JPH087250A - Magnetic recording medium and magnetic storage device using this medium - Google Patents

Magnetic recording medium and magnetic storage device using this medium

Info

Publication number
JPH087250A
JPH087250A JP13157194A JP13157194A JPH087250A JP H087250 A JPH087250 A JP H087250A JP 13157194 A JP13157194 A JP 13157194A JP 13157194 A JP13157194 A JP 13157194A JP H087250 A JPH087250 A JP H087250A
Authority
JP
Japan
Prior art keywords
magnetic
recording medium
substrate
magnetic recording
underlayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13157194A
Other languages
Japanese (ja)
Inventor
Kiwamu Tanahashi
究 棚橋
Takanobu Takayama
孝信 高山
Yuzuru Hosoe
譲 細江
Masaaki Futamoto
正昭 二本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13157194A priority Critical patent/JPH087250A/en
Publication of JPH087250A publication Critical patent/JPH087250A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a magnetic recording medium using a smooth substrate and having high intransurface magnetic anisotropy,and high coercive force and a magnetic storage device using the medium. CONSTITUTION:When a nonmagnetic underlayer 12, a magnetic layer 13 and a protective layer 14 are successively laminated on a nonmagnetic substrate 11 to obt.ain a magnetic recording medium, the substrate 11 is made of a substrate of glass, carbon, silicon, etc., having a smooth surface, the angle of inclination of columnar grains constituting the underlayer 12 is regulated to the range of 20-50 deg. from the normal direction of the substrate 11 and the ratio (t1/t2) of the thickness (t1) of the magnetic layer 13 to the thickness (t2) of the underlayer 12 is regulated to <=0.2. High density recording is possible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁気記録媒体および磁気
記憶装置に係り、特に高密度磁気記録に好適な薄膜型記
録媒体、及びこれを用いた小型大容量磁気記憶装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium and a magnetic storage device, and more particularly to a thin film type recording medium suitable for high density magnetic recording, and a small and large capacity magnetic storage device using the thin film type recording medium.

【0002】[0002]

【従来の技術】コンピュ−タのダウンサイジングに伴
い、磁気ディスク装置その他の外部記憶装置の小型大容
量化・高速アクセス化が強く求められている。特に、磁
気ディスク記録装置は高密度高速記録に適した記憶装置
であり、その需要が一段と強まりつつある。磁気ディス
ク装置に用いられる磁気記録媒体として、酸化物磁性体
の粉末をディスク基板上に塗布した塗布型の記録媒体
と、金属磁性体の薄膜を基板上にスパッタリング等の方
法により蒸着した薄膜型の記録媒体とが知られている。
2. Description of the Related Art With the downsizing of computers, there is a strong demand for miniaturization, large capacity, and high speed access of magnetic disk devices and other external storage devices. In particular, the magnetic disk recording device is a storage device suitable for high-density and high-speed recording, and its demand is further increasing. As a magnetic recording medium used in a magnetic disk device, a coating type recording medium in which a powder of an oxide magnetic material is coated on a disk substrate and a thin film type in which a thin film of a metal magnetic material is deposited on the substrate by a method such as sputtering are used. A recording medium is known.

【0003】この薄膜型記録媒体は、塗布型記録媒体と
比較して記録膜中の磁性体の密度が高いため、高密度の
記録に適している。薄膜媒体の基板には通常Ni−Pメ
ッキ膜が施されたAl(アルミ)合金が用いられ、さら
に基板表面には、ヘッド粘着、及び基板の方向を磁化容
易軸とする面内磁気異方性付与の目的で、表面中心線平
均粗さが2nmないし100nm程のテクスチャ−と呼
ばれる溝や突起が形成されている。
This thin film type recording medium is suitable for high density recording since the density of the magnetic substance in the recording film is higher than that of the coating type recording medium. An Al (aluminum) alloy coated with a Ni-P plated film is usually used for the substrate of the thin film medium, and further, head adhesion on the substrate surface and in-plane magnetic anisotropy with the direction of the substrate as the easy axis of magnetization. For the purpose of application, grooves or protrusions called texture having a surface center line average roughness of about 2 nm to 100 nm are formed.

【0004】現在、実用化されているAl合金基板を用
いた磁気ディスク装置は、面内磁気異方性を利用して高
い記録密度を実現している。一方、磁気ディスク装置の
小型化に伴い、ノ−ト型パソコンといった可搬型コンピ
ュ−タにも組み込まれるようになり、そのため、ディス
クの耐衝撃性の要求が一段と高まっている。従来使われ
ているAl(アルミ)合金基板ではAl(アルミ)合金
の硬さが不十分なため、ヘッドがディスクに衝突した
際、ディスクが損傷する恐れがある。そこで耐衝撃性に
優れたガラス基板が注目を集めているが、表面が硬くテ
クスチャ−加工が困難という問題がある。
At present, a magnetic disk device using an Al alloy substrate which has been put into practical use realizes a high recording density by utilizing in-plane magnetic anisotropy. On the other hand, along with the miniaturization of magnetic disk devices, the magnetic disk devices have been incorporated into portable computers such as note type personal computers, so that the demand for shock resistance of the disks has been further increased. Since the Al (aluminum) alloy substrate used conventionally has insufficient hardness of the Al (aluminum) alloy, the disc may be damaged when the head collides with the disc. Therefore, a glass substrate having excellent impact resistance has attracted attention, but it has a problem that the surface is hard and texture processing is difficult.

【0005】ヘッド粘着の問題は基板もしくは保護膜に
等方的な凹凸を形成することで解決できるが、この手法
では面内磁気異方性を付けることはできない。平滑基板
上で面内磁気異方性を付ける方法として斜め蒸着法(例
えば特開昭58−128023号公報)や斜めスパッタ
リング法(例えば特開昭62−82516号公報、特開
昭62−150516号公報、特開平4−182925
号公報)といった斜め入射法が知られているが、面内磁
気異方性は付与できるが、面内保磁力は最大でも1.6
kOe以下と低く、高密度磁気記録媒体(例えば、2G
b/inch2の面記録密度を実現するためには、2k
Oe以上の面内保磁力が必要である)としては不十分で
ある。
The problem of head adhesion can be solved by forming isotropic irregularities on the substrate or the protective film, but this method cannot provide in-plane magnetic anisotropy. As a method for imparting in-plane magnetic anisotropy on a smooth substrate, an oblique vapor deposition method (for example, JP-A-58-128023) or an oblique sputtering method (for example, JP-A-62-82516, JP-A-62-150516). Japanese Laid-Open Patent Publication No. 4-182925
Although an oblique incidence method such as that disclosed in Japanese Laid-Open Patent Publication No. 2004-242242 is known, in-plane magnetic anisotropy can be imparted, but the maximum in-plane coercive force is 1.6.
Low as kOe or less, high density magnetic recording medium (for example, 2G
2k to achieve an areal recording density of b / inch 2.
Oe or more in-plane coercive force is required).

【0006】[0006]

【発明が解決しようとする課題】耐衝撃性に優れたガラ
ス基板を用いた磁気ディスク装置が製品化されはじめた
が、面記録密度はAl(アルミ)合金基板を用いた磁気
ディスク装置に比べ低いのが現状である。この原因の一
つとして前述したように面内磁気異方性を付与できない
ことがあげられる。今後、ガラス、カ−ボン、シリコン
等の表面が極めて平滑な基板を用いた磁気ディスク装置
で、Al(アルミ)合金基板を用いた磁気ディスク装置
と同等以上の面記録密度を達成するためには、強い面内
磁気異方性および高い面内保磁力を有する磁気記録媒体
を形成する必要がある。
Magnetic disk devices using a glass substrate having excellent impact resistance have begun to be commercialized, but the areal recording density is lower than that of a magnetic disk device using an Al (aluminum) alloy substrate. is the current situation. One of the causes is that the in-plane magnetic anisotropy cannot be imparted as described above. In the future, in order to achieve an areal recording density equal to or higher than that of a magnetic disk device using an Al (aluminum) alloy substrate in a magnetic disk device using a substrate such as glass, carbon, or silicon whose surface is extremely smooth. It is necessary to form a magnetic recording medium having strong in-plane magnetic anisotropy and high in-plane coercive force.

【0007】以上の従来技術における課題および状況を
鑑み、本発明の第一の目的は、表面が極めて平滑な基板
で強い面内の磁気異方性および高い保磁力を有する磁気
記録媒体を提供することであり、第二の目的はこのよう
な媒体を用いた大容量で高い信頼性を有する磁気記憶装
置を提供することにある。
In view of the above problems and circumstances in the prior art, the first object of the present invention is to provide a magnetic recording medium having a substrate having an extremely smooth surface and having strong in-plane magnetic anisotropy and high coercive force. A second object is to provide a large capacity and highly reliable magnetic storage device using such a medium.

【0008】[0008]

【課題を解決するための手段】本発明の上記第一の目的
を達成するために、非磁性基板上に非磁性下地層、磁性
層および保護層が順次積層されてなる磁気記録媒体にお
いて、非磁性基板が平滑な表面を有する基板からなり、
非磁性下地層が柱状粒子により構成され、柱状粒子の傾
斜角度が、非磁性基板の法線方向から20°以上、50
°以下の範囲にあり、磁性層の膜厚(t1)と非磁性下
地層の膜厚(t2)の膜厚比(t1/t2)が、0.2以
下とする。さらに、(1)磁性層の膜厚(t1)が10
nm以上、30nm以下の範囲にあること、(2)非磁
性下地層の膜厚(t2)が100nm以上、300nm
以下の範囲にあること、(3)非磁性下地層が、斜め蒸
着法もしくは斜めスパッタリング法により形成されるこ
と、(4)基板がガラス、カーボン、又はシリコンから
なること、が最も好ましい。
In order to achieve the first object of the present invention, in a magnetic recording medium comprising a nonmagnetic underlayer, a magnetic layer and a protective layer sequentially laminated on a nonmagnetic substrate, The magnetic substrate consists of a substrate with a smooth surface,
The nonmagnetic underlayer is composed of columnar particles, and the inclination angle of the columnar particles is 20 ° or more from the normal direction of the nonmagnetic substrate, 50
The thickness ratio (t 1 / t 2 ) of the thickness (t 1 ) of the magnetic layer and the thickness (t 2 ) of the non-magnetic underlayer is 0.2 or less. Further, (1) the thickness (t 1 ) of the magnetic layer is 10
The thickness is in the range of 30 nm or more and 30 nm or less, and (2) the thickness (t 2 ) of the nonmagnetic underlayer is 100 nm or more and 300 nm.
Most preferably, it is in the following range, (3) the non-magnetic underlayer is formed by the oblique vapor deposition method or the oblique sputtering method, and (4) the substrate is made of glass, carbon, or silicon.

【0009】上記第二の目的を達成するために、上記の
磁気記録媒体と、記録用電磁誘導型薄膜磁気ヘッドと再
生用磁気抵抗効果型磁気ヘッドを組み合わせた複合磁気
ヘッドを用いて、磁気記憶装置を構成する。また、磁気
記憶装置のための信号処理手段として、最尤復号法によ
る信号処理手段を使用すると、さらに記録密度を向上で
きるので望ましい。
In order to achieve the above-mentioned second object, magnetic recording is performed by using the above-mentioned magnetic recording medium, a composite magnetic head in which a recording electromagnetic induction type thin film magnetic head and a reproducing magnetoresistive effect type magnetic head are combined. Configure the device. Further, it is desirable to use the signal processing means by the maximum likelihood decoding method as the signal processing means for the magnetic storage device because the recording density can be further improved.

【0010】[0010]

【作用】非磁性下地層を斜め蒸着法もしくは斜めスパッ
タリング法により形成すると、非磁性下地層の膜構造は
柱状構造となり、柱状粒子21は蒸気の入射方向に傾斜
して成長する。柱状粒子の傾斜角度を、非磁性基板法線
方向から20°以上、50°以下、磁性層の膜厚
(t1)と非磁性層の膜厚(t2)の膜厚比(t1/t2
を0.2以下の範囲に設定すると、図2の3次元模式図
に示すように、磁性層の粒子は非磁性下地層の柱状粒子
21の形状を引き継いで成長する。
When the nonmagnetic underlayer is formed by the oblique vapor deposition method or the oblique sputtering method, the film structure of the nonmagnetic underlayer has a columnar structure, and the columnar particles 21 grow while being inclined in the vapor incident direction. The inclination angle of the columnar particles, 20 ° or more from the non-magnetic substrate normal direction, 50 ° or less, the thickness of the magnetic layer (t 1) and the thickness ratio of the thickness of the nonmagnetic layer (t 2) (t 1 / t 2 )
Is set to be 0.2 or less, the particles of the magnetic layer grow while continuing the shape of the columnar particles 21 of the non-magnetic underlayer, as shown in the three-dimensional schematic view of FIG.

【0011】蒸気入射方向24と直交する方向26(以
下、直交方向と呼び、図4に示すように、この直交方向
46は、蒸気入射面42と磁性層により形成される平均
的な面との交線で与えられる方向(以下、平行方向45
と呼ぶ)と直交する方向である)には、磁性層の粒子2
2は複数個(平均的には、2〜3個)が垂直方向26で
連結して、クラスタ23を形成する。一方、平行方向2
5(図4の平行方向45に対応する)には、非磁性下地
層の柱状粒子21の段差があるため、段差の間では磁性
層の隣接する粒子は連結しない。即ち、同一段差内にお
いて、直交方向26で各柱状粒子21上に形成された磁
性層22が、複数個連結してクラスタ23が形成され
る。
A direction 26 orthogonal to the vapor incident direction 24 (hereinafter referred to as an orthogonal direction, and as shown in FIG. 4, the orthogonal direction 46 is defined by the vapor incident surface 42 and an average surface formed by the magnetic layers. The direction given by the line of intersection (hereinafter parallel direction 45
(Which is a direction orthogonal to the direction)).
A plurality of 2 (on average, 2 to 3) are connected in the vertical direction 26 to form a cluster 23. On the other hand, parallel direction 2
5 (corresponding to the parallel direction 45 in FIG. 4) has the step of the columnar particles 21 of the non-magnetic underlayer, the adjacent particles of the magnetic layer are not connected between the steps. That is, within the same step, a plurality of magnetic layers 22 formed on each columnar particle 21 in the orthogonal direction 26 are connected to each other to form a cluster 23.

【0012】クラスタ23は、蒸気入射方向と直交する
方向(直交方向26)を長軸とする異方的な形状を持つ
ため、いわゆる形状磁気異方性により一軸異方性が誘起
され、磁性層面内で蒸気入射方向と直交する方向が磁化
容易軸とする磁気異方性が付与される。また、非磁性下
地層の膜厚を100nm以上、300nm以下に設定し
することにより非磁性下地層の柱状粒子のサイズが均一
化し、さらに磁性層の膜厚を10nm以上、30nm以
下に設定することによりクラスタのサイズは熱揺らぎを
受けにくく、かつ単磁区粒子的に振る舞うサイズとな
る。その結果、高い保磁力が得られ、かつ磁化状態の分
散(磁化方向のバラツキ)が小さくなり媒体ノイズが減
少する。
Since the cluster 23 has an anisotropic shape whose major axis is the direction orthogonal to the vapor incident direction (orthogonal direction 26), uniaxial anisotropy is induced by so-called shape magnetic anisotropy, and the magnetic layer surface is formed. Magnetic anisotropy is imparted in which the direction perpendicular to the vapor incident direction is the easy axis of magnetization. Further, by setting the film thickness of the nonmagnetic underlayer to 100 nm or more and 300 nm or less, the size of the columnar particles of the nonmagnetic underlayer is made uniform, and further, the film thickness of the magnetic layer is set to 10 nm or more and 30 nm or less. As a result, the cluster size is less susceptible to thermal fluctuations and behaves like single domain particles. As a result, a high coercive force is obtained, the dispersion of the magnetization state (variation in the magnetization direction) is reduced, and the medium noise is reduced.

【0013】本発明の磁気記録媒体は、媒体ノイズを低
く抑えることができるので、記録用電磁誘導型薄膜磁気
ヘッドと再生用磁気抵抗効果型磁気ヘッドを組み合わせ
た複合磁気ヘッドを用いることにより、1平方インチあ
たり1ギガビットの記録密度を実現できる。
Since the magnetic recording medium of the present invention can suppress the medium noise to a low level, by using a composite magnetic head in which a recording electromagnetic induction type thin film magnetic head and a reproducing magnetoresistive effect type magnetic head are combined, A recording density of 1 gigabit per square inch can be realized.

【0014】[0014]

【実施例】図1に示すように、非磁性基板11上に非磁
性下地層12、磁性層13、保護層14を、斜め蒸着法
もしくは斜めスパッタリング法により順次形成する。磁
性層13および保護層14は、通常の蒸着法もしくはス
パッタリング法により形成してもよい。このとき基板温
度は100℃以上、300℃以下とし、蒸気入射角度を
非磁性基板法線方向から40°以上、70°以下とする
のが望ましい。
EXAMPLE As shown in FIG. 1, a non-magnetic underlayer 12, a magnetic layer 13 and a protective layer 14 are sequentially formed on a non-magnetic substrate 11 by an oblique vapor deposition method or an oblique sputtering method. The magnetic layer 13 and the protective layer 14 may be formed by an ordinary vapor deposition method or sputtering method. At this time, the substrate temperature is preferably 100 ° C. or higher and 300 ° C. or lower, and the vapor incident angle is preferably 40 ° or more and 70 ° or less from the normal direction of the non-magnetic substrate.

【0015】強い面内磁気異方性および高い面内保磁力
を有する磁気記録媒体を形成するには、磁性層13の膜
構造を磁性粒子が複数個連結した異方的なクラスタ構造
にし、なおかつ隣接するクラスタ間の磁気的相互作用を
低減することが有効である。このような膜構造を実現す
るためには非磁性下地層12の膜構造を柱状構造にし、
柱状粒子の傾斜角度を非磁性基板法線方向から20°以
上、50°以下とし、なおかつ磁性層の膜厚(t1)と
非磁性層の膜厚(t2)の膜厚比(t1/t2)を0.2
以下とすることが望ましい。非磁性下地層の膜厚は10
0nm以上、300nm以下、磁性層の膜厚は10nm
以上、30nm以下の範囲とするのが、クラスタのサイ
ズを均一化する上で望ましい。なお、保護層14の上
に、最終的に潤滑層15を形成する。以下、本発明の磁
気記録媒体の実施例を、詳細に説明する。
In order to form a magnetic recording medium having a strong in-plane magnetic anisotropy and a high in-plane coercive force, the film structure of the magnetic layer 13 is made to be an anisotropic cluster structure in which a plurality of magnetic particles are connected, and It is effective to reduce the magnetic interaction between adjacent clusters. In order to realize such a film structure, the film structure of the non-magnetic underlayer 12 has a columnar structure,
Columnar particles inclined angle from the non-magnetic substrate normal direction 20 ° or more, and than 50 °, yet thickness ratio (t 1 the thickness of the magnetic layer (t 1) and the film thickness of the nonmagnetic layer (t 2) / T 2 ) is 0.2
The following is desirable. The thickness of the non-magnetic underlayer is 10
0 nm or more and 300 nm or less, the thickness of the magnetic layer is 10 nm
As described above, the range of 30 nm or less is desirable in order to make the cluster sizes uniform. The lubricating layer 15 is finally formed on the protective layer 14. Hereinafter, examples of the magnetic recording medium of the present invention will be described in detail.

【0016】(実施例1)図3に示すように、表面中心
線平均粗さが1.4nmを有する外径95mmφの強化
ガラス基板(コーニング0313)からなる基板31上
に200nmのCr下地層32、10nm〜30nmの
Co磁性層33、10nmのカ−ボン保護層34を斜め
蒸着法により形成し、最後に3nmのパ−フルオロアル
キルポリエ−テル系の潤滑層35を形成した。蒸気入射
角度は基板法線方向に対し、45°と70°とした。蒸
着前の真空度は2×10-6Torr、基板温度は300
℃、蒸着速度はCr下地層を(0.5nm〜1.0n
m)/s、Co磁性層及びカ−ボン保護膜を(0.05
nm〜1.0nm)/sとした。
Example 1 As shown in FIG. 3, a 200 nm Cr underlayer 32 is formed on a substrate 31 made of a tempered glass substrate (Corning 0313) having an outer diameter of 95 mmφ and a surface center line average roughness of 1.4 nm. A Co magnetic layer 33 having a thickness of 10 nm to 30 nm and a carbon protective layer 34 having a thickness of 10 nm were formed by an oblique evaporation method, and finally a lubricating layer 35 of a perfluoroalkylpolyether system having a thickness of 3 nm was formed. The vapor incident angles were 45 ° and 70 ° with respect to the substrate normal direction. The degree of vacuum before vapor deposition is 2 × 10 -6 Torr, and the substrate temperature is 300.
℃, vapor deposition rate of Cr underlayer (0.5nm ~ 1.0n
m) / s, Co magnetic layer and carbon protective film (0.05
nm-1.0 nm) / s.

【0017】また、比較例1として蒸気入射角度を20
°とした磁気記録媒体を、比較例2としてCo磁性層の
膜厚を50nm以上とした磁気記録媒体を、それぞれ実
施例1と同様な条件で作製した。ここで、実施例1およ
び比較例1の媒体では、磁性層の膜厚(t1)と非磁性
下地層の膜厚(t2)の膜厚比(t1/t2)が0.2以
下、比較例2の媒体では、上記の膜厚比が0.2以上と
なっている。
As Comparative Example 1, the vapor incident angle was 20.
As a comparative example 2, a magnetic recording medium having a Co magnetic layer thickness of 50 nm or more was manufactured under the same conditions as in Example 1. Here, in the medium of Example 1 and Comparative Example 1, the film thickness of the magnetic layer (t 1) and the thickness ratio of the thickness of the nonmagnetic underlayer (t 2) (t 1 / t 2) 0.2 Hereinafter, in the medium of Comparative Example 2, the above film thickness ratio is 0.2 or more.

【0018】実施例1、及び比較例1、2の磁気記録媒
体の面内保磁力を、試料振動型磁力計(VSM)を用い
て測定した。ここで最大印加磁界は13kOeとした。
図4に示すように、面内保磁力の測定方向は膜面内で蒸
気の入射方向に沿った方向(平行方向45)と直交する
方向(直交方向46)の2方向とした。平行方向45
と、直交方向46は言い替えると、平行方向45は、蒸
気入射面42(この面の所定位置に蒸気入射方向44
が、面41の法線軸から所定の蒸気入射角度をもって配
置される)と、磁性層により形成される平均的な面41
との交線で与えられる方向であり、直交方向46は、平
行方向45と直交する方向である。
The in-plane coercive forces of the magnetic recording media of Example 1 and Comparative Examples 1 and 2 were measured using a sample vibrating magnetometer (VSM). Here, the maximum applied magnetic field was 13 kOe.
As shown in FIG. 4, the in-plane coercive force was measured in two directions, that is, the direction along the vapor incident direction (parallel direction 45) and the direction (orthogonal direction 46) in the film plane. Parallel direction 45
In other words, the orthogonal direction 46, in other words, the parallel direction 45 is the vapor incident surface 42 (the vapor incident direction 44 at a predetermined position on this surface).
Is arranged with a predetermined vapor incident angle from the normal axis of the surface 41) and the average surface 41 formed by the magnetic layer.
The orthogonal direction 46 is a direction orthogonal to the parallel direction 45.

【0019】図5に、膜面内で蒸気の入射方向に沿った
平行方向45で測定した面内保磁力を、図6に、膜面内
で蒸気の入射方向と直交する直交方向46で測定した面
内保磁力を、それぞれ示す。以下、図5、図6、図7に
おいて、点□、点△(黒塗の点△も同じ)、点○(黒塗
の点○も同じ)は、蒸気入射角度がそれぞれ、20°、
45°、70°であることを示す。さらに、図5におい
て、Co磁性層の膜厚約30nmでの、実施例1の2点
(黒塗の点△、黒塗の点○)、比較例3における点○と
点□はそれぞれ重なり、また図6において、Co磁性層
の膜厚約30nmでの比較例3における点○と点△はほ
ぼ重なる。
FIG. 5 shows the in-plane coercive force measured in the film surface in the parallel direction 45 along the vapor incident direction, and FIG. 6 shows the in-plane coercive force measured in the orthogonal direction 46 orthogonal to the vapor incident direction in the film surface. The in-plane coercive force is shown. Hereinafter, in FIG. 5, FIG. 6, and FIG. 7, points □, points Δ (same as black-painted points Δ), and points ○ (same as black-painted points ○) have vapor incident angles of 20 °,
It shows that they are 45 ° and 70 °. Further, in FIG. 5, two points of Example 1 (points of black coating Δ, points of black coating ○) and points ○ and points □ in Comparative Example 3 overlap each other when the thickness of the Co magnetic layer is about 30 nm. Further, in FIG. 6, point ◯ and point Δ in Comparative Example 3 when the film thickness of the Co magnetic layer is about 30 nm almost overlap.

【0020】Co磁性層の膜厚が10nm〜30nmの
範囲で、蒸気入射角度を45°と70°とした場合は、
高い面内保磁力が得られ、蒸気の入射方向と直交する方
向では1700 Oe以上、最大で2983 Oeの高い
面内保磁力が得られた。比較例1の蒸気入射角度を20
°とした媒体の面内保磁力は、最大でも1500 Oe
に達しなかった。また比較例2のCo磁性層の膜厚が5
0nm以上の媒体も、面内保磁力が1100 Oe以下
と低かった。
When the film thickness of the Co magnetic layer is in the range of 10 nm to 30 nm and the vapor incident angles are 45 ° and 70 °,
A high in-plane coercive force was obtained, and a high in-plane coercive force of 1700 Oe or more and 2983 Oe at maximum was obtained in the direction orthogonal to the vapor incident direction. The vapor incident angle of Comparative Example 1 was 20.
The maximum in-plane coercive force of the medium is 1500 Oe.
Did not reach The thickness of the Co magnetic layer of Comparative Example 2 was 5
The in-plane coercive force of the medium of 0 nm or more was as low as 1100 Oe or less.

【0021】次に実施例1、及び比較例1、2の面内の
磁気異方性を調べるために、トルクカ−ブを測定した。
ここで印加磁界は13kOeとした。トルクカ−ブのs
in(2θ)成分をCo磁性膜の体積で割り、面内の磁
気異方性エネルギ−を求め、その結果を図7に示す。図
7において、Co磁性層の膜厚約30nmでの比較例3
における点○と点△と点□はほぼ重なる。実施例1の媒
体は、膜面内で蒸気入射方向と直交する方向を磁化容易
軸とする一軸磁気異方性を示し、8x105erg/c
c以上、最大で1x106erg/ccの高い磁気異方
性エネルギが得られた。それに対し、比較例1の蒸気入
射角度を20°とした媒体は、最大でも5x105er
g/ccに達しなかった。また、比較例2のCo磁性層
の膜厚が50nm以上の媒体も、磁気異方性エネルギ−
が7x105erg/cc以下と実施例1の媒体に比べ
低かった。
Next, in order to investigate the in-plane magnetic anisotropy of Example 1 and Comparative Examples 1 and 2, the torque curve was measured.
Here, the applied magnetic field was 13 kOe. Torque curve s
The in (2θ) component is divided by the volume of the Co magnetic film to obtain the in-plane magnetic anisotropy energy, and the result is shown in FIG. 7. In FIG. 7, Comparative Example 3 in which the thickness of the Co magnetic layer is about 30 nm
The points ○, △, and □ in are almost overlapped. The medium of Example 1 exhibits uniaxial magnetic anisotropy in which the easy magnetization axis is in the direction orthogonal to the vapor incident direction in the film surface, and 8 × 10 5 erg / c
A high magnetic anisotropy energy of c or more and a maximum of 1 × 10 6 erg / cc was obtained. On the other hand, the medium having a vapor incident angle of 20 ° in Comparative Example 1 has a maximum of 5 × 10 5 er.
It did not reach g / cc. The magnetic anisotropy energy of the medium of Comparative Example 2 having a Co magnetic layer thickness of 50 nm or more
Was less than 7 × 10 5 erg / cc, which was lower than that of the medium of Example 1.

【0022】実施例1、および比較例1の媒体の断面形
態を走査型電子顕微鏡で観察した結果、実施例1の媒体
のCr下地層は明瞭な柱状組織となっており、柱状粒子
の傾斜角度は基板の法線方向から20°以上、50°以
下の範囲にあった。一方、比較例1の媒体のCr下地層
には、明瞭な柱状組織がみられなかった。
As a result of observing the cross-sectional morphology of the medium of Example 1 and Comparative Example 1 with a scanning electron microscope, the Cr underlayer of the medium of Example 1 has a clear columnar structure, and the inclination angle of the columnar particles is Was in the range of 20 ° or more and 50 ° or less from the normal direction of the substrate. On the other hand, no clear columnar structure was found in the Cr underlayer of the medium of Comparative Example 1.

【0023】以上のことより、強い面内磁気異方性およ
び高い保磁力を有する磁気記録媒体を作製するために
は、非磁性下地層の柱状粒子の傾斜角度を、基板の法線
方向より20度以上、50°以下の範囲とし、かつ磁性
層の膜厚(t1)と非磁性下地層の膜厚(t2)の膜厚比
(t1/t2)を0.2以下にすることが有効であること
が判明した。
From the above, in order to manufacture a magnetic recording medium having a strong in-plane magnetic anisotropy and a high coercive force, the inclination angle of the columnar particles of the non-magnetic underlayer is set to 20 from the direction normal to the substrate. degrees or more, the range of than 50 °, and that the thickness ratio of the thickness of the magnetic layer (t 1) and the film thickness of the nonmagnetic underlayer (t 2) of (t 1 / t 2) to 0.2 or less Proved to be effective.

【0024】Cr下地層が、面内の保磁力及び磁気異方
性に与える影響を明らかにするために、比較例3として
Cr下地を形成せず、ガラス基板上に直接Coを30n
mの厚さ形成した媒体の面内保磁力と磁気異方性エネル
ギ−を測定した。その結果を図5、図6、図7に示す。
Cr下地層を形成しない比較例3の媒体の面内保磁力
は、蒸気入射角度にほとんど依存せず、約500Oeと
小さい値を示し、また磁気異方性エネルギ−も1x10
5erg/cc以下と小さかった。即ち、Cr下地膜は
面内保磁力を高め、磁気異方性を付与する役割を果たし
ていることが判明した。
In order to clarify the effect of the Cr underlayer on the in-plane coercive force and magnetic anisotropy, in Comparative Example 3, the Cr underlayer was not formed and Co of 30 n was directly deposited on the glass substrate.
The in-plane coercive force and magnetic anisotropy energy of the medium having a thickness of m were measured. The results are shown in FIGS. 5, 6 and 7.
The in-plane coercive force of the medium of Comparative Example 3 in which the Cr underlayer is not formed almost does not depend on the vapor incident angle and shows a small value of about 500 Oe, and the magnetic anisotropy energy is 1 × 10.
It was as small as 5 erg / cc or less. That is, it was found that the Cr underlayer plays a role of increasing the in-plane coercive force and imparting magnetic anisotropy.

【0025】(実施例2)以下に、本発明の磁気記憶装
置の実施例について詳細に説明する。実施例1と同様に
して、表面中心線平均粗さが1.4nmを有する外径9
5mmφの強化ガラス基板(コーニング0313)上に
200nmのCr下地層、10nmのCo磁性層、10
nmのカ−ボン保護層を、斜め蒸着法により形成し、最
後に3nmのパ−フルオロアルキルポリエ−テル系の潤
滑層を形成した。なお、図8に示すようにガラス基板7
2を、一部に開口を有するマスク73で覆い、基板ホル
ダー71と基板固定部材71’によりガラス基板72を
固定して、ガラス基板72を回転させ、蒸発源74から
の蒸気入射角度を基板の法線方向に対して45°だけ基
板の半径方向に傾斜させて設定した。蒸着前の真空度、
基板温度、蒸着速度は、実施例1の条件と同じである。
このようにして得られた磁気記録媒体を、1枚〜10枚
組み込んで磁気記憶装置を作製した。図9(a)、及び
図9(b)にそれぞれ、磁気記憶装置の平面模式図およ
び断面図を示す。この装置は磁気記録媒体81と、これ
を回転駆動する駆動部82と、磁気ヘッド83、及びそ
の駆動手段84と、磁気ヘッド83の記録再生処理手段
85を有してなる、周知の構成を持つ磁気記憶装置であ
る。磁気ヘッド83として、記録用電磁誘導型薄膜磁気
ヘッドと再生用磁気抵抗効果型磁気ヘッドを組み合わせ
た複合磁気ヘッドを用い、記録密度として、1平方イン
チあたり1ギガビットが実現できた。
(Embodiment 2) An embodiment of the magnetic storage device of the present invention will be described in detail below. An outer diameter 9 having a surface center line average roughness of 1.4 nm, as in Example 1.
200 nm Cr underlayer, 10 nm Co magnetic layer, 10 nm on a 5 mmφ tempered glass substrate (Corning 0313).
A carbon protective layer having a thickness of 3 nm was formed by an oblique vapor deposition method, and finally a lubricating layer of a perfluoroalkylpolyether having a thickness of 3 nm was formed. In addition, as shown in FIG.
2 is covered with a mask 73 partially having an opening, the glass substrate 72 is fixed by the substrate holder 71 and the substrate fixing member 71 ′, the glass substrate 72 is rotated, and the vapor incident angle from the evaporation source 74 is adjusted to It was set to be inclined by 45 ° with respect to the normal direction in the radial direction of the substrate. Degree of vacuum before vapor deposition,
The substrate temperature and the vapor deposition rate are the same as the conditions of Example 1.
A magnetic storage device was manufactured by incorporating one to ten magnetic recording media thus obtained. 9A and 9B are a schematic plan view and a sectional view of the magnetic memory device, respectively. This apparatus has a well-known configuration including a magnetic recording medium 81, a drive unit 82 for rotating the magnetic recording medium 81, a magnetic head 83, a driving unit 84 for the magnetic head 83, and a recording / reproducing processing unit 85 for the magnetic head 83. It is a magnetic storage device. As the magnetic head 83, a composite magnetic head in which a recording electromagnetic induction thin film magnetic head and a reproducing magnetoresistive magnetic head are combined is used, and a recording density of 1 gigabit per square inch can be realized.

【0026】以上の各実施例において、磁性層としてC
oを用いたが、Coの代わりにCoNiCr、CoCr
Ta、CoCrPt等のCo系合金を用いても同様な結
果が得られた。又、平坦基板として、ガラス基板の代わ
りにカーボン基板、又はシリコン基板を使用しても同様
の結果を得ることができ、平坦基板の表面中心線平均粗
さは、2nm以下であることが好ましい。
In each of the above embodiments, C is used as the magnetic layer.
o was used, but CoNiCr, CoCr instead of Co
Similar results were obtained using Co-based alloys such as Ta and CoCrPt. Similar results can be obtained by using a carbon substrate or a silicon substrate instead of the glass substrate as the flat substrate, and the surface center line average roughness of the flat substrate is preferably 2 nm or less.

【0027】[0027]

【発明の効果】本発明によれば、ガラス、カ−ボン、シ
リコン等の表面が平滑な基板で高密度記録が可能な磁気
記録媒体、及びこれを用いた小型で大容量の磁気記憶装
置を提供できる。
According to the present invention, there are provided a magnetic recording medium capable of high density recording on a substrate having a smooth surface such as glass, carbon and silicon, and a compact and large capacity magnetic storage device using the same. Can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の磁気記録媒体の模式的断面を示す図。FIG. 1 is a diagram showing a schematic cross section of a magnetic recording medium of the present invention.

【図2】本発明の磁気記録媒体の磁性層と非磁性下地層
の界面部分を模式的に示す図。
FIG. 2 is a diagram schematically showing an interface portion between a magnetic layer and a non-magnetic underlayer of the magnetic recording medium of the present invention.

【図3】本発明の一実施例の磁気記録媒体の断面を模式
的に示す図。
FIG. 3 is a diagram schematically showing a cross section of a magnetic recording medium according to an embodiment of the present invention.

【図4】本発明の一実施例の蒸気入射角度及び面内保磁
力の測定方向の定義を示す図。
FIG. 4 is a diagram showing definitions of a vapor incident angle and a measurement direction of in-plane coercive force according to an embodiment of the present invention.

【図5】本発明の一実施例の磁気記録媒体の蒸気入射方
向と、平行方向の面内保磁力とCo磁性層の膜厚との関
係を示す図。
FIG. 5 is a diagram showing the relationship between the vapor incident direction of the magnetic recording medium of one embodiment of the present invention, the in-plane coercive force in the parallel direction, and the film thickness of the Co magnetic layer.

【図6】本発明の一実施例の磁気記録媒体の蒸気入射方
向と、直交方向の面内保磁力とCo磁性層の膜厚との関
係を示す図。
FIG. 6 is a diagram showing the relationship between the vapor incident direction of the magnetic recording medium of one embodiment of the present invention, the in-plane coercive force in the orthogonal direction, and the film thickness of the Co magnetic layer.

【図7】本発明の一実施例の磁気記録媒体の磁気異方性
エネルギとCo膜厚との関係を示す図。
FIG. 7 is a diagram showing the relationship between the magnetic anisotropy energy and the Co film thickness of the magnetic recording medium of one embodiment of the present invention.

【図8】本発明の一実施例の磁気記録媒体の基板と蒸気
入射方向との関係を示す図。
FIG. 8 is a diagram showing the relationship between the substrate and the vapor incident direction of the magnetic recording medium of one embodiment of the present invention.

【図9】(a)は本発明の一実施例の磁気記憶装置を模
式的に示す平面図、(b)は(a)におけるA−A′断
面図。
9A is a plan view schematically showing a magnetic memory device according to an embodiment of the present invention, and FIG. 9B is a cross-sectional view taken along the line AA ′ in FIG.

【符号の説明】[Explanation of symbols]

11…非磁性基板、12、21…非磁性下地層、13、
22…磁性層、14…保護層、15、35…潤滑層、2
3…クラスタ、24、44…蒸気入射方向、31、72
…ガラス基板、32…Cr下地層、33…Co磁性層、
34…カ−ボン保護層、41…磁性層により形成される
平均的な面、42…蒸気入射面、43…蒸気入射角
度、、44…蒸気入射方向、25、45…平行方向、2
6、46…直交方向、71…基板ホルダー、71’…基
板固定部材、73…マスク、74…蒸着源、81…磁気
記録媒体、82…磁気記録媒体駆動部、83…磁気ヘッ
ド、84…磁気ヘッド駆動部、85…記録再生信号処理
系。
11 ... Non-magnetic substrate, 12, 21 ... Non-magnetic underlayer, 13,
22 ... Magnetic layer, 14 ... Protective layer, 15, 35 ... Lubrication layer, 2
3 ... Cluster, 24, 44 ... Vapor incident direction, 31, 72
... Glass substrate, 32 ... Cr underlayer, 33 ... Co magnetic layer,
34 ... Carbon protective layer, 41 ... Average surface formed by magnetic layer, 42 ... Vapor incident surface, 43 ... Vapor incident angle, 44 ... Vapor incident direction, 25, 45 ... Parallel direction, 2
6, 46 ... Orthogonal direction, 71 ... Substrate holder, 71 '... Substrate fixing member, 73 ... Mask, 74 ... Evaporation source, 81 ... Magnetic recording medium, 82 ... Magnetic recording medium drive section, 83 ... Magnetic head, 84 ... Magnetic Head drive unit, 85 ... Recording / reproducing signal processing system.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 二本 正昭 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masaaki Ninomoto 1-280, Higashikoigokubo, Kokubunji, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】非磁性基板上に非磁性下地層、磁性層およ
び保護層が順次積層されてなる磁気記録媒体において、
前記非磁性基板が平滑な表面を有する基板からなり、前
記非磁性下地層が柱状粒子により構成され、前記柱状粒
子の傾斜角度が、前記非磁性基板の法線方向から20°
以上、50°以下の範囲にあり、前記磁性層の膜厚(t
1)と前記非磁性下地層の膜厚(t2)の膜厚比(t1
2)が、0.2以下であることを特徴とする磁気記録
媒体。
1. A magnetic recording medium in which a nonmagnetic underlayer, a magnetic layer and a protective layer are sequentially laminated on a nonmagnetic substrate,
The non-magnetic substrate is a substrate having a smooth surface, the non-magnetic underlayer is composed of columnar particles, and the inclination angle of the columnar particles is 20 ° from the normal direction of the non-magnetic substrate.
It is in the range of 50 ° or less and the film thickness of the magnetic layer (t
1 ) and the film thickness (t 2 ) of the non-magnetic underlayer (t 1 /
The magnetic recording medium is characterized in that t 2 ) is 0.2 or less.
【請求項2】前記磁性層の膜厚が10nm以上、30n
m以下の範囲にあることを特徴とする請求項1に記載の
磁気記録媒体。
2. The thickness of the magnetic layer is 10 nm or more and 30 n
The magnetic recording medium according to claim 1, wherein the magnetic recording medium is in a range of m or less.
【請求項3】前記非磁性下地層の膜厚が100nm以
上、300nm以下の範囲にあることを特徴とする請求
項1もしくは2に記載の磁気記録媒体。
3. The magnetic recording medium according to claim 1, wherein the thickness of the nonmagnetic underlayer is in the range of 100 nm or more and 300 nm or less.
【請求項4】前記非磁性下地層が、斜め蒸着法もしくは
斜めスパッタリング法により形成されたことを特徴とす
る請求項1から請求項3のいずれかに記載の磁気記録媒
体。
4. The magnetic recording medium according to claim 1, wherein the nonmagnetic underlayer is formed by an oblique vapor deposition method or an oblique sputtering method.
【請求項5】前記非磁性基板がガラス、カーボン、又は
シリコンからなることを特徴とする請求項1から請求項
4のいずれかに記載の磁気記録媒体。
5. The magnetic recording medium according to claim 1, wherein the non-magnetic substrate is made of glass, carbon or silicon.
【請求項6】磁気記録媒体と、磁気記録媒体を回転駆動
する回転駆動部と、磁気ヘッドと、磁気ヘッド駆動部
と、記録再生信号処理系とを具備してなる磁気記憶装置
であって、前記磁気記録媒体が、請求項1から請求項5
のいずれかに記載の磁気記録媒体であることを特徴とす
る磁気記憶装置。
6. A magnetic storage device comprising a magnetic recording medium, a rotary drive unit for rotationally driving the magnetic recording medium, a magnetic head, a magnetic head drive unit, and a recording / reproducing signal processing system. The magnetic recording medium according to any one of claims 1 to 5.
A magnetic storage device, which is the magnetic recording medium according to any one of 1.
JP13157194A 1994-06-14 1994-06-14 Magnetic recording medium and magnetic storage device using this medium Pending JPH087250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13157194A JPH087250A (en) 1994-06-14 1994-06-14 Magnetic recording medium and magnetic storage device using this medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13157194A JPH087250A (en) 1994-06-14 1994-06-14 Magnetic recording medium and magnetic storage device using this medium

Publications (1)

Publication Number Publication Date
JPH087250A true JPH087250A (en) 1996-01-12

Family

ID=15061176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13157194A Pending JPH087250A (en) 1994-06-14 1994-06-14 Magnetic recording medium and magnetic storage device using this medium

Country Status (1)

Country Link
JP (1) JPH087250A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004032120A1 (en) * 2002-09-30 2004-04-15 Seagate Technology Llc Magnetic storage media having tilted magnetic anisotropy
WO2004051630A1 (en) * 2002-12-02 2004-06-17 Fujitsu Limited Polycrystalline structure film, magnetic recording medium and magnetic storage
JP2004206802A (en) * 2002-12-25 2004-07-22 Fujitsu Ltd Polycrystalline structure film
WO2005041172A1 (en) * 2003-09-29 2005-05-06 Seagate Technology Llc System, method and collimator for oblique deposition
US6936353B1 (en) * 2003-07-02 2005-08-30 Seagate Technology Llc Tilted recording medium design with (101-2) orientation
US7083872B2 (en) 2003-10-10 2006-08-01 Fujitsu Limited Magnetic recording medium having good in-plane orientation
US7249405B2 (en) 2002-05-22 2007-07-31 Hitachi Global Storage Technologies Japan, Ltd. Method for manufacturing a magnetic medium
JP2008507077A (en) * 2004-07-22 2008-03-06 ユニベルジテート コンスタンツ Information storage medium
US7482069B2 (en) 2002-12-02 2009-01-27 Fujitsu Limited Polycrystalline structure film having inclined lattice surfaces
CN100458924C (en) * 2005-07-26 2009-02-04 株式会社东芝 Perpendicular magnetic recording medium, method of manufacturing magnetic recording medium, and magnetic recording apparatus comprising magnetic recording medium
JP2013014806A (en) * 2011-07-04 2013-01-24 Denso Corp Method for manufacturing crystal axis gradient film

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7249405B2 (en) 2002-05-22 2007-07-31 Hitachi Global Storage Technologies Japan, Ltd. Method for manufacturing a magnetic medium
WO2004032120A1 (en) * 2002-09-30 2004-04-15 Seagate Technology Llc Magnetic storage media having tilted magnetic anisotropy
US7094483B2 (en) 2002-09-30 2006-08-22 Seagate Technology Llc Magnetic storage media having tilted magnetic anisotropy
WO2004051630A1 (en) * 2002-12-02 2004-06-17 Fujitsu Limited Polycrystalline structure film, magnetic recording medium and magnetic storage
US7482069B2 (en) 2002-12-02 2009-01-27 Fujitsu Limited Polycrystalline structure film having inclined lattice surfaces
JP2004206802A (en) * 2002-12-25 2004-07-22 Fujitsu Ltd Polycrystalline structure film
US6936353B1 (en) * 2003-07-02 2005-08-30 Seagate Technology Llc Tilted recording medium design with (101-2) orientation
WO2005041172A1 (en) * 2003-09-29 2005-05-06 Seagate Technology Llc System, method and collimator for oblique deposition
US7083872B2 (en) 2003-10-10 2006-08-01 Fujitsu Limited Magnetic recording medium having good in-plane orientation
JP2008507077A (en) * 2004-07-22 2008-03-06 ユニベルジテート コンスタンツ Information storage medium
CN100458924C (en) * 2005-07-26 2009-02-04 株式会社东芝 Perpendicular magnetic recording medium, method of manufacturing magnetic recording medium, and magnetic recording apparatus comprising magnetic recording medium
JP2013014806A (en) * 2011-07-04 2013-01-24 Denso Corp Method for manufacturing crystal axis gradient film

Similar Documents

Publication Publication Date Title
KR100378495B1 (en) High areal density magnetic recording medium with dual magnetic layers
US9728216B2 (en) Feromagnetically coupled magnetic recording media
US20100098972A1 (en) Perpendicular magnetic recording medium and magnetic recording/reproduction apparatus using the same
JP2004111040A (en) Perpendicular magnetic recording medium
JP2008140460A (en) Perpendicular magnetic recording medium and magnetic recording and reproducing device
JP2005056555A (en) Inclination medium for hard disk drive
JP2002190108A (en) Magnetic recording medium and its production method
JPH087250A (en) Magnetic recording medium and magnetic storage device using this medium
WO2006082948A1 (en) Perpendicular magnetic recording media, production process thereof, and perpendicular magnetic recording and reproducing apparatus
JP2000113441A (en) Vertical magnetic recording medium
WO2005064597A1 (en) Magnetic recording medium, manufacturing method for the magnetic recording medium, and magnetic read/write apparatus
JP3666853B2 (en) Magnetic recording medium, method for manufacturing the same, and magnetic recording apparatus
JP3725132B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus using the same
JPH11339240A (en) Magnetic recording medium and magnetic disk device
JP3892401B2 (en) Manufacturing method of disk substrate for perpendicular magnetic recording medium, and manufacturing method of perpendicular magnetic recording disk
JP4123806B2 (en) Magnetic recording medium, method for manufacturing the same, and magnetic recording apparatus
JP3359706B2 (en) Magnetic recording media
US7026010B1 (en) Coupling enhancement for medium with anti-ferromagnetic coupling
US9214179B2 (en) Magnetic recording medium, method of manufacturing the same, and magnetic recording/reproduction apparatus
JPH11219511A (en) Magnetic recording medium and magnetic recording device
JP2007102833A (en) Perpendicular magnetic recording medium
JP2001189006A (en) Magnetic recording medium, method of producing the same and magnetic recording reproducing device
JP2002324313A (en) Manufacturing method of magnetic recording medium
JP3684047B2 (en) Magnetic recording medium
JP2000322724A (en) Magnetic disk recording medium