの磁性粒子が孤立分散し
た微細構造を有する。グラニュラー媒体では非磁性体の
網目構造により磁性粒子を効果的に分離できるので、磁
化反転単位を物理的な磁性粒子1つの大きさにすること
が可能になる。特に、非磁性体として非導電性材料を用
いれば、伝導電子を介した粒間交換相互作用も抑制でき
るので、磁性体の体積比を50%程度に高く設定して
も、低ノイズと高出力を両立しやすい。しかも、グラニ
ュラー媒体は、メタルスパッタ媒体と同様に、量産性の
高いスパッタリング法で作製することができる。具体的
には、磁性体ターゲットと非磁性体ターゲットをArガ
ス中で同時スパッタする方法、磁性体と非磁性体とから
なるコンポジットターゲットををスパッタする方法など
を用いることができる。
In recent years, a medium having a granular structure has attracted attention as a magnetic recording medium capable of reducing the interaction between grains and realizing a thin film and high output characteristics. The granular medium is a composite material of magnetic particles and a non-magnetic material, and has a fine structure in which magnetic particles of a predetermined size are isolated and dispersed in a non-magnetic material. In the granular medium, the magnetic particles can be effectively separated by the network structure of the non-magnetic material, so that the unit of magnetization reversal can be made one physical magnetic particle. In particular, when a non-conductive material is used as the non-magnetic material, intergranular exchange interaction via conduction electrons can be suppressed, so that even if the volume ratio of the magnetic material is set to be as high as about 50%, low noise and high output can be obtained. Easy to balance. Moreover, the granular medium can be produced by a sputtering method with high mass productivity, like the metal sputtering medium. Specifically, a method of simultaneously sputtering a magnetic target and a nonmagnetic target in Ar gas, a method of sputtering a composite target including a magnetic substance and a nonmagnetic substance, and the like can be used.

【0006】このようなグラニュラー媒体においては、
平均粒径を適正化し、粒径のばらつきを少なくすること
が重要である。平均粒径は高い線密度に十分対応できる
程度に小さく、熱擾乱に十分耐え得る程度に大きいこと
が望ましい。また、粒径のばらつきは保磁力角形比(S
* )の低下を招き、飽和記録に必要な磁界を増加させる
ため好ましくない。しかし、従来のグラニュラー媒体で
は、下地、母材および成膜プロセスに対する吟味が不十
分であったため、平均粒径を適正化し、粒径のばらつき
を少なくすることが困難であった。
[0006] In such a granular medium,
It is important to optimize the average particle size and reduce the variation in the particle size. The average particle size is preferably small enough to cope with high linear density and large enough to withstand thermal disturbance. In addition, the variation in particle size is determined by the coercive force squareness ratio (S
* ) Is decreased, and the magnetic field required for saturation recording is increased, which is not preferable. However, in the conventional granular medium, the examination of the underlayer, the base material, and the film forming process was insufficient, so that it was difficult to optimize the average particle size and reduce the variation in the particle size.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、低ノ
イズ、高分解能で、しかも平均粒径が制御され粒径ばら
つきが少なく、Hcが適正化され、S* が向上した磁気
記録媒体を提供することにある。また、本発明の他の目
的は、このような磁気記録媒体を制御性よく製造できる
方法を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a magnetic recording medium having low noise, high resolution, controlled average particle diameter, small particle diameter variation, optimized Hc, and improved S *. To provide. Another object of the present invention is to provide a method for manufacturing such a magnetic recording medium with good controllability.

【0008】[0008]

【課題を解決するための手段】本発明の磁気記録媒体
は、基材上に、下地層と、非磁性母材中に磁性粒子が分
散した磁性薄膜とを有する磁気記録媒体において、前記
下地層および非磁性母材の主成分が同一の材料であり、
下地層上に非磁性母材が選択的に析出し、その上に磁性
粒子および非磁性母材が析出した構造を有することを特
徴とするものである。
According to the present invention, there is provided a magnetic recording medium comprising: a base layer on a base material; and a magnetic thin film in which magnetic particles are dispersed in a non-magnetic base material. And the main component of the non-magnetic base material is the same material,
It has a structure in which a nonmagnetic matrix is selectively deposited on an underlayer, and magnetic particles and a nonmagnetic matrix are deposited thereon.

【0009】本発明の磁気記録媒体の製造方法は、基材
上に、下地層と、非磁性母材中に磁性粒子が分散した磁
性薄膜とを有する磁気記録媒体を製造するにあたり、下
地層を形成した後、下地層の主成分および磁性粒子の原
料を供給するとともに、下地層上に被着する物質の表面
移動を促進させ、下地層上に非磁性母材の主成分を優先
的に被着させた状態で磁性粒子を析出させることを特徴
とするものである。
The method of manufacturing a magnetic recording medium according to the present invention provides a method of manufacturing a magnetic recording medium having a base layer on a base material and a magnetic thin film in which magnetic particles are dispersed in a non-magnetic base material. After the formation, the main component of the underlayer and the raw material of the magnetic particles are supplied, the surface movement of the substance deposited on the underlayer is promoted, and the main component of the nonmagnetic base material is preferentially coated on the underlayer. It is characterized in that magnetic particles are deposited in the state of being attached.

【0010】本発明の他の磁気記録媒体の製造方法は、
基材上に、非磁性母材中に磁性粒子が分散した磁性薄膜
を有する磁気記録媒体を製造するにあたり、磁性薄膜成
膜時に基板バイアスを印加し、成膜中に基板バイアスを
低下させることを特徴とするものである。
[0010] Another method for manufacturing a magnetic recording medium of the present invention is as follows.
When manufacturing a magnetic recording medium having a magnetic thin film in which magnetic particles are dispersed in a non-magnetic base material on a base material, it is necessary to apply a substrate bias during the formation of the magnetic thin film and reduce the substrate bias during the film formation. It is a feature.

【0011】[0011]

【発明の実施の形態】以下、本発明をさらに詳細に説明
する。本発明の磁気記録媒体を構成する磁性薄膜は、非
磁性母材中に磁性粒子が孤立して分散した微細構造を有
する。すなわち、非磁性体のネットワーク中に磁性粒子
が形成され、粒間交換相互作用が実質的に分断され、磁
化反転単位が物理的な粒子の大きさとほぼ一致している
構造を意味する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. The magnetic thin film constituting the magnetic recording medium of the present invention has a fine structure in which magnetic particles are isolated and dispersed in a non-magnetic base material. In other words, it means a structure in which magnetic particles are formed in a network of non-magnetic material, inter-granular exchange interaction is substantially cut off, and the magnetization reversal unit substantially matches the physical particle size.

【0012】本発明の1つの方法では、基材上に下地層
を形成した後、下地層の主成分および磁性粒子の原料を
供給するとともに、下地層上に被着する物質の表面移動
を促進させ、下地層上に非磁性母材の主成分を優先的に
被着させた状態で磁性粒子を析出させる。したがって、
この方法で成膜される磁性薄膜は、下地層および非磁性
母材の主成分が同一の材料であり、下地層上に非磁性母
材が選択的に析出し、その上に磁性粒子および非磁性母
材が析出した構造を有する。
In one method of the present invention, after forming an underlayer on a substrate, the main component of the underlayer and the raw material of the magnetic particles are supplied, and the surface movement of a substance to be deposited on the underlayer is promoted. Then, the magnetic particles are deposited while the main component of the nonmagnetic base material is preferentially deposited on the underlayer. Therefore,
In the magnetic thin film formed by this method, the main components of the underlayer and the nonmagnetic matrix are the same, and the nonmagnetic matrix is selectively deposited on the underlayer, and the magnetic particles and the nonmagnetic matrix are deposited thereon. It has a structure in which a magnetic base material is precipitated.

【0013】この方法は以下のような原理に基づくもの
である。本発明では下地層および非磁性母材の主成分を
同一の材料とし、下地層上に飛来するスパッタ物質すな
わち磁性粒子および非磁性母材の表面移動を促進させる
ようにしている。スパッタ物質の表面移動を促進させる
手段としては、例えば基板にバイアス電圧を印加し、基
板近傍でプラズマを生成させ、プラズマ中のイオンを加
速して成長膜面に入射する方法が用いられる。また、こ
の方法以外にも、イオン源からのイオン照射、赤外線ラ
ンプなどを用いた基板表面の加熱、またはこれらの方法
を組み合わせて用いてもよい。
This method is based on the following principle. In the present invention, the main components of the underlayer and the non-magnetic base material are made of the same material, and the surface movement of the sputtered substance, that is, the magnetic particles and the non-magnetic base material flying on the underlayer is promoted. As a means for promoting the surface movement of the sputtered substance, for example, a method is used in which a bias voltage is applied to the substrate to generate plasma near the substrate, and ions in the plasma are accelerated and incident on the growth film surface. In addition to this method, ion irradiation from an ion source, heating of the substrate surface using an infrared lamp, or the like, or a combination of these methods may be used.

【0014】上記のようにスパッタ物質の表面移動を促
進させると、固相と気相との界面にはスパッタ物質によ
って形成される液相状態が存在する。磁性薄膜成膜の開
始時には、液相中の磁性粒子成分および非磁性母材成分
の比率は、気相中とほぼ一致している。この比率は、タ
ーゲット組成とターゲットを衝撃する条件で決定され
る。磁性薄膜成膜の初期過程においては、下地層上に飛
来した磁性粒子および非磁性母材のうち、下地層とのぬ
れ性に優れた母材が下地層上に優先的に析出し始める。
母材成分が優先的に析出し始めると、液相中の磁性粒子
成分の比率が徐々に増加する。磁性粒子成分が臨界点を
超えると、母材上に磁性粒子が所定の大きさで析出し、
同時に磁性粒子の間隙には母材が析出する。ここで、所
定の大きさの磁性粒子とは、高線密度に十分対応できる
程度に小さく、熱擾乱に十分に耐え得る程度に大きいサ
イズを意味する。なお、具体的な粒径範囲は、線密度の
設計と、用いる磁性材料の磁気異方性エネルギーに依存
する。
When the surface movement of the sputtered material is promoted as described above, a liquid state formed by the sputtered material exists at the interface between the solid phase and the gas phase. At the start of the formation of the magnetic thin film, the ratio of the magnetic particle component and the non-magnetic base material component in the liquid phase is almost equal to that in the gas phase. This ratio is determined by the target composition and the conditions for impacting the target. In the initial process of forming the magnetic thin film, of the magnetic particles and the non-magnetic base material that have flown onto the base layer, a base material having excellent wettability with the base layer starts to precipitate preferentially on the base layer.
When the base material component starts to precipitate preferentially, the ratio of the magnetic particle component in the liquid phase gradually increases. When the magnetic particle component exceeds the critical point, the magnetic particles precipitate on the base material in a predetermined size,
At the same time, the base material precipitates in the gaps between the magnetic particles. Here, the magnetic particle having a predetermined size means a size small enough to cope with a high linear density and large enough to withstand thermal disturbance. Note that the specific particle size range depends on the design of the linear density and the magnetic anisotropy energy of the magnetic material used.

【0015】この方法において、基板としては、ガラ
ス、アルミニウム、シリコン、プラスチックなどが用い
られる。基板の形状は、ディスク、テープ、ドラムのい
ずれでもよい。磁性粒子材料としては、CoPt、Co
Cr、CoTaCr、CoNiCr、CoPtCr、C
oNiTaなどが挙げられる。また、下地層および非磁
性母材の材料としては、SiO2 、SiO、Si3
4 、Al23 、AlN、Ta25 、TiN、BN、
CaF、TiF、C、PTFE(ポリテトラフルオロエ
チレン)などが挙げられる。下地と母材との組み合わせ
は、材料もスパッタ条件も一致させるのが最も好ましい
が、良好なぬれ性を維持できれば異なるスパッタ条件を
用いてもよい。また、下地と母材で異なる材料を用いて
もよい。なお、基板材料と母材とが同一の材料である場
合には、特に下地層を設けなくてもよい。この場合、グ
ラニュラー磁性薄膜のスパッタ条件を調整して基板と性
状の近い母材を形成することが好ましい。保護膜の材料
は特に限定されず、母材と同一の材料を用いてもよい
し、異なる材料を用いてもよい。
In this method, glass, aluminum, silicon, plastic or the like is used as the substrate. The shape of the substrate may be any of a disk, a tape, and a drum. CoPt, CoPt
Cr, CoTaCr, CoNiCr, CoPtCr, C
oNiTa and the like. The material of the underlayer and the nonmagnetic base material may be SiO 2 , SiO, Si 3 N
4 , Al 2 O 3 , AlN, Ta 2 O 5 , TiN, BN,
Examples include CaF, TiF, C, and PTFE (polytetrafluoroethylene). It is most preferable that the combination of the base and the base material match the material and the sputtering conditions, but different sputtering conditions may be used as long as good wettability can be maintained. Further, different materials may be used for the base and the base material. When the substrate material and the base material are the same, it is not necessary to provide the underlayer. In this case, it is preferable to adjust the sputtering conditions for the granular magnetic thin film to form a base material having properties close to those of the substrate. The material of the protective film is not particularly limited, and the same material as the base material or a different material may be used.

【0016】本発明の他の方法では、磁性薄膜成膜時に
基板バイアスを印加し、成膜中に基板バイアスを低下さ
せる。この方法において、磁性薄膜成膜初期には、磁性
粒子の核生成を促進させて凝集しやすくするために、大
きなパワーの基板バイアスを印加する。一方、核生成後
には核生成時ほどのパワーを印加しなくても、磁性粒子
は凝集する。反対に、常に大きなパワーの基板バイアス
を印加していると、逆スパッタ効果が大きくなるため、
基板バイアスのパワーを低下させることが効果的であ
る。基板バイアスの大きさは、下地の有無、磁性粒子、
非磁性母材のスパッタレートなどの条件で変化するが、
これらを調節することによって、磁性粒子の粒径および
分散性を制御することができる。また、基板バイアスの
低下のさせ方に関しても、段階的に低下させてもよい
し、連続的に低下させてもよい。
In another method of the present invention, a substrate bias is applied at the time of forming a magnetic thin film, and the substrate bias is reduced during the film formation. In this method, a large substrate bias is applied at an early stage of forming a magnetic thin film in order to promote nucleation of magnetic particles and facilitate aggregation. On the other hand, after the nucleation, the magnetic particles aggregate even without applying the same power as at the time of the nucleation. Conversely, if a large substrate bias is always applied, the reverse sputtering effect increases,
It is effective to reduce the power of the substrate bias. The magnitude of the substrate bias depends on the presence or absence of the underlayer, magnetic particles,
It changes depending on conditions such as the sputter rate of the non-magnetic base material,
By adjusting these, the particle size and dispersibility of the magnetic particles can be controlled. Further, the method of reducing the substrate bias may be reduced stepwise or may be reduced continuously.

【0017】従来、基板バイアスを印加して磁性粒子の
成長を制御する方法は知られている(例えば特開平7−
98835号公報)。しかし、一般的には基板バイアス
を一定に保持しているため、膜厚方向の全体にわたる粒
子成長の制御は実現できていない。これは、基板または
下地層の結晶配向性やスパッタ物質とのぬれ性の影響度
合が異なるため、基板または下地層の直上での初期成長
過程と、その後の成長過程とでは条件が異なるためであ
る。また、磁性薄膜の膜厚を厚くして磁性粒子が積層構
造をなすようになると、各層の磁性粒子で下地の状態が
異なるため、磁性粒子の粒径分布が大きくなり、膜全体
での均質性が低下し、さらにオーバーライト特性が低下
していた。これに対して、基板バイアスを制御する方法
により、磁性粒子の成長を制御できるので、従来技術の
問題点を解消できる。
Conventionally, a method of controlling the growth of magnetic particles by applying a substrate bias has been known (for example, Japanese Patent Application Laid-Open No.
No. 98835). However, generally, since the substrate bias is kept constant, control of grain growth over the entire film thickness direction cannot be realized. This is because the degree of influence of the crystal orientation of the substrate or the underlayer or the degree of wettability with the sputtered material is different, and the conditions are different between the initial growth process immediately above the substrate or the underlayer and the subsequent growth process. . In addition, when the thickness of the magnetic thin film is increased and the magnetic particles form a layered structure, the state of the underlayer differs between the magnetic particles of each layer, so that the particle size distribution of the magnetic particles increases, and the uniformity of the entire film becomes uniform. And overwrite characteristics were further reduced. On the other hand, the method of controlling the substrate bias can control the growth of the magnetic particles, so that the problems of the related art can be solved.

【0018】この方法においても、基板、磁性粒子、非
磁性母材の材料として、上述したような材料を用いるこ
とができる。なお、上述したように、この方法では下地
層を設けても設けなくてもよい。
Also in this method, the above-mentioned materials can be used as the material of the substrate, the magnetic particles, and the non-magnetic base material. As described above, in this method, the base layer may or may not be provided.

【0019】[0019]

【実施例】以下、本発明の実施例を図面を参照して説明
する。図1は、以下の実施例において用いたマグネトロ
ンスパッタ装置の構成図である。スパッタ室1は排気系
2により排気され、ガス供給系3からスパッタ室1へス
パッタガスが供給される。また、複数のターゲットホル
ダ(それぞれマグネットを備えている)上に、それぞれ
スパッタリング源として磁性体ターゲット4、母材ター
ゲット5、下地ターゲット6が設置される。これらのタ
ーゲットホルダにはそれぞれ電源7、8、9が接続され
ている。これらのターゲットに対向するように、基板ホ
ルダ10が回転可能に支持され、この基板ホルダ10の
周縁部に複数のディスク基板11が回転可能に支持さ
れ、これらのディスク基板11は自公転可能になってい
る。ディスク基板11の自公転は自公転制御系12によ
り制御される。また、基板ホルダ10には基板バイアス
用のRF電源13が接続されている。このRF電源13
を成膜中に動作させると、ディスク基板11近傍でプラ
ズマが生成し、プラズマ中のイオンが加速されて成長す
る膜面に入射するので、ディスク基板11上でのスパッ
タ物質の表面移動を促進することができる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram of a magnetron sputtering apparatus used in the following examples. The sputtering chamber 1 is evacuated by an exhaust system 2, and a sputter gas is supplied to the sputtering chamber 1 from a gas supply system 3. Further, on a plurality of target holders (each having a magnet), a magnetic target 4, a base material target 5, and a base target 6 are set as sputtering sources, respectively. Power supplies 7, 8, and 9 are connected to these target holders, respectively. A substrate holder 10 is rotatably supported so as to face these targets, and a plurality of disk substrates 11 are rotatably supported on a peripheral portion of the substrate holder 10, and these disk substrates 11 are capable of rotating around themselves. ing. The revolution of the disk substrate 11 is controlled by the revolution control system 12. Further, an RF power source 13 for substrate bias is connected to the substrate holder 10. This RF power supply 13
Is operated during film formation, plasma is generated in the vicinity of the disk substrate 11 and ions in the plasma are accelerated and incident on the growing film surface, so that the surface movement of the sputtered substance on the disk substrate 11 is promoted. be able to.

【0020】実施例1−1 磁性体ターゲットとしてCo−20at%Pt、母材タ
ーゲットとしてSiO2 を設置した。本実施例では、下
地層および非磁性母材をSiO2 で形成するので、下地
ターゲットは特に設置せずに、母材ターゲットを下地タ
ーゲットとしても用いる。また、基板ホルダーにガラス
製のディスク基板をセットした。スパッタ室を密閉し、
排気系を動作させてスパッタ室内部を10-6Torrま
で排気した。ガス供給系を動作させてArガスを100
sccmの流量で導入し、スパッタ室内の圧力を2mT
orrに設定した。自公転制御系を動作させて基板を自
公転させた。
Example 1-1 Co-20 at% Pt was provided as a magnetic target, and SiO 2 was provided as a base material target. In the present embodiment, since the underlayer and the nonmagnetic base material are formed of SiO 2 , the base target is not used, and the base material target is also used as the base target. Further, a glass disk substrate was set in the substrate holder. Seal the sputter chamber,
The evacuation system was operated to evacuate the inside of the sputtering chamber to 10 -6 Torr. By operating the gas supply system, Ar gas is
At a flow rate of sccm, the pressure in the sputtering chamber was set to 2 mT
orr. The substrate was caused to revolve by operating the revolution control system.

【0021】まず、母材ターゲットにRF電力を投入
し、基板上に膜厚50nmのSiO2下地層を形成し
た。次に、母材ターゲットにRF電力を投入したまま、
磁性体ターゲットへの直流電流の投入を開始するととも
に、基板バイアス用のRF電源を動作させた。こうして
基板に所定の負バイアスを印加し、ターゲット付近とは
独立に基板付近にRFプラズマを生成させ、プラズマ中
のイオンを基板面に入射させることにより、基板表面で
のスパッタ物質の表面移動を促進させながら、下地層上
に膜厚20nmの磁性薄膜(グラニュラー膜)を形成し
た。その後、磁性体ターゲットへの電力投入を停止し、
磁性薄膜上に膜厚10nmのSiO2 保護膜を形成し、
磁気記録媒体を作製した。得られた磁気記録媒体をスパ
ッタ室から取り出した。
First, RF power was applied to the base material target to form a 50 nm thick SiO 2 underlayer on the substrate. Next, with RF power applied to the base material target,
The application of DC current to the magnetic target was started, and the RF power supply for substrate bias was operated. In this way, a predetermined negative bias is applied to the substrate, RF plasma is generated near the substrate independently of the vicinity of the target, and ions in the plasma are incident on the substrate surface, thereby promoting the surface movement of the sputtered material on the substrate surface. Then, a magnetic thin film (granular film) having a thickness of 20 nm was formed on the underlayer. After that, stop supplying power to the magnetic target,
Forming a 10 nm thick SiO 2 protective film on the magnetic thin film,
A magnetic recording medium was manufactured. The obtained magnetic recording medium was taken out of the sputtering chamber.

【0022】図2に得られた磁気記録媒体の断面TEM
観察による微細構造を示す。基板11上にSiO2 下地
層21が形成され、この下地層21上に磁性薄膜22が
形成されている。この磁性薄膜22は、SiO2 下地層
21に近接してSiO2 母材22aが優先的に析出した
部分と、所定の粒径で粒径の揃ったCoPt磁性粒子2
2bがSiO2 母材22a中に均一に分散した部分とか
らなり、さらにその上にSiO2 保護膜23が形成され
ている。
FIG. 2 is a cross-sectional TEM of the magnetic recording medium obtained.
The microstructure is shown by observation. An SiO 2 underlayer 21 is formed on a substrate 11, and a magnetic thin film 22 is formed on the underlayer 21. The magnetic thin film 22, CoPt magnetic particles 2 SiO 2 base material 22a adjacent to the SiO 2 underlayer 21 having uniform and preferentially precipitated portion, the grain size at a given particle size
2b is composed of a portion uniformly dispersed in the SiO 2 base material 22a, on which a SiO 2 protective film 23 is further formed.

【0023】この磁気記録媒体について、VSMにより
静磁気特性を調べた。その結果、残留磁化・膜厚積Mrt
は0.7memu/cm2 、保磁力Hcは2500O
e、保磁力角形比S* は0.8であった。
The magnetostatic properties of this magnetic recording medium were examined by VSM. As a result, the residual magnetization / film thickness product M rt
Is 0.7 memu / cm 2 and the coercive force Hc is 2500 O
e, the coercivity squareness ratio S * was 0.8.

【0024】この磁気記録媒体について、スピンスタン
ド形のディスク評価装置で電磁変換特性を調べた。その
結果、200kfciの周波数においても、単位トラッ
ク当たりの規格化媒体ノイズは0.01μm1/2 μV
rms /μVpp未満であった。
The electromagnetic conversion characteristics of this magnetic recording medium were examined by a spin stand type disk evaluation device. As a result, even at a frequency of 200 kfci, the normalized medium noise per unit track is 0.01 μm 1/2 μV
rms / μV pp .

【0025】次に、記録磁極のBsが1.3T、トラッ
ク幅が1μmの記録ヘッドを用い、20nmの浮上量で
記録特性を調べた。この場合、記録電流が30mAでの
オーバーライト消去比は−45dBと十分な値を示し
た。線記録密度性能の指標となるD50値は150kfc
iを超えていた。
Next, using a recording head having a recording magnetic pole Bs of 1.3 T and a track width of 1 μm, recording characteristics were examined at a flying height of 20 nm. In this case, when the recording current was 30 mA, the overwrite erasing ratio was a sufficient value of -45 dB. D 50 values indicative of linear recording density performance 150kfc
i was exceeded.

【0026】比較例1−1 磁性体ターゲットとしてCo−20at%Pt、母材タ
ーゲットとしてSiO2 、下地ターゲットとしてCrを
設置し、基板ホルダーにガラス製のディスク基板をセッ
トした。Cr下地ターゲットにDC電力を投入して基板
上にCr下地層を形成した後、母材ターゲットへのRF
電力の投入と磁性体ターゲットへの直流電流の投入とを
同時に開始した以外は、実施例1−1と同様にして、磁
気記録媒体を作製した。
Comparative Example 1-1 Co-20 at% Pt as a magnetic target, SiO 2 as a base material target, and Cr as a base target were set, and a glass disk substrate was set in a substrate holder. After applying DC power to the Cr underlayer target to form a Cr underlayer on the substrate, the RF
A magnetic recording medium was manufactured in the same manner as in Example 1-1, except that the input of power and the input of DC current to the magnetic target were simultaneously started.

【0027】図3に得られた磁気記録媒体の断面TEM
観察による微細構造を示す。基板11上にCr下地層2
4が形成され、このCr下地層24上に磁性薄膜22が
形成されている。この磁性薄膜22は、Cr下地層24
に直接連結した状態で円錐状のCoPt磁性粒子22a
が成長した部分と、球状のCoPt磁性粒子22bがS
iO2 母材22a中に分散した部分とからなり、さらに
その上にSiO2 保護膜23が形成されている。磁性薄
膜22が上記のような微細構造を有するのは以下のよう
な理由によると考えられる。すなわち、Cr下地層24
に対するぬれ性はSiO2 よりもCoPtの方が高い。
このため、スパッタ物質が液相状態にあるときに、まず
Cr下地層24上にCoPtが優先的に析出して円錐状
に成長し、液相中のCoPtが減少して臨界点以上にな
ると円錐状のCoPt磁性粒子の上部にSiO2 が析出
し、さらに液相中のSiO2 が減少して臨界点以上にな
ると球状のCoPt磁性粒子がSiO2 母材中に分散し
て析出する。
FIG. 3 is a cross-sectional TEM of the magnetic recording medium obtained.
The microstructure is shown by observation. Cr underlayer 2 on substrate 11
4 is formed, and the magnetic thin film 22 is formed on the Cr underlayer 24. The magnetic thin film 22 has a Cr underlayer 24
CoPt magnetic particles 22a in a state of being directly connected to
And the spherical CoPt magnetic particles 22b
It consists of a portion dispersed in the iO 2 base material 22a, on which a SiO 2 protective film 23 is further formed. It is considered that the magnetic thin film 22 has the above fine structure for the following reasons. That is, the Cr underlayer 24
The wettability of CoPt is higher than that of SiO 2 .
For this reason, when the sputtered substance is in the liquid phase state, first, CoPt preferentially precipitates on the Cr underlayer 24 and grows conically, and when the CoPt in the liquid phase decreases and exceeds the critical point, the conic SiO 2 is deposited on the upper shaped for CoPt magnetic particles, further SiO 2 in the liquid phase decreases and becomes less than the critical point when the spherical CoPt magnetic particles are precipitated and dispersed in the SiO 2 matrix.

【0028】この磁気記録媒体の静磁気特性を調べたと
ころ、残留磁化・膜厚積Mrtは0.7memu/cm
2 、保磁力Hcは2000Oe、保磁力角形比S*
0.65であった。実施例1−1と比較してS* が低い
のは、形状の異なる2種類の磁性粒子が存在するためで
あると考えられる。実施例1−1と比較してHcが低い
のは、円錐状粒子が球状粒子の成長を阻害するためであ
ると考えられる。
When the magnetostatic properties of this magnetic recording medium were examined, the product of residual magnetization and film thickness M rt was 0.7 memu / cm.
2. The coercive force Hc was 2000 Oe, and the coercive force squareness ratio S * was 0.65. It is considered that the reason why S * is lower than that in Example 1-1 is that two types of magnetic particles having different shapes are present. It is considered that the reason why Hc is lower than that in Example 1-1 is that the conical particles inhibit the growth of spherical particles.

【0029】この磁気記録媒体の電磁変換特性を調べた
ところ、200kfciの周波数で単位トラック当たり
の規格化媒体ノイズは0.011μm1/2 μVrms /μ
ppであった。実施例1−1と比較して若干ノイズが大
きいのは、Crに連結した円錐状粒子が物理的にはSi
2 母材で分離されているが、Crの伝導電子を介した
交換結合が作用するためであると考えられる。
When the electromagnetic conversion characteristics of this magnetic recording medium were examined, the normalized medium noise per unit track at a frequency of 200 kfci was 0.011 μm 1/2 μV rms / μ.
V pp . The reason why the noise is slightly larger than that in Example 1-1 is that the conical particles connected to Cr are physically Si
It is considered that the separation by the O 2 base material is due to the exchange coupling via the conduction electrons of Cr.

【0030】次に、実施例1−1と同様にして記録磁極
のBsが1.3T、トラック幅が1μmの記録ヘッドを
用い、20nmの浮上量で記録特性を調べたところ、記
録電流が30mAでのオーバーライト消去比は−35d
Bであった。記録特性は実用範囲ではあるが、実施例1
−1と比較してかなり劣る。これは、保磁力が小さく記
録しやすいものの、S* が低いことから飽和記録に必要
な磁界強度が大きいためである。線記録密度性能の指標
となるD50値は、Hcが低いことに起因して、約130
kfciであった。
Next, the recording characteristics were examined at a flying height of 20 nm using a recording head having a recording magnetic pole Bs of 1.3 T and a track width of 1 μm in the same manner as in Example 1-1. Overwrite erase ratio is -35d
B. Although the recording characteristics are within the practical range,
Considerably inferior to -1. This is because although the coercive force is small and recording is easy, the magnetic field strength necessary for saturation recording is large because S * is low. The D 50 value, which is an index of the linear recording density performance, is about 130 due to the low Hc.
kfci.

【0031】比較例1−2 この例では、Siディスク基板上に直接磁性薄膜を形成
することを試みた。予備的な実験の結果、Siディスク
基板上に直接磁性薄膜を形成する場合には、膜厚が20
nm程度では十分な保磁力が得られないことが判明した
ので、磁性薄膜の膜厚を50nmに設定した。この場
合、下地層の形成を行わなかった以外は実施例1−1と
同様にして磁気記録媒体を作製した。
Comparative Example 1-2 In this example, an attempt was made to form a magnetic thin film directly on a Si disk substrate. As a result of preliminary experiments, when a magnetic thin film is formed directly on a Si disk
Since it was found that a sufficient coercive force could not be obtained at about nm, the thickness of the magnetic thin film was set to 50 nm. In this case, a magnetic recording medium was manufactured in the same manner as in Example 1-1, except that the underlayer was not formed.

【0032】図4に得られた磁気記録媒体の断面TEM
観察による微細構造を示す。基板11上に形成された磁
性薄膜22は、基板11上に近接してSiO2 母材22
aが優先的に析出した部分と、SiO2 母材22a中に
粒径の小さいCoPt磁性粒子22bが分散して3層程
度積層された部分とからなっていた。最上層のCoPt
磁性粒子22bの粒径は実施例1−1とほぼ同程度であ
ったが、基板11に近接した部分のCoPt磁性粒子2
2bの粒径は非常に小さかった。この場合、Si基板に
対するぬれ性はCoPtよりもSiO2 の方が高いた
め、成長初期段階で基板上にSiO2 が優先析出する
が、実施例1−1の場合ほど優先的に析出するわけでは
なく、SiO2 が十分に析出する前にCoPt粒子が析
出し始める。このように液相中のCoPt量が十分増加
する前にCoPtが析出するため、1層目のCoPt磁
性粒子は粒径が非常に小さい。この段階ではSiO2
材が下地としての役目を果たすため、2層目のCoPt
磁性粒子は1層目よりも粒径が大きくなる。同様に、3
層目のCoPt磁性粒子は2層目よりも粒径が大きくな
る。
FIG. 4 is a cross-sectional TEM image of the magnetic recording medium obtained.
The microstructure is shown by observation. Magnetic thin film 22 formed on the substrate 11, SiO 2 base material 22 in proximity to the substrate 11
a was preferentially deposited, and a portion where approximately three layers of CoPt magnetic particles 22b having a small particle size were dispersed in the SiO 2 base material 22a were laminated. Top CoPt
The particle size of the magnetic particles 22b was almost the same as that of Example 1-1, but the CoPt magnetic particles 2
The particle size of 2b was very small. In this case, SiO 2 has higher wettability to the Si substrate than CoPt, so that SiO 2 preferentially precipitates on the substrate in the initial stage of growth, but does not preferentially precipitate as in Example 1-1. Instead, CoPt particles begin to precipitate before SiO 2 is sufficiently precipitated. As described above, since CoPt precipitates before the amount of CoPt in the liquid phase is sufficiently increased, the CoPt magnetic particles in the first layer have a very small particle size. Since SiO 2 base material at this stage serve as a base, the second layer CoPt
The magnetic particles have a larger particle size than the first layer. Similarly, 3
The CoPt magnetic particles in the layer have a larger particle size than the second layer.

【0033】この磁気記録媒体の静磁気特性を調べたと
ころ、残留磁化・膜厚積Mrtは1.2memu/cm
2 、保磁力Hcは2000Oe、保磁力角形比S*
0.4であった。S* が非常に小さいのは、上記のよう
な微細構造に起因している。また、磁性薄膜の膜厚が5
0nmと厚いにもかかわらず、1層目のCoPt磁性粒
子が超常磁性的に振る舞うため、Mrtはそれほど大きく
ない。Hcは、3層目に関しては実施例1−1と同程度
の2500Oeのレベルと思われるが、1層目および2
層目の影響により小さくなっている。
[0033] Examination of the static magnetic properties of the magnetic recording medium, residual magnetization, MakuAtsuseki M rt is 1.2memu / cm
2. The coercive force Hc was 2000 Oe, and the coercive force squareness ratio S * was 0.4. The fact that S * is very small is due to the fine structure as described above. When the thickness of the magnetic thin film is 5
Despite the thickness of 0 nm, Mrt is not so large because the first layer of CoPt magnetic particles behaves superparamagnetically. Hc seems to be at the same level of 2500 Oe as that of Example 1-1 for the third layer, but the first layer and the second layer have the same Hc.
It becomes smaller due to the effect of the layer.

【0034】この磁気記録媒体の電磁変換特性を調べた
ところ、120kfciの周波数で単位トラック当たり
の規格化媒体ノイズは0.01μm1/2 μVrms /μV
pp未満であった。なお、記録周波数を低くしているの
は、Mrtを実施例1−1ほど小さくできないため、記録
分解能が低いことによる。
When the electromagnetic conversion characteristics of this magnetic recording medium were examined, the normalized medium noise per unit track at a frequency of 120 kfci was 0.01 μm 1/2 μV rms / μV.
less than pp . Incidentally, the reason to lower the recording frequency can not be reduced M rt as Example 1-1, due to the recording resolution is low.

【0035】次に、実施例1−1と同様にして記録磁極
のBsが1.3T、トラック幅が1μmの記録ヘッドを
用い、20nmの浮上量で記録特性を調べたところ、記
録電流が30mAでのオーバーライト消去比は−25d
Bであり、実用範囲には達しなかった。これは、保磁力
が小さく記録しやすいものの、S* が非常に低いことか
ら飽和記録に必要な磁界強度が大きいためである。線記
録密度性能の指標となるD50値は、Hcが低いことに起
因して、約90kfciであった。
Next, the recording characteristics were examined at a flying height of 20 nm using a recording head having a recording magnetic pole Bs of 1.3 T and a track width of 1 μm in the same manner as in Example 1-1. The recording current was 30 mA. Overwrite erase ratio is -25d
B and did not reach the practical range. This is because although the coercive force is small and recording is easy, the magnetic field strength required for saturation recording is large because S * is very low. D 50 values indicative of linear recording density performance due to Hc is low, it was about 90Kfci.

【0036】比較例1−3 この例では、基板バイアスを印加しなかった以外は実施
例1−1と同様にして磁気記録媒体を作製した。また、
磁性薄膜の膜厚は、比較例1−2と同じく50nmとし
た。
Comparative Example 1-3 In this example, a magnetic recording medium was manufactured in the same manner as in Example 1-1 except that no substrate bias was applied. Also,
The thickness of the magnetic thin film was set to 50 nm as in Comparative Example 1-2.

【0037】図5に得られた磁気記録媒体の断面TEM
観察による微細構造を示す。基板11上にSiO2 下地
層21が形成され、その上に磁性薄膜22が形成されて
いる。この磁性薄膜22の下地層21に接する部分には
SiO2 母材22aおよびCoPt磁性粒子22bの両
方が存在し、SiO2 母材22a中に分散するCoPt
磁性粒子22bの粒径は5nm未満と非常に小さかっ
た。このように、基板バイアスを印加しない場合には、
下地層と母材に同種の材料を用いても、下地層上に磁性
粒子が点在し、しかも所定の粒径が得られない。
FIG. 5 is a cross-sectional TEM of the magnetic recording medium obtained.
The microstructure is shown by observation. An SiO 2 underlayer 21 is formed on a substrate 11, and a magnetic thin film 22 is formed thereon. Both the SiO 2 base material 22a and the CoPt magnetic particles 22b are present in the portion of the magnetic thin film 22 that is in contact with the underlayer 21, and the CoPt dispersed in the SiO 2 base material 22a is present.
The particle size of the magnetic particles 22b was very small, less than 5 nm. Thus, when the substrate bias is not applied,
Even if the same material is used for the base layer and the base material, magnetic particles are scattered on the base layer and a predetermined particle size cannot be obtained.

【0038】この磁気記録媒体の静磁気特性を調べたと
ころ、超常磁性的であった。このため、ディスク評価も
実施不能であった。 実施例2−1 マグネトロンスパッタ装置に、CoPt合金ターゲッ
ト、SiO2 ターゲット、2.5インチ径のガラス基板
を設置した。Arガス2mTorrの雰囲気中で、基板
に600WのRFバイアスを印加した状態で、CoPt
合金ターゲットに0.5Aの直流スパッタ電流を投入
し、SiO2 ターゲットに600WのRF電力を投入し
て、二元同時スパッタを開始した。二元同時スパッタを
7分間つづける間に、600Wの基板バイアスを最初の
2分間だけ印加した後に停止する操作を行い、膜厚15
nmの磁性薄膜を形成した。次に、磁性薄膜上にカーボ
ン保護膜を10nm成膜して磁気記録媒体を作製した。
When the magnetostatic characteristics of this magnetic recording medium were examined, it was found to be superparamagnetic. For this reason, disk evaluation could not be performed. Example 2-1 A CoPt alloy target, a SiO 2 target, and a 2.5-inch diameter glass substrate were installed in a magnetron sputtering apparatus. In an atmosphere of Ar gas at 2 mTorr, CoPt was applied while applying an RF bias of 600 W to the substrate.
A DC sputtering current of 0.5 A was applied to the alloy target, and an RF power of 600 W was applied to the SiO 2 target to start dual simultaneous sputtering. While the simultaneous dual sputtering was continued for 7 minutes, an operation of applying a substrate bias of 600 W for only the first 2 minutes and then stopping was performed.
A magnetic thin film of nm was formed. Next, a carbon protective film was formed to a thickness of 10 nm on the magnetic thin film to produce a magnetic recording medium.

【0039】この磁気記録媒体の構造を断面TEM観察
したところ、基板11に接して粒径6nm程度のCoP
t磁性粒子22bが成長し、その上にも粒径5nm以下
のCoPt磁性粒子22bが生成しており、その周囲は
SiO2 母材22aによって包囲されていた。
When the structure of this magnetic recording medium was observed by TEM in cross section, it was found that CoP having a particle size of about 6 nm was in contact with the substrate 11.
The t-magnetic particles 22b grew, and CoPt magnetic particles 22b having a particle size of 5 nm or less were generated thereon, and the periphery thereof was surrounded by the SiO 2 base material 22a.

【0040】得られた磁気記録媒体の静磁気特性および
活性化磁気モーメントをVSMを用いて測定した。Hc
は1500Oe、Mrtは0.35memu/cm2 であ
った。活性化磁気モーメントvIsb は0.06×10
-14 emuであった。
The magnetostatic properties and activation magnetic moment of the obtained magnetic recording medium were measured using a VSM. Hc
Is 1500Oe, M rt was 0.35memu / cm 2. Activation magnetic moment v Isb is 0.06 × 10
-14 emu.

【0041】実施例2−2 磁性薄膜の成膜時に、基板バイアスを最初の2分間は6
00Wとし、その後400Wに減少させた以外は実施例
2−1と同様にして磁気記録媒体を作製した。
Example 2-2 During the formation of the magnetic thin film, the substrate bias was set to 6 for the first 2 minutes.
A magnetic recording medium was manufactured in the same manner as in Example 2-1 except that the power was set to 00 W and then reduced to 400 W.

【0042】この磁気記録媒体の構造を断面TEM観察
したところ、図6に示すように、CoPt磁性粒子22
bは粒径が約9nmで実施例2−1の場合よりも大き
く、coPt磁性粒子の層は1層だけであった。Hcは
2000Oe、Mrtは0.58memu/cm2 、v
Isb は、0.08×10-14 emuであった。
The structure of this magnetic recording medium was observed by TEM in cross section. As shown in FIG.
b had a particle size of about 9 nm and was larger than that of Example 2-1. Only one layer of coPt magnetic particles was present. Hc is 2000Oe, M rt is 0.58memu / cm 2, v
Isb was 0.08 × 10 -14 emu.

【0043】実施例2−3 磁性薄膜の成膜時に、最初1分間は基板バイアスを印加
せず、その後600Wの基板バイアスを1分間印加した
後、基板バイアスを400Wに減少させた以外は実施例
2−1と同様にして磁気記録媒体を作製した。
Example 2-3 Example 1 was repeated except that a substrate bias was not applied for one minute at the time of forming a magnetic thin film, then a substrate bias of 600 W was applied for one minute, and then the substrate bias was reduced to 400 W. A magnetic recording medium was manufactured in the same manner as in 2-1.

【0044】CoPt磁性粒子は粒径が約8nmで、C
oPt磁性粒子の層は1層だけであった。また、基板と
磁性粒子の層との間にもSiO2 が介在し、基板と磁性
粒子とは非接触になっていた。Hcは2100Oe、M
rtは0.55memu/cm2 、vIsb は0.08×1
-14 emuであった。
The CoPt magnetic particles have a particle size of about 8 nm,
There was only one layer of oPt magnetic particles. Further, SiO 2 was also interposed between the substrate and the layer of the magnetic particles, and the substrate and the magnetic particles were not in contact with each other. Hc is 2100 Oe, M
rt is 0.55 memu / cm 2 , v Isb is 0.08 × 1
It was 0 -14 emu.

【0045】実施例2−4 CoPtとSiO2 の二元同時スパッタを12分間つづ
ける間に、基板バイアスを最初の2分間は600W、次
の5分間は400Wとした後、300Wまで減少させ
て、膜厚32nmの磁性薄膜を形成した以外は実施例2
−1と同様にして磁気記録媒体を作製した。
Example 2-4 While the simultaneous simultaneous sputtering of CoPt and SiO 2 was continued for 12 minutes, the substrate bias was set to 600 W for the first 2 minutes, 400 W for the next 5 minutes, and then reduced to 300 W. Example 2 except that a magnetic thin film having a thickness of 32 nm was formed.
In the same manner as in -1, a magnetic recording medium was produced.

【0046】この磁気記録媒体の構造を断面TEM観察
したところ、図7に示すように、CoPt磁性粒子22
bの層は2層になっており、1層目は基板に接し、2層
目は1層目の磁性粒子上にSiO2 母材22aを介して
積層された構造になっていた。CoPt磁性粒子の粒径
は1層目、2層目とも約7nmであった。Hcは170
0Oe、Mrtは1.1memu/cm2 、vIsb は0.
09×10-14 emuであった。
When the structure of this magnetic recording medium was observed by TEM in cross section, as shown in FIG.
The layer b has two layers. The first layer is in contact with the substrate, and the second layer has a structure in which the magnetic particles are laminated on the first layer of magnetic particles via the SiO 2 base material 22a. The particle size of the CoPt magnetic particles was about 7 nm for both the first and second layers. Hc is 170
0 Oe, M rt is 1.1 memu / cm 2 , v Isb is 0.1 memu / cm 2 .
It was 09 × 10 -14 emu.

【0047】実施例2−5 CoPtとSiO2 の二元同時スパッタを12分間つづ
ける間に、基板バイアスを最初の2分間は600Wと
し、その後基板バイアスを徐々に低下させて成膜終了時
にバイアス0Wになるようにした以外は実施例2−4と
同様にして磁気記録媒体を作製した。この場合、基板上
に柱状楕円体粒子が膜厚方向に延びて成長していた。H
cは1900Oe、Mrtは1.2memu/cm2 、v
Isb は0.15×10-14 emuであった。
Example 2-5 While binary simultaneous sputtering of CoPt and SiO 2 was continued for 12 minutes, the substrate bias was set to 600 W for the first 2 minutes, and then the substrate bias was gradually reduced to 0 W at the end of film formation. A magnetic recording medium was manufactured in the same manner as in Example 2-4, except that. In this case, columnar ellipsoidal particles were grown on the substrate so as to extend in the film thickness direction. H
c is 1900 Oe, M rt is 1.2 memu / cm 2 , v
Isb was 0.15 × 10 −14 emu.

【0048】実施例2−6 磁性薄膜を成膜する前に、膜厚60nmのCr下地層を
形成した以外は、実施例2−1と同様にして磁気記録媒
体を作製した。磁性薄膜の構造は実施例2−1とほぼ同
様であり、CoPt磁性粒子の粒径は約7nmであっ
た。Hcは2500Oe、Mrtは0.55memu/c
2 、vIsb は0.09×10-14 emuであった。
Example 2-6 A magnetic recording medium was manufactured in the same manner as in Example 2-1 except that a 60 nm-thick Cr underlayer was formed before forming the magnetic thin film. The structure of the magnetic thin film was almost the same as that of Example 2-1. The particle size of the CoPt magnetic particles was about 7 nm. Hc is 2500Oe, M rt is 0.55memu / c
m 2 and v Isb were 0.09 × 10 −14 emu.

【0049】比較例2−1 基板上に、60nmのCr下地層、10nmの金属磁性
薄膜、10nmのカーボン保護膜を成膜して磁気記録媒
体を作製した。Cr下地層上の金属磁性薄膜は柱状の磁
性粒子が成長し、磁性粒子どうしがほとんど接した構造
を有していた。Hcは2500Oe、Mrtは0.57m
emu/cm2 、vIsb は2.0×10-14 emuであ
った。
Comparative Example 2-1 A 60 nm Cr underlayer, a 10 nm metal magnetic thin film, and a 10 nm carbon protective film were formed on a substrate to produce a magnetic recording medium. The metal magnetic thin film on the Cr underlayer had a structure in which columnar magnetic particles grew and the magnetic particles were almost in contact with each other. Hc is 2500Oe, M rt is 0.57m
emu / cm 2 and v Isb were 2.0 × 10 −14 emu.

【0050】比較例2−2 磁性薄膜の成膜中に400Wの基板バイアスを印加しつ
づけた以外は実施例2−1と同様にして磁気記録媒体を
作製した。成膜された磁性薄膜は構造的には実施例2−
1と同様であったが、CoPt磁性粒子の粒径は5nm
以下であった。Hcは1500Oe、Mrtは0.52m
emu/cm2 、vIsb は0.06×10-14 emuで
あった。
Comparative Example 2-2 A magnetic recording medium was manufactured in the same manner as in Example 2-1 except that a substrate bias of 400 W was continuously applied during the formation of the magnetic thin film. The formed magnetic thin film is structurally similar to that of Example 2-
1, but the particle size of the CoPt magnetic particles was 5 nm.
It was below. Hc is 1500Oe, M rt is 0.52m
emu / cm 2 and v Isb were 0.06 × 10 −14 emu.

【0051】以上の結果を評価すると以下のようなこと
がいえる。実施例2−1は膜厚が薄く、Mrtが比較例2
−2のグラニュラー媒体よりも小さいにもかかわらず、
保磁力Hcは比較例2−2と同程度である。実施例2−
2は粒子成長が促進されているため、比較例2−2のグ
ラニュラー媒体と比較して、Hcが約500Oe大きく
なっている。実施例2−4は膜厚が厚いが、膜厚方向に
積層された2層の磁性粒子ともに粒径が比較的大きく、
3次元的な分散性が良好である。また、磁性粒子が積層
されているにもかかわらず、活性化磁気モーメントv
Isb は磁性粒子が単層の場合とほぼ等しい値をとること
からも、分散性が良好であることがわかる。実施例2−
5の結果からは、磁性粒子の形状を円柱状または楕円体
にしても、静磁気特性をほとんど変えないように制御で
きることがわかる。実施例2−6はCr下地層の結晶性
を利用して磁性薄膜の結晶配向性を向上させているの
で、Hcが2500Oeに向上している。
When the above results are evaluated, the following can be said. Example 2-1 has a small film thickness, and Mrt is comparative example 2
-2 smaller than the granular medium,
The coercive force Hc is almost the same as that of Comparative Example 2-2. Example 2
In No. 2, Hc was increased by about 500 Oe as compared with the granular medium of Comparative Example 2-2 because the grain growth was promoted. In Example 2-4, although the film thickness was large, the two-layer magnetic particles laminated in the film thickness direction had relatively large particle diameters.
Good three-dimensional dispersibility. Also, despite the magnetic particles being stacked, the activation magnetic moment v
Isb has almost the same value as in the case where the magnetic particles have a single layer, which indicates that the dispersibility is good. Example 2
From the result of No. 5, it can be seen that even if the shape of the magnetic particles is made cylindrical or elliptical, it can be controlled so that the magnetostatic characteristics are hardly changed. In Example 2-6, since the crystal orientation of the magnetic thin film was improved by utilizing the crystallinity of the Cr underlayer, Hc was improved to 2500 Oe.

【0052】次に、各磁気記録媒体について、スピンス
タンド形のディスク評価装置で電磁変換特性を調べた。
記録にMIGヘッド(ギャップ長0.3μm、トラック
幅4.0μm)、再生にMRヘッド(ギャップ長0.1
4μm、トラック幅2.7μm)を用い、浮上量40n
mで測定した。記録密度150kfciで記録した信号
の規格化媒体ノイズは、実施例2−1〜6で0.015
〜0.02μm1/2 μVrms /μVpp、比較例2−2
(従来のグラニュラー媒体)で0.02μm1/2μVrms
/μVppと低ノイズを示したが、比較例2−1(金属
薄膜媒体)では0.025μm1/2 μVrms /μVpp
ややノイズが大きかった。
Next, the electromagnetic conversion characteristics of each magnetic recording medium were examined using a spin stand type disk evaluation device.
MIG head (gap length 0.3 μm, track width 4.0 μm) for recording, MR head (gap length 0.1
4 μm, track width 2.7 μm) and a flying height of 40 n
m. The normalized medium noise of a signal recorded at a recording density of 150 kfci was 0.015 in Examples 2-1 to 6-1.
0.00.02 μm 1/2 μV rms / μV pp , Comparative Example 2-2
0.02 μm 1/2 μV rms in (conventional granular media)
/ ΜV pp , but the noise was relatively large in Comparative Example 2-1 (metal thin film medium) as 0.025 μm 1/2 μV rms / μV pp .

【0053】さらに、記録密度20kfciで記録した
上に、80kfciで記録したときのオーバーライト消
去率を測定した。すべてのディスクに関して、記録電流
20mAで−35dB以上と良好な値を示した。実施例
2−4は、磁性粒子が膜厚方向に三次元的に分散した微
細構造を有するにもかかわらずオーバーライト特性が良
好であり、膜厚方向の分散性が制御できていることが示
された。以上のように、成膜中の基板バイアスを制御す
ることにより、低ノイズで、かつオーバーライト特性に
優れた磁気記録媒体を製造できることがわかった。
Further, after recording at a recording density of 20 kfci, the overwrite erasing rate was measured when recording was performed at 80 kfci. All of the disks showed good values of -35 dB or more at a recording current of 20 mA. Example 2-4 shows that despite having a fine structure in which the magnetic particles are three-dimensionally dispersed in the film thickness direction, the overwrite characteristics are good and the dispersibility in the film thickness direction can be controlled. Was done. As described above, it was found that by controlling the substrate bias during film formation, a magnetic recording medium with low noise and excellent overwrite characteristics could be manufactured.

【0054】[0054]

【発明の効果】以上詳述したように本発明によれば、低
ノイズ、高分解能で、しかも平均粒径が制御され粒径ば
らつきが少なく、Hcが適正化され、S* が向上した磁
気記録媒体を提供できる。
As described in detail above, according to the present invention, magnetic recording with low noise, high resolution, controlled average particle size, small variation in particle size, optimized Hc, and improved S *. Media can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例において用いたスパッタリング
装置の構成図。
FIG. 1 is a configuration diagram of a sputtering apparatus used in an embodiment of the present invention.

【図2】実施例1−1の磁気記録媒体の断面図。FIG. 2 is a cross-sectional view of the magnetic recording medium of Example 1-1.

【図3】比較例1−1の磁気記録媒体の断面図。FIG. 3 is a cross-sectional view of a magnetic recording medium of Comparative Example 1-1.

【図4】比較例1−2の磁気記録媒体の断面図。FIG. 4 is a sectional view of a magnetic recording medium of Comparative Example 1-2.

【図5】比較例1−3の磁気記録媒体の断面図。FIG. 5 is a sectional view of a magnetic recording medium of Comparative Example 1-3.

【図6】実施例2−2の磁気記録媒体の断面図。FIG. 6 is a sectional view of the magnetic recording medium of Example 2-2.

【図7】実施例2−4の磁気記録媒体の断面図。FIG. 7 is a sectional view of a magnetic recording medium of Example 2-4.

【符号の説明】[Explanation of symbols]

1…スパッタ室 2…排気系 3…ガス供給系 4…磁性体ターゲット 5…母材ターゲット 6…下地ターゲット 7、8、9…電源 10…基板ホルダ 11…ディスク基板 12…自公転制御系 13…RF電源 21、24…下地層 22…磁性薄膜、22a…非磁性母材、22b…磁性粒
子 23…保護膜
DESCRIPTION OF SYMBOLS 1 ... Sputter chamber 2 ... Exhaust system 3 ... Gas supply system 4 ... Magnetic target 5 ... Base material target 6 ... Underlayer target 7, 8, 9 ... Power supply 10 ... Substrate holder 11 ... Disk substrate 12 ... Rotation / revolution control system 13 ... RF power supply 21, 24: Underlayer 22: Magnetic thin film, 22a: Non-magnetic base material, 22b: Magnetic particles 23: Protective film

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基材上に、下地層と、非磁性母材中に磁
性粒子が分散した磁性薄膜とを有する磁気記録媒体にお
いて、前記下地層および非磁性母材の主成分が同一の材
料であり、下地層上に非磁性母材が選択的に析出し、そ
の上に磁性粒子および非磁性母材が析出した構造を有す
ることを特徴とする磁気記録媒体。
1. A magnetic recording medium having a base layer on a base material and a magnetic thin film in which magnetic particles are dispersed in a non-magnetic base material, wherein the base layer and the non-magnetic base material have the same main component. A magnetic recording medium having a structure in which a nonmagnetic matrix is selectively deposited on an underlayer, and magnetic particles and a nonmagnetic matrix are deposited thereon.
【請求項2】 基材上に、下地層と、非磁性母材中に磁
性粒子が分散した磁性薄膜とを有する磁気記録媒体を製
造するにあたり、下地層を形成した後、下地層の主成分
および磁性粒子の原料を供給するとともに、下地層上に
被着する物質の表面移動を促進させ、下地層上に非磁性
母材の主成分を優先的に被着させた状態で磁性粒子を析
出させることを特徴とする磁気記録媒体の製造方法。
2. A method for manufacturing a magnetic recording medium having a base layer and a magnetic thin film in which magnetic particles are dispersed in a non-magnetic base material on a base material. While supplying the raw materials for the magnetic particles, the surface movement of the substance to be deposited on the underlayer is promoted, and the magnetic particles are deposited while the main component of the non-magnetic base material is preferentially deposited on the underlayer. A method for manufacturing a magnetic recording medium.
【請求項3】 基材上に、非磁性母材中に磁性粒子が分
散した磁性薄膜を有する磁気記録媒体を製造するにあた
り、磁性薄膜成膜時に基板バイアスを印加し、成膜中に
基板バイアスを低下させることを特徴とする磁気記録媒
体の製造方法。
3. When manufacturing a magnetic recording medium having a magnetic thin film in which magnetic particles are dispersed in a non-magnetic base material on a base material, a substrate bias is applied when forming the magnetic thin film, and the substrate bias is applied during the film formation. A method for manufacturing a magnetic recording medium, characterized by reducing
JP4668497A 1997-02-28 1997-02-28 Magnetic recording medium and its manufacture Pending JPH10241935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4668497A JPH10241935A (en) 1997-02-28 1997-02-28 Magnetic recording medium and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4668497A JPH10241935A (en) 1997-02-28 1997-02-28 Magnetic recording medium and its manufacture

Publications (1)

Publication Number Publication Date
JPH10241935A true JPH10241935A (en) 1998-09-11

Family

ID=12754212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4668497A Pending JPH10241935A (en) 1997-02-28 1997-02-28 Magnetic recording medium and its manufacture

Country Status (1)

Country Link
JP (1) JPH10241935A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004061876A1 (en) * 2002-12-27 2004-07-22 Tdk Corporation Granular substance, magnetic thin film, and magnetic device
KR100712836B1 (en) 2005-11-02 2007-05-04 한국과학기술연구원 Multi-layered film for shielding electromagnetic interference and circuit board including the same
KR100716679B1 (en) 2005-10-27 2007-05-09 한국과학기술연구원 Noise suppressing film, noise-suppressed circuit substrate and method of manufacturing the same
JP2015005326A (en) * 2014-10-06 2015-01-08 昭和電工株式会社 Heat-assisted magnetic recording medium and magnetic recording and reproducing device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004061876A1 (en) * 2002-12-27 2004-07-22 Tdk Corporation Granular substance, magnetic thin film, and magnetic device
CN100364019C (en) * 2002-12-27 2008-01-23 Tdk株式会社 Granular substance, magnetic thin film, and magnetic device
KR100716679B1 (en) 2005-10-27 2007-05-09 한국과학기술연구원 Noise suppressing film, noise-suppressed circuit substrate and method of manufacturing the same
KR100712836B1 (en) 2005-11-02 2007-05-04 한국과학기술연구원 Multi-layered film for shielding electromagnetic interference and circuit board including the same
JP2015005326A (en) * 2014-10-06 2015-01-08 昭和電工株式会社 Heat-assisted magnetic recording medium and magnetic recording and reproducing device

Similar Documents

Publication Publication Date Title
JP3809418B2 (en) Magnetic recording medium and magnetic recording apparatus
JP2006172686A (en) Magnetic recording medium and manufacturing method thereof, magnetic storage apparatus, substrate and texture forming apparatus
JP2002208129A (en) Magnetic recording medium, its manufacturing method and magnetic recording device
JP2005190538A (en) Magnetic recording medium, and its manufacturing method and apparatus
JPH0363919A (en) Magnetic thin film recording medium and method of manufacturing the same
JP2000200410A (en) Magnetic recording medium, production of magnetic recording medium and magnetic recording device
JPH087250A (en) Magnetic recording medium and magnetic storage device using this medium
JPH10241935A (en) Magnetic recording medium and its manufacture
JP3359706B2 (en) Magnetic recording media
JPH10149526A (en) Magnetic recording medium
JP2008257759A (en) Manufacturing method of magnetic recording medium
JP3730820B2 (en) Substrate with substrate, magnetic recording medium, and magnetic recording apparatus
JP3684047B2 (en) Magnetic recording medium
JP2001202611A (en) Magnetic recording medium, method for producing same and information reproducing devce
JP2002324313A (en) Manufacturing method of magnetic recording medium
JPH09265619A (en) Magnetic recording medium, its production and magnetic storage device
JP2003281707A (en) Magnetic recording medium
JPS59157833A (en) Magnetic recording medium
EP0227069A2 (en) Middle layer material for magnetic disc
JP2000163732A (en) Magnetic recording medium and its production
JPH10125520A (en) Magnetic recording medium
JP2006040410A (en) Method for manufacturing magnetic recording medium
JP2000057569A (en) Production of magnetic recording medium and magnetic recording medium
JPH08129741A (en) Magnetic recording medium
JPH06338040A (en) Thin film magnetic recording medium production thereof, producing device therefor and storage device

Legal Events

Date Code Title Description
A02 Decision of refusal

Effective date: 20040113

Free format text: JAPANESE INTERMEDIATE CODE: A02