JPH0462128B2 - - Google Patents

Info

Publication number
JPH0462128B2
JPH0462128B2 JP58059480A JP5948083A JPH0462128B2 JP H0462128 B2 JPH0462128 B2 JP H0462128B2 JP 58059480 A JP58059480 A JP 58059480A JP 5948083 A JP5948083 A JP 5948083A JP H0462128 B2 JPH0462128 B2 JP H0462128B2
Authority
JP
Japan
Prior art keywords
tape
axis
recording
scratches
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58059480A
Other languages
Japanese (ja)
Other versions
JPS59185021A (en
Inventor
Koichi Shinohara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58059480A priority Critical patent/JPS59185021A/en
Publication of JPS59185021A publication Critical patent/JPS59185021A/en
Publication of JPH0462128B2 publication Critical patent/JPH0462128B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は垂直磁気記録方式に利用できる磁気テ
ープに関する。 従来例の構成とその問題点 従来より、長手記録方式は、磁気記録方式とし
て定着し、かつ実用面でも記録密度向上による機
器の小型軽量化にこたえてきたが、媒体内の減磁
界により記録密度の向上が限界に達していた。 そこで最近、長手記録方式の記録密度の限界を
打破する可能性のある記録方式として、媒体の表
面と直交する方向の磁化を利用する、いわゆる垂
直記録方式が提案され注目されている。 前記垂直磁気記録方式は、優れた短波長記録特
性を有し、又ピークシフトが極めて少ないため、
デイジタル信号の記録に最適であり、面記録密度
的にも光記録と同等或いは、同等以上の109ビツ
ト/平方インチの可能性もあることが明らかにな
りつつあるものである。 この垂直磁気記録方式には、記録媒体表面に、
垂直方向に磁化容易軸を有する媒体が必要であ
る。現在知られている媒体の構成材料はCo−Cr,
Co−V,Co−Ru,Co−Mn,Co−Mo,Co−
W,Co−Ti,Co−Ni−Cr等である。 しかし、従来よりこれらCo合金から成る垂直
磁気記録媒体をテープとして使用する時、テープ
に傷が発生する問題があつた。 このテープの傷の発生を防止するため、有機滑
剤等を薄くコーテイングすることが考えられてい
たが、実用に至る耐久性を持たせることができな
かつた。 発明の目的 本発明は、前記従来の欠点を除去するものであ
り垂直磁気記録方式の短波長記録での優れた特長
を生かし、且つ実用耐久性を向上させた磁気テー
プの提供を目的とする。 発明の構成 本発明の磁気テープは、運動する磁気ヘツドに
より記録、再生する磁気テープであつて前記ヘツ
ドの運動方向に、5°以上25°以下傾斜した柱状構
造の結晶から成る磁性層を有し、前記柱状結晶の
C軸方向が磁化方向であることを特徴とするもの
である。 実施例の説明 第1図に本発明の磁気テープの断面のモデル図
を示す。 同図において矢印が磁気ヘツドの運動方向とす
ると、柱状構造を有する結晶粒子1のC軸2が、
基板3面に立てた法線との成す角θが、5°以上で
25°以下であることが、実用耐久性の向上に効果
がある。 この角度範囲であれば、完全な垂直磁化の理想
状態、(実際はC軸の分散があり、θ=0°は作り
得ない。)の出力と殆んど測定誤差内におさまる
ことから、短波長記録での有用性は維持できる。 5°以上傾斜したことで、何故テープ表面に傷の
発生がみられないかは明らかではないが、25°以
上になると走行系で、柱状の柱を起すように力が
作用するポスト等で傷のトリガが生ずることで一
方の限界が決つてくる。 傾きが5°以下の場合、実際には、製膜条件を精
度に管理しても、何割かは、ヘツドの運動方向と
逆に傾いた成分が生ずることから、傷のトリガが
生ずるものと考えられる。 尚、C軸の角度は平均値である。 本発明の磁気テープは、高分子基板に直接、又
は非磁性層、軟磁性層等を介して、強磁性層を形
成した後、所定の幅にスリツトして得られるもの
である。 ここで用いられる高分子基板は、ポリエチレン
テレフタレート、ポリエチレンナフタレート、芳
香族ポリアミド、ポリイミド等であり非磁性層と
しては、Cr,Ti,Mo,W、等が用いられ、軟磁
性層は80%Ni20%Feのパーマロイが良く用いら
れる。 強磁性層としては、Coに20%程度のCrを添加
して、飽和磁化を下げ、C軸方向に磁化できるよ
うにしたものが代表的であるが、Crの他に、
NiCr,Ti,Mn,V,Mo,w,Ru等が適宜用い
られる。 本発明の磁気テープを得る方法は、電子ビーム
蒸着、イオンプレーテイング、電界蒸着、スパツ
タリング等であり、必要に応じて強磁性層の上
に、有機滑剤、防錆剤、等をコーテイングするこ
とができるのは勿論である。 以下さらに具体的な実施例を説明する。 〔実施例1〕 芳香族ポリアミド基板上に、0.3μmの厚みにCo
−Cr層を電子ビーム蒸着法で形成した。 前記基板を250℃の回転キヤンに沿つて移動さ
せた。 Crの濃度は21%の一定値としスリツトの位置
を変えて、柱状構造の基板に対する傾斜角を変化
させた。 X線回折によりC軸の傾きと分散を調べ、平均
的な角度を調べた。 表面にステアリン酸を約30Å有機蒸着したもの
を8mm幅の磁気テープにした。 VHSデツキを改造し、バツクテンシヨン20g
を8mm幅のテープにかけてくり返し走行させて、
50パス(50回通過)後、表面を顕微鏡で観察し、
傷の有無を調べた。 その実験結果は第2図に示したように、実用レ
ベルのC軸の傾きは5°から25°の間であることが
わかる。 尚傷の発生頻度は100本(テープ長15m)テス
トして傷の発生したテープの本数を調査した結果
である。テスト環境は33℃88%RHである。 〔実施例2〕 8μmの膜厚のポリエチレンテレフタレート上
に、Ar分圧1×10-2TORR、周波数13.56MHzの
高周波グロー放電により、Co−V膜を0.25μm厚
で形成した。C軸の傾斜角を約10°となるよう、
回転キヤン上のスリツト位置を調整した。 これをベースとして、表面に滑剤を塗布した。
それらを8mm幅のテープとし、実施例1と同じ実
験を行つた。
INDUSTRIAL APPLICATION FIELD The present invention relates to a magnetic tape that can be used in perpendicular magnetic recording. Conventional structure and its problems Longitudinal recording has been established as a magnetic recording method, and has been used in practical applications to reduce the size and weight of devices by improving recording density. improvement had reached its limit. Therefore, recently, a so-called perpendicular recording method, which utilizes magnetization in a direction perpendicular to the surface of the medium, has been proposed and is attracting attention as a recording method that has the potential to break through the limits of recording density of the longitudinal recording method. The perpendicular magnetic recording method has excellent short wavelength recording characteristics and extremely little peak shift, so
It is becoming clear that it is ideal for recording digital signals, and that it has the possibility of achieving an areal recording density of 10 9 bits/square inch, which is equal to or higher than optical recording. In this perpendicular magnetic recording method, on the surface of the recording medium,
A medium with an easy axis of magnetization in the perpendicular direction is required. The currently known media constituent materials are Co-Cr,
Co-V, Co-Ru, Co-Mn, Co-Mo, Co-
These include W, Co-Ti, Co-Ni-Cr, etc. However, when a perpendicular magnetic recording medium made of these Co alloys is used as a tape, there has been a problem of scratches on the tape. In order to prevent the occurrence of scratches on this tape, it has been considered to coat the tape with a thin layer of organic lubricant, etc., but it has not been possible to provide the tape with enough durability to be of practical use. OBJECTS OF THE INVENTION The present invention aims to eliminate the above-mentioned conventional drawbacks, and to provide a magnetic tape that takes advantage of the excellent features of short wavelength recording of the perpendicular magnetic recording system and has improved practical durability. Structure of the Invention The magnetic tape of the present invention is a magnetic tape that is recorded and reproduced by a moving magnetic head, and has a magnetic layer made of crystals with a columnar structure tilted at an angle of 5° or more and 25° or less in the direction of movement of the head. , the C-axis direction of the columnar crystal is the magnetization direction. DESCRIPTION OF THE EMBODIMENTS FIG. 1 shows a cross-sectional model diagram of the magnetic tape of the present invention. In the figure, if the arrow indicates the direction of movement of the magnetic head, the C axis 2 of the crystal grain 1 having a columnar structure is
The angle θ formed with the normal line on the three surfaces of the board is 5° or more.
An angle of 25° or less is effective in improving practical durability. In this angle range, the output is almost within the measurement error of the ideal state of perfect perpendicular magnetization (actually, there is C-axis dispersion and θ = 0° cannot be created), so short wavelength The usefulness of records can be maintained. It is not clear why scratches do not occur on the tape surface when the tape is tilted at an angle of 5° or more, but when the tape is tilted at an angle of 25° or more, scratches can be caused by posts, etc. where force is applied to raise columns in the running system. One limit is determined by the occurrence of a trigger. If the inclination is 5° or less, even if the film forming conditions are precisely controlled, some component will actually be tilted in the opposite direction to the direction of movement of the head, which may cause scratches. It will be done. Note that the angle of the C-axis is an average value. The magnetic tape of the present invention is obtained by forming a ferromagnetic layer on a polymer substrate directly or via a nonmagnetic layer, a soft magnetic layer, etc., and then slitting the layer to a predetermined width. The polymer substrate used here is polyethylene terephthalate, polyethylene naphthalate, aromatic polyamide, polyimide, etc. The nonmagnetic layer is made of Cr, Ti, Mo, W, etc., and the soft magnetic layer is made of 80% Ni20. %Fe permalloy is often used. A typical ferromagnetic layer is one in which approximately 20% Cr is added to Co to lower the saturation magnetization and enable magnetization in the C-axis direction, but in addition to Cr,
NiCr, Ti, Mn, V, Mo, w, Ru, etc. are used as appropriate. The magnetic tape of the present invention can be obtained by electron beam evaporation, ion plating, electric field evaporation, sputtering, etc. If necessary, the ferromagnetic layer may be coated with an organic lubricant, rust preventive, etc. Of course you can. More specific examples will be described below. [Example 1] Co was deposited on an aromatic polyamide substrate to a thickness of 0.3 μm.
-The Cr layer was formed by electron beam evaporation. The substrate was moved along a rotating can at 250°C. The Cr concentration was kept at a constant value of 21%, and the position of the slit was changed to change the angle of inclination of the columnar structure with respect to the substrate. The inclination and dispersion of the C-axis were investigated by X-ray diffraction, and the average angle was investigated. A magnetic tape with a width of 8 mm was made by organic vapor deposition of about 30 Å of stearic acid on the surface. Modified VHS deck, back tension 20g
Put it on an 8mm wide tape and run it repeatedly.
After 50 passes, the surface was observed under a microscope.
I checked for any damage. As shown in Figure 2, the experimental results show that the practical level of C-axis inclination is between 5° and 25°. The frequency of scratches is the result of testing 100 tapes (tape length 15m) and investigating the number of tapes with scratches. The test environment is 33℃88%RH. [Example 2] A 0.25 μm thick Co-V film was formed on polyethylene terephthalate with a film thickness of 8 μm by high-frequency glow discharge at an Ar partial pressure of 1×10 −2 TORR and a frequency of 13.56 MHz. Set the inclination angle of the C-axis to approximately 10°.
Adjusted the slit position on the rotating can. Using this as a base, a lubricant was applied to the surface.
The same experiment as in Example 1 was conducted using these tapes with a width of 8 mm.

【表】【table】

〔実施例3〕[Example 3]

ポリイミド25μm上に、回転キヤン温度130℃条
件で回転キヤンに13.56MHzの高周波を印加した
状態で、CoとWを別々に電子ビーム蒸発させる
方法で、C軸傾斜角をスリツト位置を変化させて
試作した。 得られたCo−W(W19.7at%厚み0.33μm)層上
に、ベヘン酸オクチルを1000ppmだけn−ヘキサン
に溶かして塗布し、8mm幅にスリツトして磁気テ
ープとした。 C軸の傾斜角が5°での傷の発生頻度は2%であ
つたが傾斜角が3.7°では12%という高い発生頻度
であつた。 〔実施例4〕 実施例3と同じ条件で、CoとMoを用いて、
Co−Mo(Mo23at%、厚み0.5μm)層を形成しそ
の表面にステアリン酸ブチルをn−ヘキサンに
800ppm溶かして塗布し、8mm幅にスリツトして磁
気テープとした。 C軸の傾斜角が6°では傷の発生がなかつたが、
傾斜角が4.8°では8%の傷がみられた。 〔実施例5〕 5.5μm厚のポリエチレンナフタレート上に、80
%Ni−20%Feの薄膜を電子ビーム蒸着により、
0.6μm膜厚に形成した基板を用い、Co−Cr
(Cr20at%)薄膜を0.3μm形成した。その表面に、
ベヘン酸を35〓有機蒸着した。これらを8mm幅の
テープとして評価した。 C軸の傾斜角5.5°のもののうち、Co−Crを電子
ビーム蒸着法によつたものをAテープ、回転キヤ
ンを絶縁して、前記回転キヤンに13.56MHzの高
周波電圧を印加しての電子ビーム蒸着法によつた
ものをBテープ、13.56MHz,Ar8×10-3TORRで
の高周波グローを用いたスパツタリング法によつ
たものをCテープとすると、33℃88%RHでは、
A,B,Cの各テープの傷は共に0%,40℃88%
RHではAが2% Bが0% Cが1%,45℃10
%RHではAが3% Bが1% Cが0%、であ
つたのに対し、C軸の傾きが4.8°では、平均する
と、どの環境でも10%以下のものはなかつた。 発明の効果 本発明により、垂直磁気記録方式に利用できる
磁気テープの耐久性が向上した。 これにより、垂直方式による短波長記録が実用
に供しうる見通しがたつた。 すなわち、デイジタル記録で重要なエラーレイ
トの原因となる傷の発生は、インタフエイスの改
良により0%にできるところまでおさえることが
できた。
Prototype fabricated on 25 μm polyimide by changing the C-axis inclination angle and slit position by separately evaporating Co and W with an electron beam while applying a high frequency of 13.56 MHz to the rotating can at a rotating can temperature of 130°C. did. On the obtained Co-W (W19.7at% thickness 0.33 μm) layer, 1000 ppm of octyl behenate dissolved in n-hexane was coated, and the tape was slit to a width of 8 mm to obtain a magnetic tape. The occurrence frequency of scratches was 2% when the C-axis inclination angle was 5°, but the occurrence frequency was as high as 12% when the inclination angle was 3.7°. [Example 4] Under the same conditions as Example 3, using Co and Mo,
Co-Mo (Mo23at%, thickness 0.5μm) layer is formed and butyl stearate is added to n-hexane on the surface.
It was melted and applied at 800 ppm and slit into 8 mm width to make magnetic tape. No scratches occurred when the C-axis inclination angle was 6°, but
At an inclination angle of 4.8°, 8% damage was observed. [Example 5] On 5.5 μm thick polyethylene naphthalate, 80
%Ni−20%Fe thin film by electron beam evaporation.
Using a substrate formed with a film thickness of 0.6μm, Co-Cr
(Cr20at%) thin film of 0.3μm was formed. On its surface,
35% of behenic acid was organically deposited. These were evaluated as 8 mm wide tapes. Among those with an inclination angle of 5.5°, the C-axis was coated with Co-Cr using the electron beam evaporation method as A tape. If tape B is made by vapor deposition method, and tape C is made by sputtering method using high frequency glow at 13.56MHz, Ar8×10 -3 TORR, at 33℃88%RH,
The scratches on tapes A, B, and C are all 0%, 88% at 40°C.
At RH, A is 2%, B is 0%, C is 1%, 45℃10
At %RH, A was 3%, B was 1%, and C was 0%, whereas when the C-axis was tilted at 4.8°, on average, there was no percentage below 10% in any environment. Effects of the Invention According to the present invention, the durability of a magnetic tape that can be used in a perpendicular magnetic recording system has been improved. This has given rise to the prospect of putting short wavelength recording using the vertical method into practical use. In other words, the occurrence of scratches, which is an important cause of error rate in digital recording, has been reduced to 0% by improving the interface.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の磁気テープの断面図、第2図
は同テープのC軸の傾斜角と傷の発生頻度の関係
を示す図である。 1……柱状結晶粒子、3……基板。
FIG. 1 is a sectional view of the magnetic tape of the present invention, and FIG. 2 is a diagram showing the relationship between the inclination angle of the C-axis of the tape and the frequency of occurrence of scratches. 1... Columnar crystal particles, 3... Substrate.

Claims (1)

【特許請求の範囲】[Claims] 1 ヘツドの運動方向に5°以上25°以下傾斜した
柱状構造の結晶から成る磁性層を有し、前記柱状
構造の結晶のC軸方向が磁化方向であることを特
徴とする磁気テープ。
1. A magnetic tape comprising a magnetic layer made of crystals having a columnar structure tilted at an angle of 5° or more and 25° or less with respect to the direction of movement of the head, the C-axis direction of the crystal having the columnar structure being the magnetization direction.
JP58059480A 1983-04-04 1983-04-04 Magnetic tape Granted JPS59185021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58059480A JPS59185021A (en) 1983-04-04 1983-04-04 Magnetic tape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58059480A JPS59185021A (en) 1983-04-04 1983-04-04 Magnetic tape

Publications (2)

Publication Number Publication Date
JPS59185021A JPS59185021A (en) 1984-10-20
JPH0462128B2 true JPH0462128B2 (en) 1992-10-05

Family

ID=13114508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58059480A Granted JPS59185021A (en) 1983-04-04 1983-04-04 Magnetic tape

Country Status (1)

Country Link
JP (1) JPS59185021A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61110332A (en) * 1984-11-05 1986-05-28 Matsushita Electric Ind Co Ltd Magnetic recording medium

Also Published As

Publication number Publication date
JPS59185021A (en) 1984-10-20

Similar Documents

Publication Publication Date Title
JP2524514B2 (en) Magnetic recording media
US5462796A (en) Flash chromium interlayer for improved hard disk magnetic recording performance
US4939046A (en) Magnetic recording medium
JPH0462128B2 (en)
Sugita et al. Incident angle dependence of recording characteristics of vacuum deposited Co-Cr films
JPH0711857B2 (en) Magnetic recording medium
KR100212379B1 (en) Magnetic recording medium
Hokkyo et al. Co-Ni obliquely evaporated tape and its magnetic and recording characteristics
EP0540058A2 (en) Perpendicular magnetic recording medium
JPH0566648B2 (en)
JPH0475572B2 (en)
JP2532503B2 (en) Magnetic recording media
JPS61187122A (en) Magnetic recording medium
JPS6047230A (en) Tape shape magnetic recording medium
JP2715783B2 (en) Magnetic recording media
SUGITA et al. Co-O Evaporated Films for Magnetic Recording Media
JPH0673169B2 (en) Magnetic disk
JPH0268712A (en) Thin film magnetic recording medium
US20010050829A1 (en) Magnetic recording and reproducing system including a ring head of materials having different saturation flux densities
JPH0522965B2 (en)
JPH07121857A (en) Magnetic recording medium
JP2006048840A (en) Magnetic recording medium, its manufacturing method and recording and reproducing method of magnetic recording medium
JPH04206018A (en) Perpendicular magnetic recording medium
JPS61239423A (en) Magnetic recording medium
JPH0475578B2 (en)