JPH0475572B2 - - Google Patents

Info

Publication number
JPH0475572B2
JPH0475572B2 JP19636583A JP19636583A JPH0475572B2 JP H0475572 B2 JPH0475572 B2 JP H0475572B2 JP 19636583 A JP19636583 A JP 19636583A JP 19636583 A JP19636583 A JP 19636583A JP H0475572 B2 JPH0475572 B2 JP H0475572B2
Authority
JP
Japan
Prior art keywords
layer
magnetic
magnetic recording
coercive force
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19636583A
Other languages
Japanese (ja)
Other versions
JPS6087424A (en
Inventor
Koichi Shinohara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19636583A priority Critical patent/JPS6087424A/en
Publication of JPS6087424A publication Critical patent/JPS6087424A/en
Publication of JPH0475572B2 publication Critical patent/JPH0475572B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、録音、録画、情報処理等に於て高密
度記録を可能にする、磁気記録層のほぼ厚さ方向
に沿う方向の磁化によつてその記録を行う、いわ
ゆる垂直磁化による磁気記録媒体に関する。 従来例の構成とその問題点 記録密度を向上させるには、磁気ヘツドの改
良、信号処理技術の改良と同時に磁気記録媒体の
改良が重要である。 接触式のリング型磁気ヘツドでの高密度化の要
点は、磁気記録層の残留磁化量をいかに大きくす
るかと、その磁化量をいかに高密度領域で検出す
るかとにある。 近年、その点に鑑み、磁気記録層のほぼ厚さ方
向に沿う方向の磁化によつてその記録を行う、い
わゆる垂直磁化による磁気記録媒体が、例えば特
公昭57−17282号公報に於て提案され、特開昭54
−51804号公報に於て更に改良提案がなされる等
開発が盛んである。 垂直磁化による磁気記録媒体の短波長記録での
有用性の確認は実験室規模で行われたが、かかる
磁気記録媒体の実用耐久性については充分検討が
進んでいない。 以下図面を参照しながら、上述したような従来
の磁気記録媒体について説明する。 第1図は従来の磁気記録媒体の拡大断面図を示
すものである。 第1図において、1は基板であり、基板1上に
低抗磁力層2が配され、その上に垂直磁化可能な
強磁性金属薄膜から成る磁気記録層3を配し、そ
の上に潤滑層4を配して成るもので、テープ状又
はデイスク状の形態を成すものである。 基板1はカプトン等の高分子が鏡面仕上げされ
たアルミ合金等の非磁性材料から成り、表面は平
均粗さでも200Å以下と平滑である。 低抗磁力層2は、1μmから5μmぐらいまでの
パーマロイ薄膜等でメツキ法又はスパツタリング
法、真空蒸着法等により形成されるから、基板1
の表面形状と殆んど同一である。 垂直磁化用の磁気記録層3はCo−Cr,Co−
V,Co−Mo等のCo系合金から成る0.1μmから
高々1μmまでのスパツタ膜、めつき膜、真空蒸
直膜などであり、表面形状は基板1と殆んど同一
になる。 従つて、潤滑層4を塗布法、蒸着法で100Åか
ら200Å程度設けても、表面が極めて平滑である
から鏡面仕上げされた磁気ヘツドの面と接触面積
が大きく、摩擦抵抗はそれ程下げることができな
い。 このため、磁気記録媒体に傷が入つたり、磁気
ヘツドに傷が入つたり、激しく摩耗し、出力低下
現象を誘発したりするので実用上大きな問題であ
る。 発明の目的 本発明は磁気ヘツドと摺接した状態で長時間使
用可能な耐久性の改良された垂直磁化による磁気
記録媒体を提供することを目的とする。 発明の構成 本発明の磁気記録媒体は軟磁性微粒子を核とす
る突起を有する低抗磁力層上に垂直磁化可能な強
磁性金属薄膜から成りこの軟磁性微粒子を核とす
る突起を有することにより、磁気ヘツドとの接触
面積が適度に小さくなり長時間使用可能な耐久性
の改良された垂直磁化による磁気記録媒体が得ら
れるものである。 実施例の説明 以下本発明の一実施例について、図面を参照し
ながら説明する。 第2図は本発明の一実施例における磁気記録媒
体の拡大断面図を示すものである。第2図におい
て、5は基板であり、基板5の面上に軟磁性微粒
子8を核とする突起を有する低抗磁力層6が形成
されている。さらに、低抗磁力層6上に垂直磁化
可能な強磁性金属薄膜からなる磁気記録層9が形
成され磁気記録媒体が構成されている。 ここで、本発明の低抗磁力層6のひとつの目的
は、磁気ヘツドと摺接状態で長時間使用可能な磁
気記録層を提供するために、磁気記録層9の表面
の粒子的性質を帯びさせることにあり、もうひと
つの目的は、垂直磁化された交互磁石の一端を閉
じることによる減磁作用を弱めて結果的に大きな
残留磁化をかく得せしめることにある。 低抗磁力層6の抗磁力の値は100エルステツド
以下、好ましくは30エルステツド以下で、低抗磁
力層6が塗布層のみで構成される場合と、薄膜層
と塗布層の積層構成の両方の構成が可能である。 前記薄膜層と塗布層を構成する磁性材料は必ず
しも同一のものである必要はない。 低抗磁力層6の第1の目的を達成するには、パ
ーマロイ等の軟磁性微粒子8を樹脂に均一に分散
せしめて、高さ200Å程度、密度1ケ/μm2から
100ケ/μm2の突起を生ぜしめることが重要であ
る。 低抗磁力層6に前述した突起を付与する手法を
用いて、基板5に突起を付与した後に低抗磁力層
を従来技術により得たものは、本発明品を凌駕す
る性能が得られない。これは突起の核が磁気ヘツ
ドからみてどこにあるかが重要であり、突起の核
が磁気ヘツドからみて遠くなるほど、恐らく突起
の形状が上につくる膜によりならされてしまうた
めと思われる。 この考えにたてば、突起の核を磁気記録層の上
に形成することも考えられ、事実その構成は、磁
気記録層のスリキズ発生防止、磁気ヘツドのスリ
傷発生防止等には確かに有効ではあるが、記録密
度を高める目的から見ると、極めて不都合な構成
であり、本発明の構成が実用面からみても性能面
からみても最上の構成といえるものである。 本発明の構成の磁気記録層9は、ひとつは磁気
ヘツドとの接触が、面積的に小さく、限られた突
起部で接触するので、磁気記録層9に傷が入らな
い。 又、磁気記録層9の表面に従来と同様に潤滑層
を配した構成をとることで、より長時間の使用に
耐えることが出来る。 さらに、低抗磁力層6の樹脂に滑剤を含有せし
めることで、垂直磁化用の磁気記録層9を構成す
る六方稠密構造の微結晶の柱状構造のすき間か
ら、微量の滑剤が供給され、この作用も磁気記録
媒体の長時間使用を可能にする。 この作用は、突起部の結晶構造の特異性から、
突起のない部分の柱状結晶間のすき間より、大き
いすき間ができることから本発明に於てより明確
にでるものである。 本発明に用いられる基板5はポリエチレンテレ
フタレート、ポリエチレンナフレート、ポリカー
ボネート、ポリアミド、ポリイミド等の高分子フ
イルム、アルミ合金などなどの非磁性板等であ
る。 本発明に用いられる低抗磁力層6は、ポリエス
テル樹脂、塩化ビニル系共重合体、ブチラール系
樹脂、ポリウレタン系樹脂等から選ばれた配合
剤、7溶剤、希釈剤に分散剤、潤滑剤と同時に
Ni−Fe合金微粒子、Ni−Fe−Mo合金微粒子等
の軟磁性微粒子8を磁性粉末として加えた塗料を
リバースロールコータ、グラビアコータ等により
塗布して乾燥し得られる。 垂直磁化可能な強磁性金属薄膜から成る磁気記
録層9は、Co−Cr,Co−V,Co−Mo,Co−
W,Co−Ru,Co−Ni−Cr,等のCo系合金で厚
みは0.05μmから0.5μmまでで、さらに好ましく
は0.1μmから0.2μmまでで、垂直方向の抗磁力が
500〔O¨e〕から1500〔O¨e〕までが好ましい高密度
記録を与える。 かかるCo系合金の磁気記録層9の形成法は、
電子ビーム蒸着法、イオンプレーテイング法、ス
パツタリング法、無電解メツキ法等の中から選択
される。 本発明について更に詳細に具体的な実施例を説
明するが、本発明の実施例の範囲にのみ限定され
るものでなく、本発明の要旨を逸脱することなく
種々の他の構成が取り得るものであるのは勿論で
ある。 実施例 1 Ni−Fe(80%Ni)微粒子50部、塩化ビニル−
酢酸ビニル−ビニルアルコール共重合体14部、ア
クリロニトリルブタジエン共重合体9部、シクロ
ヘキサノン−メチルイソブチルケトン混合溶剤
(混合比1:1)1000部、ステアリン酸亜鉛5部
から成る塗料成分をボールミル中で60時間混合分
散させて塗料を調整した。 この塗料を厚さ9.5μmのポリエチレンテレフタ
レートフイルム上に乾燥塗膜厚が1μmとなるよ
うにリバースロールコータにて塗着し、低抗磁力
層を形成した。この低抗磁力層の抗磁力は5
〔O¨e〕で、飽和磁束密度は1000〔ガウス〕で、約
180Åの高さのNi−Fe微粒子をに核した突起が約
25個/μm2存在していた。 この低抗磁力層を配したポリエチレンテレフタ
レートフイルムを、真空蒸着装置に装てんして、
磁気記録層であるCo−Cr垂直磁化薄膜を形成し
た。具体的には、直径50cmの冷却キヤン(キヤン
の表面温度は75℃に保持した。)に沿わせて前記
フイルムを移動させながら、キヤン表面から9cm
離れた、20%Crを含むCo−Cr合金ターゲツトか
ら高周波スパツタ法によりCo−Cr垂直磁化薄膜
を0.13μm形成した。高周波は13.56MHz、1KWで
ガス圧はArで1×10-3Torrとした。 垂直方向の抗磁力は740〔O¨e〕であつた。 この状態で8mm幅に裁断した磁気テープを1−
A、テーブ1−Aの表面に潤滑層としてトルエン
中に150ppm溶解させたミリスチン酸をリバース
ロールコータで塗布した磁気テープを1−Bとし
た。乾燥厚みは約30Åである。 実施例 2 実施例1で用いた真空蒸着装置でCo−Cr合金
ターゲツトをNi−Fe−Mo合金ターゲツト
(Ni76%、Fe18%、Mo6%)に置きかえて、厚み
11.5μmのポリアミドフイルム上に、Ni−Fe−
Mo層を0.3μm形成した。高周波は13.56MHz、
1.2KWガス圧はAr8.8×10-4Torrであつた。 この層の飽和磁化は7000〔G〕で、抗磁力は4
〔O¨e〕であつた。 次に、前述の方法により形成されたNi−Fe−
Mo層上に、実施例 1と同じ要要領で、Ni−Fe
微粒子を乾燥厚が0.1μmとなるようにリバースロ
ールコータで塗布し、低抗磁力層を形成した。 尚、塗料成分のうちステアリン酸亜鉛は、ステ
アリン酸に置き換えた。 この塗布によりNi−Fe微粒子を核とした突起
は約33個/μm2で、突起高さは約200Åで、塗布
により得られた低抗磁力層は、飽和磁束密度850
ガウス抗磁力は6〔O¨e〕であつた。 この低抗磁力層上にターゲツトをCo−Moに置
きかえた、高周波スパツタ装置により、Co−Mo
からなる垂直磁化可能な強磁性金属薄膜の磁気記
録層を0.2μm形成した。 主な条件は実施例−1でCo−Cr垂直磁化薄膜
を形成した時と同じである。 Co−Mo垂直磁化薄膜(Mo:21重量%)の飽
和磁束密度は3300〔ガウス〕で、抗磁力は垂直方
向が950〔O¨e〕であつた。 これを8mm幅に裁断した磁気テープを2−A,
ミリスチン酸を実施例−1と同じ要領で塗布した
磁気テープを2ーBとした。 比較例 1 厚さ9.5μmのポリエチレンテレフタレートフイ
ルム上に高周波スパツタリング法により、Ni−
Fe薄膜、Co−Cr薄膜の2層膜を作成した。 Ni−Fe薄膜(Ni,80%)は厚み1μm、飽和磁
束密度は8000〔ガウス〕、抗磁力は5.5〔O¨e〕で、
Co−Cr薄膜は厚み0.13μmで作成条件、得られた
磁気特性は実施例−1と同一である。 実施例−1と同様にミリスチン酸を塗布した8
mm幅の磁気テープを3−B、塗布しない磁気テー
プを3−Aとした。 比較例 2 実施例−2でNi−Fe微粒子を含んだ塗液を塗
布せずに磁気テープを作成した。 その磁気テープにミリスチン酸を塗布しなかつ
た磁気テープを4−A、塗布した磁気テープを4
−Bとした。 以上の実施例及び比較例にて得られた磁気テー
プを試作した8mmのビデオテープレコーダで測定
した。シリンダ直径は4cm、ビデオヘツドは、ギ
ヤツプ長0.27μmのフエライトヘツドとアモルフ
アス合金ヘツドを用い、記録波長0.5μmで、スチ
ル特性は、更生出力が50%減衰するまでの時間
で、スチル時のテンシヨンは3種類変化させた。
INDUSTRIAL APPLICATION FIELD The present invention enables high-density recording in sound recording, video recording, information processing, etc., in which recording is performed by magnetization in a direction substantially along the thickness direction of a magnetic recording layer. It relates to magnetic recording media using magnetization. Conventional configuration and its problems In order to improve the recording density, it is important to improve the magnetic head and signal processing technology as well as the magnetic recording medium. The key to increasing the density of a contact ring type magnetic head is how to increase the amount of residual magnetization in the magnetic recording layer and how to detect that amount of magnetization in a high density region. In recent years, in view of this point, magnetic recording media using so-called perpendicular magnetization, in which recording is performed by magnetization in a direction substantially along the thickness direction of the magnetic recording layer, have been proposed, for example, in Japanese Patent Publication No. 17282/1982. , Japanese Patent Publication No. 1973
Further improvements have been proposed in Publication No. -51804, and development is active. Although the usefulness of magnetic recording media with perpendicular magnetization for short wavelength recording has been confirmed on a laboratory scale, the practical durability of such magnetic recording media has not been sufficiently investigated. The conventional magnetic recording medium as described above will be explained below with reference to the drawings. FIG. 1 shows an enlarged cross-sectional view of a conventional magnetic recording medium. In FIG. 1, 1 is a substrate, on which a low coercive force layer 2 is disposed, a magnetic recording layer 3 made of a perpendicularly magnetizable ferromagnetic metal thin film is disposed thereon, and a lubricating layer is disposed on top of this. 4, and is in the form of a tape or disk. The substrate 1 is made of a non-magnetic material such as an aluminum alloy with a mirror finish of a polymer such as Kapton, and has a smooth surface with an average roughness of 200 Å or less. The low coercive force layer 2 is formed of a permalloy thin film or the like with a thickness of about 1 μm to 5 μm by a plating method, a sputtering method, a vacuum evaporation method, etc.
The surface shape is almost the same as that of The magnetic recording layer 3 for perpendicular magnetization is Co-Cr, Co-
The film is a sputtered film, a plating film, a vacuum-distilled film, etc., made of a Co-based alloy such as V or Co-Mo, and has a thickness of 0.1 μm to at most 1 μm, and its surface shape is almost the same as that of the substrate 1. Therefore, even if the lubricant layer 4 is formed to a thickness of about 100 to 200 Å by coating or vapor deposition, since the surface is extremely smooth, the contact area with the mirror-finished surface of the magnetic head is large, and the frictional resistance cannot be lowered that much. . This poses a serious problem in practice, as it can cause scratches on the magnetic recording medium, scratches on the magnetic head, and severe abrasion, leading to a decrease in output. OBJECTS OF THE INVENTION An object of the present invention is to provide a perpendicular magnetization magnetic recording medium with improved durability and which can be used for long periods of time in sliding contact with a magnetic head. Structure of the Invention The magnetic recording medium of the present invention consists of a ferromagnetic metal thin film that can be perpendicularly magnetized on a low coercive force layer having protrusions having soft magnetic fine particles as cores, and has protrusions having soft magnetic fine particles as cores. A magnetic recording medium with perpendicular magnetization which has a suitably small contact area with a magnetic head and which can be used for a long time and has improved durability can be obtained. DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 2 shows an enlarged sectional view of a magnetic recording medium in an embodiment of the present invention. In FIG. 2, reference numeral 5 denotes a substrate, and a low coercive force layer 6 having protrusions with soft magnetic particles 8 as cores is formed on the surface of the substrate 5. Further, a magnetic recording layer 9 made of a perpendicularly magnetizable ferromagnetic metal thin film is formed on the low coercive force layer 6 to constitute a magnetic recording medium. Here, one purpose of the low coercive force layer 6 of the present invention is to impart particle-like properties to the surface of the magnetic recording layer 9 in order to provide a magnetic recording layer that can be used for a long time in sliding contact with a magnetic head. Another purpose is to weaken the demagnetizing effect caused by closing one end of a perpendicularly magnetized alternating magnet, and as a result, to obtain a large residual magnetization. The coercive force value of the low coercive force layer 6 is 100 oersteds or less, preferably 30 oersteds or less, and the low coercive force layer 6 can be composed of only a coating layer or a laminated structure of a thin film layer and a coating layer. is possible. The magnetic materials constituting the thin film layer and the coating layer do not necessarily have to be the same. In order to achieve the first purpose of the low coercive force layer 6, soft magnetic fine particles 8 such as permalloy are uniformly dispersed in the resin to form a layer with a height of about 200 Å and a density of 1/μm 2 or more.
It is important to generate 100 protrusions/μm 2 . A product in which a low coercive force layer is obtained by the prior art after providing protrusions on the substrate 5 using the above-described method of providing protrusions on the low coercive force layer 6 cannot achieve performance superior to the product of the present invention. This is because where the nucleus of the protrusion is located as viewed from the magnetic head is important, and the farther the nucleus of the protrusion is from the magnetic head, the more likely the shape of the protrusion is smoothed out by the film formed above. Based on this idea, it is possible to form the nuclei of the protrusions on the magnetic recording layer, and in fact, this structure is certainly effective in preventing scratches on the magnetic recording layer and the magnetic head. However, from the perspective of increasing recording density, this is an extremely inconvenient configuration, and the configuration of the present invention can be said to be the best configuration from both a practical and performance standpoint. The magnetic recording layer 9 configured according to the present invention makes contact with the magnetic head through small and limited protrusions, so that the magnetic recording layer 9 is not scratched. Further, by adopting a structure in which a lubricating layer is disposed on the surface of the magnetic recording layer 9 as in the conventional case, it is possible to withstand use for a longer period of time. Furthermore, by incorporating a lubricant into the resin of the low coercive force layer 6, a small amount of the lubricant is supplied from the gaps in the columnar structure of the hexagonal close-packed microcrystals that constitute the magnetic recording layer 9 for perpendicular magnetization, and this effect It also enables long-term use of magnetic recording media. This effect is due to the specificity of the crystal structure of the protrusion.
This is more clearly seen in the present invention because a larger gap is formed than the gap between the columnar crystals in the portion without protrusions. The substrate 5 used in the present invention is a polymer film such as polyethylene terephthalate, polyethylene naphlate, polycarbonate, polyamide, polyimide, or a nonmagnetic plate such as aluminum alloy. The low coercive force layer 6 used in the present invention is made of a compound selected from polyester resin, vinyl chloride copolymer, butyral resin, polyurethane resin, etc., a solvent, a diluent, a dispersant, and a lubricant.
A paint containing soft magnetic particles 8 such as Ni--Fe alloy particles or Ni--Fe--Mo alloy particles as magnetic powder is applied by a reverse roll coater, a gravure coater, etc., and dried. The magnetic recording layer 9 made of a perpendicularly magnetizable ferromagnetic metal thin film includes Co-Cr, Co-V, Co-Mo, Co-
A Co-based alloy such as W, Co-Ru, Co-Ni-Cr, etc., with a thickness of 0.05 μm to 0.5 μm, more preferably 0.1 μm to 0.2 μm, and a vertical coercive force.
500 [O¨e] to 1500 [O¨e] gives preferred high density recording. The method for forming the magnetic recording layer 9 of such a Co-based alloy is as follows:
The method is selected from electron beam evaporation, ion plating, sputtering, electroless plating, and the like. The present invention will be described in more detail with specific examples, but the scope of the present invention is not limited to the examples, and various other configurations can be taken without departing from the gist of the present invention. Of course it is. Example 1 50 parts of Ni-Fe (80% Ni) fine particles, vinyl chloride
A coating composition consisting of 14 parts of vinyl acetate-vinyl alcohol copolymer, 9 parts of acrylonitrile butadiene copolymer, 1000 parts of cyclohexanone-methyl isobutyl ketone mixed solvent (mixing ratio 1:1), and 5 parts of zinc stearate was mixed in a ball mill with 60 parts of it. The paint was prepared by mixing and dispersing for a period of time. This paint was applied onto a 9.5 μm thick polyethylene terephthalate film using a reverse roll coater so that the dry film thickness was 1 μm to form a low coercive force layer. The coercive force of this low coercive force layer is 5
[O¨e], the saturation magnetic flux density is 1000 [Gauss], about
A protrusion with a nucleus of Ni-Fe particles with a height of 180 Å is approximately
There were 25 pieces/ μm2 . The polyethylene terephthalate film with this low coercive force layer is loaded into a vacuum evaporation device,
A Co-Cr perpendicularly magnetized thin film, which is a magnetic recording layer, was formed. Specifically, while moving the film along a cooling can with a diameter of 50 cm (the surface temperature of the can was maintained at 75°C), the film was placed 9 cm from the can surface.
A Co--Cr perpendicularly magnetized thin film with a thickness of 0.13 .mu.m was formed by high-frequency sputtering from a distant Co--Cr alloy target containing 20% Cr. The high frequency was 13.56MHz, 1KW, and the gas pressure was Ar and 1×10 -3 Torr. The coercive force in the vertical direction was 740 [O¨e]. In this state, cut the magnetic tape into 8mm width.
1-B was a magnetic tape in which 150 ppm of myristic acid dissolved in toluene was applied as a lubricating layer to the surface of the tape 1-A using a reverse roll coater. The dry thickness is approximately 30 Å. Example 2 Using the vacuum evaporation apparatus used in Example 1, the Co-Cr alloy target was replaced with a Ni-Fe-Mo alloy target (76% Ni, 18% Fe, 6% Mo), and the thickness was
Ni-Fe- on 11.5μm polyamide film
A Mo layer of 0.3 μm was formed. High frequency is 13.56MHz,
The 1.2KW gas pressure was Ar8.8×10 -4 Torr. The saturation magnetization of this layer is 7000 [G], and the coercive force is 4
It was [O¨e]. Next, the Ni−Fe−
On the Mo layer, Ni-Fe was added in the same manner as in Example 1.
The fine particles were coated with a reverse roll coater to a dry thickness of 0.1 μm to form a low coercive force layer. Incidentally, among the paint components, zinc stearate was replaced with stearic acid. As a result of this coating, the number of protrusions with Ni-Fe fine particles as the core is approximately 33/ μm2 , the protrusion height is approximately 200 Å, and the low coercive force layer obtained by coating has a saturation magnetic flux density of 850.
The Gaussian coercive force was 6 [O¨e]. Co-Mo was deposited on this low coercive force layer using a high-frequency sputtering device in which the target was replaced with Co-Mo.
A magnetic recording layer of a perpendicularly magnetizable ferromagnetic metal thin film was formed to a thickness of 0.2 μm. The main conditions were the same as in Example 1 when forming the Co--Cr perpendicularly magnetized thin film. The saturation magnetic flux density of the Co-Mo perpendicularly magnetized thin film (Mo: 21% by weight) was 3300 [Gauss], and the coercive force in the vertical direction was 950 [O¨e]. The magnetic tape cut into 8mm width is 2-A,
A magnetic tape coated with myristic acid in the same manner as in Example-1 was designated as 2-B. Comparative Example 1 Ni-
A two-layer film consisting of an Fe thin film and a Co-Cr thin film was created. The Ni-Fe thin film (Ni, 80%) has a thickness of 1 μm, a saturation magnetic flux density of 8000 [Gauss], and a coercive force of 5.5 [O¨e].
The Co--Cr thin film had a thickness of 0.13 μm, and the manufacturing conditions and obtained magnetic properties were the same as in Example-1. Myristic acid was applied in the same manner as in Example-1.
The magnetic tape with a width of mm was designated as 3-B, and the magnetic tape without coating was designated as 3-A. Comparative Example 2 A magnetic tape was prepared in Example 2 without applying the coating liquid containing Ni-Fe fine particles. The magnetic tape without myristic acid applied to the magnetic tape is 4-A, and the magnetic tape coated with myristic acid is 4-A.
-B. The magnetic tapes obtained in the above Examples and Comparative Examples were measured using a prototype 8 mm video tape recorder. The cylinder diameter is 4 cm, the video head is a ferrite head with a gap length of 0.27 μm, and an amorphous alloy head with a recording wavelength of 0.5 μm. Three types were changed.

【表】 かつこ内はアモルフアス合金ヘツドの場合のス
チル寿命の値である。(単位は分で示した。) 上表より明らかなように、本発明品の磁気テー
プはスチル時のテンシヨンに殆んど依存しないで
長時間再生出力が減衰しない。 アモルフアス合金ヘツドの使用時の方が少し、
スチル寿命が短かいが、実用上は60分あれば充分
であり、本発明品は倍以上の寿命を保つている。 スチル寿命が長いことは、ヘツドとテープの相
互作用の耐久性が優れていることを示すもので、
結果的に、走行安定性をもたらし、高密度記録上
重要なトラツクずれなどの不都合がないし、くり
返し使用してもドロツプアウトが増加しないし、
ヘツド摩耗も少なく、ヘツドの面あれも起りにく
いので、優れた出力対雑音比を維持できる等の効
果がある。 発明の効果 本発明の磁気記録媒体は、垂直磁化可能な強磁
性金属薄膜からなる磁気記録層の記録再生効果を
向上させる低抗磁力層を、軟磁性微粒子を樹脂中
に分散せしめ塗布、乾燥して得ることで生じる前
記微粒子を核にした突起を有する構成とすること
で、Co−系合金と磁気ヘツドの高速摺接時に起
る摩耗の問題を解消し、垂直磁化可能な強磁性金
属薄膜による高密度磁気記録再生を、耐久性と最
小のスペース損失で実現させることができる。
[Table] The values in brackets are still life values for amorphous alloy heads. (The units are minutes.) As is clear from the above table, the magnetic tape of the present invention hardly depends on the tension during stilling, and the reproduction output does not attenuate over a long period of time. When using an amorphous alloy head, the
Although the still life is short, 60 minutes is practically sufficient, and the product of the present invention has a lifespan more than double that. Long still life indicates excellent durability of head-tape interaction.
As a result, it provides running stability, eliminates inconveniences such as track deviation, which is important for high-density recording, and does not increase dropouts even after repeated use.
Since there is little wear on the head and surface roughness of the head is less likely to occur, it is possible to maintain an excellent output-to-noise ratio. Effects of the Invention The magnetic recording medium of the present invention has a low coercive force layer that improves the recording and reproducing effect of a magnetic recording layer made of a perpendicularly magnetizable ferromagnetic metal thin film, which is formed by dispersing soft magnetic particles in a resin, coating it, and drying it. By creating a structure with protrusions based on the fine particles that are produced when the Co-based alloy and the magnetic head are brought into contact with each other at high speed, it is possible to solve the problem of wear that occurs during high-speed sliding contact between the Co-based alloy and the magnetic head. High-density magnetic recording and reproducing can be achieved with durability and minimal space loss.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の磁気記録媒体の拡大断面図、第
2図は本発明の一実施例における磁気記録媒体の
拡大断面図である。 6……低抗磁力層、8……軟磁性微粒子、9…
…磁気記録層。
FIG. 1 is an enlarged sectional view of a conventional magnetic recording medium, and FIG. 2 is an enlarged sectional view of a magnetic recording medium according to an embodiment of the present invention. 6...Low coercive force layer, 8...Soft magnetic fine particles, 9...
...Magnetic recording layer.

Claims (1)

【特許請求の範囲】[Claims] 1 軟磁性微粒子を核とする突起を有する低抗磁
力層上に垂直磁化可能な強磁性金属薄膜からなる
磁気記録層を配したことを特徴とする磁気記録媒
体。
1. A magnetic recording medium characterized in that a magnetic recording layer made of a ferromagnetic metal thin film capable of perpendicular magnetization is disposed on a low coercive force layer having protrusions having soft magnetic particles as cores.
JP19636583A 1983-10-20 1983-10-20 Magnetic recording medium Granted JPS6087424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19636583A JPS6087424A (en) 1983-10-20 1983-10-20 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19636583A JPS6087424A (en) 1983-10-20 1983-10-20 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS6087424A JPS6087424A (en) 1985-05-17
JPH0475572B2 true JPH0475572B2 (en) 1992-12-01

Family

ID=16356635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19636583A Granted JPS6087424A (en) 1983-10-20 1983-10-20 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS6087424A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4123944B2 (en) * 2003-01-21 2008-07-23 富士電機デバイステクノロジー株式会社 Vertical double-layer patterned medium and manufacturing method thereof

Also Published As

Publication number Publication date
JPS6087424A (en) 1985-05-17

Similar Documents

Publication Publication Date Title
JPH0475572B2 (en)
US5443879A (en) Longitudinal magnetic recording medium exhibiting various coercivitiy relationships
Kaneda Tribology of metal-evaporated tape for high-density magnetic recording
JPS6047230A (en) Tape shape magnetic recording medium
JPS61187122A (en) Magnetic recording medium
US20010050829A1 (en) Magnetic recording and reproducing system including a ring head of materials having different saturation flux densities
JPH0268712A (en) Thin film magnetic recording medium
JP3204655B2 (en) Magnetic disk storage
JPH04337519A (en) Magnetic recording medium
RU2010356C1 (en) Magnetic recording data medium
JPH0462128B2 (en)
JPS6378332A (en) Magnetic recording medium
JPS6126924A (en) Magnetic recording medium
JPH0570205B2 (en)
JPS61150124A (en) Magnetic recording medium
JPH053050B2 (en)
JPH0256716A (en) Perpendicular magnetic recording medium
JPS6350915A (en) Perpendicular magnetic recording medium
JPS61239423A (en) Magnetic recording medium
JPS61222025A (en) Magnetic recording medium
JPS6174129A (en) Magnetic recording medium
JPS60261013A (en) Magnetic recording medium
Das et al. Magnetic Recording, Materials
JPS61196424A (en) Magnetic recording medium
US20060274449A1 (en) Magnetic recording medium defining a recording surface having improved smoothness characteristics