JPH10125520A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH10125520A
JPH10125520A JP8278017A JP27801796A JPH10125520A JP H10125520 A JPH10125520 A JP H10125520A JP 8278017 A JP8278017 A JP 8278017A JP 27801796 A JP27801796 A JP 27801796A JP H10125520 A JPH10125520 A JP H10125520A
Authority
JP
Japan
Prior art keywords
magnetic
recording medium
base material
magnetic recording
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8278017A
Other languages
Japanese (ja)
Inventor
Futoshi Nakamura
太 中村
Katsutaro Ichihara
勝太郎 市原
Satoru Kikitsu
哲 喜々津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP8278017A priority Critical patent/JPH10125520A/en
Publication of JPH10125520A publication Critical patent/JPH10125520A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Magnetic Films (AREA)
  • Physical Vapour Deposition (AREA)
  • Magnetic Record Carriers (AREA)
  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To raise charging rate of magnetic powder and eliminate unevenness of a medium surface by forming a non-magnetic base material of an organic matter and forming a shape of magnetic particle to a sphere, a prolate spheroid, an oblate spheroid, a cone, a frustum of circular cone and a column. SOLUTION: In a magnetic thin film 10, magnetic particle 12 dispersed in to a non-magnetic base material 11 consisting of an organic matter is formed to a sphere, a prolate spheroid, an oblate spheroid, a cone, a frustum of circular cone and a column. Furthermore, hardness of the non-magnetic base material 11 is made lower than hardness of the magnetic particle 12. Such a magnetic recording medium 10 is formed by a method such as binary simultaneous sputter or alternating sputter by using a magnetic metallic target and an organic matter target on a substrate 3. Thereby, charging rate of magnetic powder is raised, unevenness of a medium surface is eliminated and a magnetic recording medium which is excellent in medium S/N characteristic, sliding characteristic with a head and weather proof is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は磁気記録媒体に関す
る。
[0001] The present invention relates to a magnetic recording medium.

【0002】[0002]

【従来の技術】磁気記録において記録密度を高めるため
には、高S/Nの記録が可能な磁気記録媒体が求められ
ている。これに応じて、無機材料からなる非磁性母材中
に磁性粒子を分散させた構造の磁性薄膜を有する磁性粒
子分散型の磁気記録媒体が開発されている(第19回日
本応用磁気学会学術講演会概要集(1996)390な
ど)。このような磁性粒子分散型の磁気記録媒体では、
磁性粒子の磁気的交換結合が非磁性母材により分断され
るため、媒体ノイズが低下する。
2. Description of the Related Art In order to increase the recording density in magnetic recording, a magnetic recording medium capable of high S / N recording is required. In response to this, a magnetic particle-dispersed magnetic recording medium having a magnetic thin film having a structure in which magnetic particles are dispersed in a nonmagnetic base material made of an inorganic material has been developed (19th Annual Meeting of the Japan Society of Applied Magnetics). Meeting Summary (1996) 390). In such a magnetic particle dispersion type magnetic recording medium,
Since the magnetic exchange coupling of the magnetic particles is separated by the non-magnetic base material, the medium noise is reduced.

【0003】しかし、無機材料からなる非磁性母材を用
いた場合、磁性粒子と非磁性母材とが反応を起こしやす
く、磁性粒子の磁気特性が損なわれやすいという問題が
あった。また、無機材料からなる非磁性母材は高硬度で
あり、媒体とヘッドとのスペーシングロスとなる保護膜
を設けずに使用した場合、CSS(コンタクトスタート
アンドストップ)動作時または接触動作時にヘッドとの
衝突が起こると、ヘッドの摩耗が早まるという問題があ
る。この問題を避けるためには、極めて平坦度の高い媒
体に仕上げる必要がある。
However, when a non-magnetic base material made of an inorganic material is used, there is a problem that the magnetic particles easily react with the non-magnetic base material and the magnetic characteristics of the magnetic particles are easily impaired. In addition, the non-magnetic base material made of an inorganic material has high hardness, and when used without providing a protective film that causes a spacing loss between the medium and the head, the head is not operated during a CSS (contact start and stop) operation or a contact operation. When the collision occurs, there is a problem that the wear of the head is accelerated. In order to avoid this problem, it is necessary to finish the medium with extremely high flatness.

【0004】一方、従来より知られている塗布型の磁気
記録媒体では、磁性粒子を有機バインダーで結着させた
磁性薄膜が用いられる(IEEE Trans.Mag
n.,MAG−21,5,p.1480(1985)な
ど)。塗布型の磁気記録媒体は、針状または六角板状の
結晶性磁性粒子と液状の有機バインダーとを混合し、基
板上にスピンコート法、ディップ法などにより塗布した
後、バインダーを固化させる方法で製造される。このよ
うな塗布型の磁気記録媒体は、磁性粒子の充填率が低い
ため再生信号が低い、バインダーを固化させると媒体表
面に凹凸が発生するためヘッドの低浮上または接触動作
が困難である、などの課題を有する。
On the other hand, in a conventionally known coating type magnetic recording medium, a magnetic thin film in which magnetic particles are bound with an organic binder is used (IEEE Trans. Mag).
n. , MAG-21, 5, p. 1480 (1985)). A coating type magnetic recording medium is obtained by mixing needle-like or hexagonal plate-like crystalline magnetic particles and a liquid organic binder, applying the mixture on a substrate by a spin coating method, a dipping method, and then solidifying the binder. Manufactured. Such a coating type magnetic recording medium has a low reproduction signal due to a low filling rate of magnetic particles, and it is difficult to perform low flying or contact operation of a head due to unevenness of the medium surface when the binder is solidified. There is a problem of.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、非磁
性母材と磁性粒子との反応に起因するノイズ特性の劣化
を避けて高い媒体S/N比を得ることができ、CSS動
作およびヘッド接触記録再生動作を行なってもヘッドの
摩耗を抑制できる磁気記録媒体を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to obtain a high medium S / N ratio while avoiding deterioration of noise characteristics caused by a reaction between a non-magnetic base material and magnetic particles. An object of the present invention is to provide a magnetic recording medium capable of suppressing wear of a head even when performing a head contact recording / reproducing operation.

【0006】[0006]

【課題を解決するための手段】本発明の磁気記録媒体
は、非磁性母材中に磁性粒子を分散させた磁性薄膜を有
する磁気記録媒体において、前記非磁性母材が有機物か
らなり、前記磁性粒子の形状が球状、扁長回転楕円体
状、偏平回転楕円体状、円錐状、円錐台状または円柱状
であることを特徴とするものである。
According to the present invention, there is provided a magnetic recording medium having a magnetic thin film in which magnetic particles are dispersed in a non-magnetic base material, wherein the non-magnetic base material is made of an organic substance, It is characterized in that the shape of the particles is spherical, oblate spheroidal, flat spheroidal, conical, truncated conical or cylindrical.

【0007】[0007]

【発明の実施の形態】以下、本発明をさらに詳細に説明
する。本発明の磁気記録媒体は、基板上に磁性薄膜を形
成した構造を有する。また、基板上に下地層および磁性
薄膜を形成してもよい。この下地層は磁性薄膜の結晶配
向性を制御するために設けられる。本発明の磁気記録媒
体を構成する磁性薄膜は、非磁性母材中に磁性金属粒子
を分散させた構造を有する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. The magnetic recording medium of the present invention has a structure in which a magnetic thin film is formed on a substrate. Further, an underlayer and a magnetic thin film may be formed on the substrate. This underlayer is provided for controlling the crystal orientation of the magnetic thin film. The magnetic thin film constituting the magnetic recording medium of the present invention has a structure in which magnetic metal particles are dispersed in a non-magnetic base material.

【0008】本発明の磁気記録媒体の磁性薄膜を構成す
る非磁性母材に用いられる有機物としては、ポリテトラ
フルオロエチレン、C−F系プラズマ重合物、ポリイミ
ドなどが挙げられる。
Examples of the organic substance used for the non-magnetic base material constituting the magnetic thin film of the magnetic recording medium of the present invention include polytetrafluoroethylene, a C-F plasma polymer, and polyimide.

【0009】本発明の磁気記録媒体の磁性薄膜を構成す
る磁性粒子は、飽和磁化が大きく、かつ結晶磁気異方性
の大きい磁性金属からなるものが好ましい。磁性粒子の
結晶磁気異方性が大きいほど、記録情報を安定して保持
でき、信号出力を大きくできるので好ましい。
The magnetic particles constituting the magnetic thin film of the magnetic recording medium of the present invention are preferably made of a magnetic metal having a large saturation magnetization and a large crystal magnetic anisotropy. The larger the crystal magnetic anisotropy of the magnetic particles, the more stable the recorded information and the larger the signal output, which is preferable.

【0010】このような観点から、磁性金属としては、
Co、Pt、Sm、Fe、Ni、Cr、Mn、Biおよ
びAlならびにこれらの合金からなる群より選択される
少なくとも1種を用いることが好ましい。これらのうち
では、大きな結晶磁気異方性を有するCoPt、SmC
o、CoCrなどのCo基合金や、大きな磁気異方性エ
ネルギーを有するMnBi、MnAlなどMn合金が特
に好ましい。これらの金属または合金に磁気特性を制御
する目的でFeおよび/またはNiを添加してもよい。
これらの金属または合金に磁気特性を向上させる目的で
Cr、Nb、V、Ta、Ti、W、Hf、In、Si、
Bなどの元素を添加してもよい。
[0010] From such a viewpoint, as a magnetic metal,
It is preferable to use at least one selected from the group consisting of Co, Pt, Sm, Fe, Ni, Cr, Mn, Bi and Al, and alloys thereof. Among them, CoPt and SmC having large crystal magnetic anisotropy
Particularly preferred are Co-based alloys such as o and CoCr, and Mn alloys such as MnBi and MnAl having a large magnetic anisotropy energy. Fe and / or Ni may be added to these metals or alloys for the purpose of controlling magnetic properties.
In order to improve magnetic properties of these metals or alloys, Cr, Nb, V, Ta, Ti, W, Hf, In, Si,
Elements such as B may be added.

【0011】本発明に係る磁性薄膜において、有機物か
らなる非磁性母材中に分散されている磁性粒子の形状は
球状、扁長回転楕円体状、偏平回転楕円体状、円錐状、
円錐台状または円柱状である。非磁性母材中の磁性粒子
のサイズは、10〜20nmであることが好ましい。非
磁性母材中の磁性粒子の充填率は、50〜70vol%
であることが好ましい。また、磁性粒子の硬度(ビッカ
ース硬度)は700kg/mm2 程度であるが、非磁性
母材の硬度は磁性粒子の硬度よりも低く、100〜30
0kg/mm2 であることが好ましい。
In the magnetic thin film according to the present invention, the shape of the magnetic particles dispersed in the nonmagnetic base material made of an organic material is spherical, oblate spheroidal, flat spheroidal, conical,
It is frustoconical or cylindrical. The size of the magnetic particles in the non-magnetic base material is preferably 10 to 20 nm. The filling ratio of the magnetic particles in the non-magnetic base material is 50 to 70 vol%.
It is preferred that The hardness of the magnetic particles (Vickers hardness) is about 700 kg / mm 2 , but the hardness of the non-magnetic base material is lower than the hardness of the magnetic particles,
It is preferably 0 kg / mm 2 .

【0012】従来の塗布型媒体では磁性粒子のサイズが
50nm程度、磁性粒子の充填率が40vol%程度で
あるので、本発明に係る磁性薄膜中の磁性粒子はサイズ
および充填率の点で塗布型媒体と大幅に異なる。このた
め、本発明の磁気記録媒体は静磁気特性として高い保磁
力(高Hc)、低い残留磁化(低Mr)を示し、ひいて
は電磁変換特性として大きな再生信号および媒体ノイズ
(S/Nm)が得られる。
In the conventional coating type medium, the size of the magnetic particles is about 50 nm and the filling rate of the magnetic particles is about 40 vol%, so that the magnetic particles in the magnetic thin film according to the present invention are coated in terms of size and filling rate. Significantly different from medium. For this reason, the magnetic recording medium of the present invention exhibits high coercive force (high Hc) and low remanent magnetization (low Mr) as magnetostatic characteristics, and as a result, a large reproduction signal and medium noise (S / Nm) are obtained as electromagnetic conversion characteristics. Can be

【0013】本発明の磁気記録媒体は、以下のような方
法で気相中で基板上に磁性金属および有機物を同時にま
たは交互に成膜することにより製造することができる。
例えば、基板上に磁性金属ターゲットおよび有機物ター
ゲットを用い二元同時スパッタまたは交互スパッタする
方法;またはフッ素化炭化水素ガスを含有する希ガス中
で、基板上に磁性金属をスパッタまたは蒸着すると同時
に、フッ素化炭化水素ガスをプラズマ重合させる方法、
などが挙げられる。後者の方法で用いられる炭化水素ガ
スとしては、CF4 、CHF3 、CHF2 、CH4 もし
くはC24 またはこれらの混合ガスが挙げられる。ま
た、有機物を蒸着させてもよい。
The magnetic recording medium of the present invention can be manufactured by simultaneously or alternately depositing a magnetic metal and an organic substance on a substrate in a gas phase by the following method.
For example, a method of dual simultaneous or alternate sputtering using a magnetic metal target and an organic target on a substrate; or a method in which a magnetic metal is sputtered or vapor-deposited on a substrate in a rare gas containing a fluorinated hydrocarbon gas, A method of plasma polymerizing a hydrogenated hydrocarbon gas,
And the like. Examples of the hydrocarbon gas used in the latter method include CF 4 , CHF 3 , CHF 2 , CH 4 or C 2 H 4 or a mixed gas thereof. Further, an organic substance may be deposited.

【0014】本発明の磁気記録媒体は、磁性薄膜が有機
物からなる非磁性母材中に磁性粒子を分散させた構造を
有するので、磁性粒子と非磁性母材とが反応しにくくな
り、より低ノイズで高耐候性を示す。また、有機物から
なる非磁性母材は磁性粒子よりも硬度が低く弾性があ
り、かつ潤滑作用も示し、潤滑剤のなじみ・濡れ性も良
好であるので、CSS動作およびヘッド接触記録再生動
作を行なってもヘッドの摩耗を抑制できる。
Since the magnetic recording medium of the present invention has a structure in which magnetic particles are dispersed in a non-magnetic base material made of an organic substance, the magnetic particles hardly react with the non-magnetic base material, and the magnetic recording medium has a lower magnetic thin film. Shows high weather resistance with noise. In addition, since the non-magnetic base material made of an organic material has a lower hardness and elasticity than magnetic particles, has a lubricating effect, and has good lubricity and wettability of the lubricant, it performs the CSS operation and the head contact recording / reproducing operation. However, wear of the head can be suppressed.

【0015】[0015]

【実施例】以下、本発明の実施例を説明する。 実施例1 図1に本実施例の磁気記録媒体を成膜するために用いた
スパッタ装置を概略的に示す。図1において、真空チャ
ンバー1内には基板パレット2が回転可能に設けられて
おり、この基板パレット2上に基板3がセットされる。
また、真空チャンバー1内には、基板3に対向するよう
に、CoPtターゲット4およびポリテトラフルオロエ
チレン(PTFE)ターゲット5が設けられている。
Embodiments of the present invention will be described below. Embodiment 1 FIG. 1 schematically shows a sputtering apparatus used for forming a magnetic recording medium of the present embodiment. In FIG. 1, a substrate pallet 2 is rotatably provided in a vacuum chamber 1, and a substrate 3 is set on the substrate pallet 2.
Further, a CoPt target 4 and a polytetrafluoroethylene (PTFE) target 5 are provided in the vacuum chamber 1 so as to face the substrate 3.

【0016】本実施例の磁気記録媒体は図1に装置を用
いて以下のようにして製造された。真空チャンバー1内
をクライオポンプで5×10-5Paよりも高真空度に引
いた後、Arガスを100sccmの流量で導入して真
空チャンバー1内の圧力を0.6Paとした。ディスク
状の基板3を取付けた基板パレット2を200rpmで
回転させながら、対向するCoPtターゲット4にDC
50W、PTFEターゲット5にRF500Wのパワー
をそれぞれ供給して放電させることにより、基板3表面
に磁性薄膜を成膜した。
The magnetic recording medium of this embodiment was manufactured as follows using the apparatus shown in FIG. After the inside of the vacuum chamber 1 was evacuated to a degree of vacuum higher than 5 × 10 −5 Pa by a cryopump, Ar gas was introduced at a flow rate of 100 sccm to adjust the pressure in the vacuum chamber 1 to 0.6 Pa. While rotating the substrate pallet 2 on which the disk-shaped substrate 3 is mounted at 200 rpm, a DC is applied to the opposing CoPt target 4.
A magnetic thin film was formed on the surface of the substrate 3 by supplying power of 50 W and RF 500 W to the PTFE target 5 and discharging.

【0017】図2に上記のようにして製造された磁気記
録媒体(実施例1)を示す。図2に示すように、基板3
表面に成膜された磁性薄膜10は、PTFE母材11中
に平均粒径約10nmの球状のCoPt磁性粒子12が
分散した構造を有する。
FIG. 2 shows a magnetic recording medium (Example 1) manufactured as described above. As shown in FIG.
The magnetic thin film 10 formed on the surface has a structure in which spherical CoPt magnetic particles 12 having an average particle diameter of about 10 nm are dispersed in a PTFE base material 11.

【0018】比較のために、図1において、PTFEタ
ーゲットの代わりにSiO2 ターゲットを用い、上記と
同様の方法で基板3上に磁性薄膜を成膜した。成膜され
た磁性薄膜は、母材がSiO2 である以外は図2と同様
な構造であった。この磁性薄膜上に潤滑剤を1nmの厚
さに塗布した。この磁気記録媒体を比較例1とする。
For comparison, in FIG. 1, a magnetic thin film was formed on the substrate 3 in the same manner as described above, using an SiO 2 target instead of the PTFE target. The magnetic thin film thus formed had the same structure as that of FIG. 2 except that the base material was SiO 2 . A lubricant was applied to a thickness of 1 nm on the magnetic thin film. This magnetic recording medium is referred to as Comparative Example 1.

【0019】また、比較のために、平均粒径0.05μ
mのBaフェライト磁性粒子を有機バインダーに混合
し、スピンコート法によりガラスディスク基板上に厚さ
0.2μmに塗布し、カレンダーロールで圧力をかけ有
機バインダーを固化させた。この磁気記録媒体を比較例
2とする。
For comparison, the average particle size is 0.05 μm.
m of Ba ferrite magnetic particles were mixed with an organic binder, applied to a glass disk substrate to a thickness of 0.2 μm by a spin coating method, and pressure was applied by a calendar roll to solidify the organic binder. This magnetic recording medium is referred to as Comparative Example 2.

【0020】これらの磁気記録媒体の磁性薄膜の構造を
分析TEMにより調べた。その結果、比較例1ではCo
Pt磁性粒子の周囲に微量なCoの酸化物が生成されて
いた。これに対して、実施例1および比較例2では非磁
性母材と磁性粒子とがはっきりと分離し、両者の界面に
介在する物質はなかった。
The structures of the magnetic thin films of these magnetic recording media were examined by analytical TEM. As a result, in Comparative Example 1, Co
A small amount of Co oxide was generated around the Pt magnetic particles. In contrast, in Example 1 and Comparative Example 2, the non-magnetic base material and the magnetic particles were clearly separated, and there was no substance interposed at the interface between them.

【0021】次に、これらの磁気記録媒体について、静
磁気特性を振動試料型磁力計(VMS)により測定し
た。保磁力Hc、(残留磁化)×(膜厚)Mr t、およ
び抗磁力角形比S* の値を表1に示す。また、これらの
磁気記録媒体に対して薄膜ヘッドを用いてR/W特性を
調べ、記録密度D70における媒体S/Nを調べた。この
結果を表1に併記する。
Next, the magnetostatic properties of these magnetic recording media were measured by a vibrating sample magnetometer (VMS). Table 1 shows values of the coercive force Hc, (residual magnetization) × (film thickness) Mrt , and coercive force squareness ratio S * . Also, using a thin film head against these magnetic recording media examined R / W characteristics were examined medium S / N at a recording density D 70. The results are also shown in Table 1.

【0022】[0022]

【表1】 [Table 1]

【0023】表1から明らかなように、実施例1の記録
媒体は、Hc、Mr tおよびS* の全てにおいて良好な
値を示し、高い記録分解能および低ノイズ特性が得られ
ることがわかる。
As it is apparent from Table 1, the recording medium of Example 1, Hc, shows good values in all M r t and S *, it can be seen that the high recording resolution and low noise characteristics can be obtained.

【0024】さらに、これらの磁気記録媒体について、
以下のようにして摺動特性を調べた。すなわち、ディス
クを300rpmで回転させ、Si34 のピンを30
mgfの荷重で押し付けてピンを摩耗度合を調べた。そ
の結果、比較例1では3日後にピンが0.02μm摺り
減った。これに対して、実施例1では3日後でもディス
ク、ピンともに全く摺り減っていなかった。
Further, regarding these magnetic recording media,
The sliding characteristics were examined as follows. That is, the disk was rotated at 300 rpm, and the Si 3 N 4
The pin was pressed with a load of mgf to check the degree of wear of the pin. As a result, in Comparative Example 1, the pin slipped by 0.02 μm after 3 days. On the other hand, in Example 1, neither the disk nor the pin was worn down at all even after three days.

【0025】実施例2 本実施例では、基板上に下地膜を成膜し、さらに実施例
1と同様にしてPTFE母材中に球状のCoPt磁性粒
子が分散した構造を有する磁性薄膜を成膜して磁気記録
媒体を製造した。
Embodiment 2 In this embodiment, a base film is formed on a substrate, and a magnetic thin film having a structure in which spherical CoPt magnetic particles are dispersed in a PTFE base material is formed in the same manner as in Embodiment 1. Thus, a magnetic recording medium was manufactured.

【0026】Cr下地層を形成した場合、下地層の厚さ
3nm程度であるとPTFE母材中のCoPt磁性粒子
は円錐状、下地層の厚さ5nm程度であるとPTFE母
材中のCoPt磁性粒子は円錐台状になった。V下地層
を形成した場合、PTFE母材中のCoPt磁性粒子は
円柱状になった。
When a Cr underlayer is formed, CoPt magnetic particles in the PTFE base material are conical when the underlayer thickness is about 3 nm, and CoPt magnetic particles in the PTFE base material when the underlayer thickness is about 5 nm. The particles became frustoconical. When the V underlayer was formed, the CoPt magnetic particles in the PTFE base material became cylindrical.

【0027】また、いずれの磁気記録媒体も、従来の磁
気記録媒体と比較して良好な特性を示した。 実施例3 真空チャンバー内に回転可能に設けられた基板パレット
にディスク型基板をセットし、この基板に対向するよう
にCoPtターゲットを設けた。また、基板−ターゲッ
ト間に高周波コイルを接続した。
Further, all the magnetic recording media exhibited better characteristics than the conventional magnetic recording media. Example 3 A disk-type substrate was set on a substrate pallet rotatably provided in a vacuum chamber, and a CoPt target was provided so as to face the substrate. In addition, a high-frequency coil was connected between the substrate and the target.

【0028】真空チャンバー内を5×10-5Paの真空
度に引き、Arを180sccm、CF4 を40scc
mの流量で真空チャンバー内に導入し、基板パレットを
回転させながら、CoPtターゲットをDC100Wで
放電させ、高周波コイルに40kHzの交流電流を流し
てディスク基板上に磁性薄膜を成膜した。成膜された磁
性薄膜は、C−F系プラズマ重合物からなる母材中に偏
平回転楕円体状のCoPt磁性粒子が分散した構造を有
していた。この磁気記録媒体も実施例1のものと同様
に、高い記録分解能および低ノイズ特性を示し、耐摺動
性にも優れていた。
The inside of the vacuum chamber is evacuated to a degree of vacuum of 5 × 10 −5 Pa, and Ar is 180 sccm and CF 4 is 40 scc.
The CoPt target was discharged at DC 100 W while rotating the substrate pallet at a flow rate of m, and an alternating current of 40 kHz was passed through the high-frequency coil to form a magnetic thin film on the disk substrate. The formed magnetic thin film had a structure in which flat spheroidal CoPt magnetic particles were dispersed in a base material composed of a CF plasma polymer. This magnetic recording medium also exhibited high recording resolution and low noise characteristics as in Example 1, and also had excellent sliding resistance.

【0029】[0029]

【発明の効果】以上詳述したように本発明によれば、媒
体S/N特性、ヘッドとの摺動特性、および耐候性に優
れた磁気記録媒体を提供できる。
As described above in detail, according to the present invention, a magnetic recording medium having excellent medium S / N characteristics, sliding characteristics with a head, and weather resistance can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の磁気記録媒体を製造するために用いら
れたスパッタ装置の構成図。
FIG. 1 is a configuration diagram of a sputtering apparatus used for manufacturing a magnetic recording medium of the present invention.

【図2】本発明の実施例1における磁気記録媒体を模式
的に示す断面図。
FIG. 2 is a sectional view schematically showing a magnetic recording medium according to the first embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…真空チャンバー 2…基板パレット 3…基板 4…CoPtターゲット 5…PTFEターゲット 10…磁性薄膜 11…PTFE母材 12…CoPt磁性粒子 DESCRIPTION OF SYMBOLS 1 ... Vacuum chamber 2 ... Substrate pallet 3 ... Substrate 4 ... CoPt target 5 ... PTFE target 10 ... Magnetic thin film 11 ... PTFE base material 12 ... CoPt magnetic particles

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 非磁性母材中に磁性粒子を分散させた磁
性薄膜を有する磁気記録媒体において、前記非磁性母材
が有機物からなり、前記磁性粒子の形状が球状、扁長回
転楕円体状、偏平回転楕円体状、円錐状、円錐台状また
は円柱状であることを特徴とする磁気記録媒体。
1. A magnetic recording medium having a magnetic thin film in which magnetic particles are dispersed in a non-magnetic base material, wherein the non-magnetic base material is made of an organic substance, and the shape of the magnetic particles is spherical, oblate spheroidal. A magnetic recording medium having a shape of a flat spheroid, a cone, a truncated cone, or a column.
【請求項2】 前記非磁性母材の硬度が前記磁性粒子の
硬度よりも低いことを特徴とする請求項1記載の磁気記
録媒体。
2. The magnetic recording medium according to claim 1, wherein the hardness of the non-magnetic base material is lower than the hardness of the magnetic particles.
【請求項3】 非磁性母材中に磁性粒子を分散させた磁
性薄膜が、磁性材料ターゲットおよび有機物ターゲット
のスパッタリングにより形成されたものであることを特
徴とする請求項1記載の磁気記録媒体。
3. The magnetic recording medium according to claim 1, wherein the magnetic thin film in which magnetic particles are dispersed in a non-magnetic base material is formed by sputtering a magnetic material target and an organic target.
JP8278017A 1996-10-21 1996-10-21 Magnetic recording medium Pending JPH10125520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8278017A JPH10125520A (en) 1996-10-21 1996-10-21 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8278017A JPH10125520A (en) 1996-10-21 1996-10-21 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH10125520A true JPH10125520A (en) 1998-05-15

Family

ID=17591490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8278017A Pending JPH10125520A (en) 1996-10-21 1996-10-21 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH10125520A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8673465B2 (en) 2008-12-19 2014-03-18 Showa Denko K.K. Magnetic recording medium, method of fabricating the same, and storage apparatus
JP2019102114A (en) * 2017-12-07 2019-06-24 昭和電工株式会社 Magnetic recording medium
JP2019204564A (en) * 2018-05-21 2019-11-28 昭和電工株式会社 Magnetic recording medium and magnetic storage device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8673465B2 (en) 2008-12-19 2014-03-18 Showa Denko K.K. Magnetic recording medium, method of fabricating the same, and storage apparatus
JP2019102114A (en) * 2017-12-07 2019-06-24 昭和電工株式会社 Magnetic recording medium
JP2019204564A (en) * 2018-05-21 2019-11-28 昭和電工株式会社 Magnetic recording medium and magnetic storage device

Similar Documents

Publication Publication Date Title
WO2006003922A1 (en) Perpendicular magnetic recording disk and process for producing the same
JPH07311929A (en) Magnetic recording medium and its manufacture
US6372367B1 (en) Magnetic recording medium, method for producing the same and magnetic recording apparatus using the same
JP3892401B2 (en) Manufacturing method of disk substrate for perpendicular magnetic recording medium, and manufacturing method of perpendicular magnetic recording disk
US20050106314A1 (en) Magnetic recording medium, the manufacturing method and magnetic recording apparatus using the same
JPH10125520A (en) Magnetic recording medium
JP3625865B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus
JP2005174531A (en) Magnetic body for non-reactive treatment for use in granular perpendicular recording
JP2001189006A (en) Magnetic recording medium, method of producing the same and magnetic recording reproducing device
JP2007102833A (en) Perpendicular magnetic recording medium
JP2006049706A (en) Switched connection type soft-magnetic material
JP2000215432A (en) Perpendicular magnetic recording medium
JP4507153B2 (en) Magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus
JPWO2003100773A1 (en) Information recording medium and information storage device
JP2006120234A (en) Manufacturing method of perpendicular magnetic recording medium
JP2650282B2 (en) Magnetic recording media
JP4389381B2 (en) Magnetic recording medium and magnetic recording apparatus
JPH10241935A (en) Magnetic recording medium and its manufacture
JPH10289437A (en) Magnetic recording medium and magnetic storage device
JP2003281707A (en) Magnetic recording medium
JPH11110730A (en) Magnetic recording medium
JP4238455B2 (en) Magnetic recording medium manufacturing method and magnetic recording / reproducing apparatus
JP4534402B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP2000163732A (en) Magnetic recording medium and its production
JP2002063712A (en) Magnetic recording medium and magnetic recording apparatus using the same