JPH04291017A - Magnetic recording medium and magnetic memory device - Google Patents

Magnetic recording medium and magnetic memory device

Info

Publication number
JPH04291017A
JPH04291017A JP5649591A JP5649591A JPH04291017A JP H04291017 A JPH04291017 A JP H04291017A JP 5649591 A JP5649591 A JP 5649591A JP 5649591 A JP5649591 A JP 5649591A JP H04291017 A JPH04291017 A JP H04291017A
Authority
JP
Japan
Prior art keywords
magnetic
recording medium
magnetic recording
based alloy
underlayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5649591A
Other languages
Japanese (ja)
Other versions
JP3052406B2 (en
Inventor
Hiroyuki Suzuki
博之 鈴木
Noriyuki Shige
重 則幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3056495A priority Critical patent/JP3052406B2/en
Publication of JPH04291017A publication Critical patent/JPH04291017A/en
Application granted granted Critical
Publication of JP3052406B2 publication Critical patent/JP3052406B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To provide the recording medium constituted to apply the magnetic characteristics optimum for high-density intra-surface magnetic recording to magnetic layers thereby obtaining the magnetic memory device of a large capacity. CONSTITUTION:A substrate 12 consisting of a nonmagnetic Ni-based alloy having an fcc structure is provided between a nonmagnetic substrate 11 and the magnetic layer 13 consisting of a Co-based alloy. The substrate 12 is formed by orienting the 100 face of the fcc structure in the direction normal to the film plane and the magnetic film 13 consisting of the Co-based alloy is formed by epitaxially growing the 110 face on the above-mentioned substrate.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、磁気記録媒体及び磁気
記憶装置に係り、特に、膜面に対し主として面内方向の
磁化によって情報の記録が行われる磁気記録媒体、及び
、この磁気記録媒体を用いた磁気記憶装置に関する。
[Field of Industrial Application] The present invention relates to a magnetic recording medium and a magnetic storage device, and more particularly to a magnetic recording medium in which information is recorded mainly by magnetization in the in-plane direction with respect to the film surface, and this magnetic recording medium. This invention relates to a magnetic storage device using.

【0002】0002

【従来の技術】膜面に対し主として面内方向の磁化によ
って情報の記録が行われる磁気記録媒体に関する従来技
術として、例えば、特開平1−220217号公報等に
記載された技術が知られている。
BACKGROUND OF THE INVENTION As a prior art related to a magnetic recording medium in which information is recorded mainly by magnetization in the in-plane direction on a film surface, for example, the technology described in Japanese Patent Application Laid-Open No. 1-220217 is known. .

【0003】この従来技術は、硬質の非磁性基板上に、
記録面に平行な体心立方構造の(100)面を有する5
0ないし200オングストロ−ムの厚さのクロム(Cr
)層と、該クロム層の(100)面上にエピタキシャル
成長により形成された、六方最密充填構造の(110)
面を有し、c軸が上記記録面に平行となっているコバル
ト合金薄膜とを設けて構成したものである。
[0003] This conventional technology has a hard non-magnetic substrate on which
5 with a body-centered cubic structure (100) plane parallel to the recording surface
Chromium (Cr) with a thickness of 0 to 200 angstroms
) layer and a (110) hexagonal close-packed structure formed by epitaxial growth on the (100) plane of the chromium layer.
A cobalt alloy thin film having a surface and a c-axis parallel to the recording surface is provided.

【0004】0004

【発明が解決しようとする課題】前記従来技術は、極薄
膜のCrを下地層として用い、その上にコバルト合金薄
膜を成長させたものであるが、一般に、極薄膜のCrの
表面は活性であるため、保磁力のばらつきが大きくなり
、また、コバルト合金薄膜を安定して成長させることが
困難であり、プロセスマ−ジンが小さくなるという問題
点を有している。
[Problems to be Solved by the Invention] The above-mentioned prior art uses an ultra-thin Cr film as an underlayer and grows a cobalt alloy thin film thereon, but generally the surface of the ultra-thin Cr film is not active. Therefore, there are problems in that the coercive force varies widely, and it is difficult to stably grow a cobalt alloy thin film, resulting in a small process margin.

【0005】本発明の目的は、前記従来技術の問題点を
解決し、下地層となる非磁性層の上に連続して形成され
るコバルト合金膜による六方稠密充填(hcp)構造の
(110)面を安定して成長させ、記録面内にhcp構
造の(110)面が平行になるコバルト基合金磁性層を
有する磁気記録媒体を提供することにある。
An object of the present invention is to solve the problems of the prior art, and to provide a (110) hexagonal close-packed (hcp) structure of a cobalt alloy film continuously formed on a non-magnetic layer serving as an underlayer. The object of the present invention is to provide a magnetic recording medium having a cobalt-based alloy magnetic layer in which the plane is stably grown and the (110) plane of the hcp structure is parallel to the recording plane.

【0006】また、本発明の他の目的は、この磁気記録
媒体を用いた磁気記憶装置を提供することにある。
Another object of the present invention is to provide a magnetic storage device using this magnetic recording medium.

【0007】[0007]

【課題を解決するための手段】本発明の目的は、硬質の
非磁性基板上に面心立方構造を有する非磁性Ni基合金
からなる下地層を形成し、その上にコバルト基合金磁性
層を形成することにより達成される。
[Means for Solving the Problems] An object of the present invention is to form a base layer made of a non-magnetic Ni-based alloy having a face-centered cubic structure on a hard non-magnetic substrate, and to form a cobalt-based alloy magnetic layer thereon. This is achieved by forming.

【0008】すなわち、前記目的は、硬質の非磁性基板
上に面心立方(fcc)構造をとる非磁性Ni基合金の
下地層を、高真空蒸着法あるいはスパッタ法等により、
膜形成時の基板温度を200℃以上に上げ、毎分80〜
300nmの高速膜形成を行い、膜厚を20〜90nm
にすることにより主として(100)面が下地層表面と
なるように形成し、この下地膜表面上に連続してhcp
構造をとるCo基合金磁性層の(110)面をエピタキ
シャル成長させることにより達成される。
That is, the above object is to form an underlayer of a nonmagnetic Ni-based alloy having a face-centered cubic (FCC) structure on a hard nonmagnetic substrate by high vacuum evaporation or sputtering.
Raise the substrate temperature to 200℃ or higher during film formation, and increase the speed at 80℃ per minute
300nm high-speed film formation, film thickness 20-90nm
By doing so, the (100) plane is formed as the surface of the underlayer, and hcp is continuously formed on the surface of this underlayer.
This is achieved by epitaxially growing the (110) plane of a Co-based alloy magnetic layer having a structure.

【0009】これらの層構成は、RFスパッタ法、DC
スパッタ法、あるいは、これらの方法を実行する装置の
カソ−ドにマグネトロン方式を用い、あるいは、バイア
ス電圧を印加した、イオンビ−ムスパッタ法等による薄
膜形成手法のいずれによっても形成することが可能であ
る。
[0009] These layer structures can be formed using RF sputtering, DC
It can be formed by either a sputtering method, a thin film forming method using a magnetron method for the cathode of a device that executes these methods, or an ion beam sputtering method using a bias voltage applied. .

【0010】前述において、基板温度を200℃以上に
上げて高速膜形成を行うのは、膜形成時の薄膜表面にお
ける原子の移動度を高めるためであり、Ni−Pメッキ
した基板の場合には、メッキ膜が磁化しないように加熱
することが望ましいためである。
[0010] In the above, the reason why the substrate temperature is raised to 200°C or higher to perform high-speed film formation is to increase the mobility of atoms on the thin film surface during film formation. This is because it is desirable to heat the plated film so that it does not become magnetized.

【0011】なお、磁性膜を形成する前工程として、下
地基板表面を一般にテクスチャ加工と呼ばれている加工
技術で予め粗面加工しておくことが好ましく、例えば、
ディスク基板の磁気ヘッド走行方向に沿って中心線平均
面粗さで、2〜30nmの微細な傷を設けておくことに
より、ディスク基板表面上の非磁性金属下地層及びその
上に形成される磁性層の結晶粒を磁気ヘッド走行方向に
結晶配向させることができ、ヘッド走行方向の角形比、
保磁力等の磁気特性を著しく改善することができる、ま
た、このテクスチャ効果は、磁性層形成時の基板加熱と
相応して磁気特性の向上に寄与する。
[0011] As a pre-process for forming the magnetic film, it is preferable to roughen the surface of the base substrate in advance using a processing technique generally called texturing.
By creating fine scratches with a center line average surface roughness of 2 to 30 nm along the running direction of the magnetic head on the disk substrate, the non-magnetic metal underlayer on the surface of the disk substrate and the magnetic properties formed thereon are The crystal grains of the layer can be oriented in the running direction of the magnetic head, and the squareness ratio in the head running direction can be improved.
Magnetic properties such as coercive force can be significantly improved, and this texture effect contributes to improvement of magnetic properties in accordance with substrate heating during formation of the magnetic layer.

【0012】前記本発明の他の目的は、磁気記録媒体と
、これを回転駆動する駆動部と、磁気ヘッド及びその駆
動手段と、磁気ヘッドの記録再生信号処理手段とを有し
構成される磁気記憶装置において、前記磁気記録媒体を
前述した本発明の目的を達成することのできる面内磁気
記録媒体より構成することにより達成される。
Another object of the present invention is to provide a magnetic recording medium comprising a magnetic recording medium, a driving section for rotationally driving the magnetic recording medium, a magnetic head and its driving means, and a recording/reproducing signal processing means for the magnetic head. This is achieved by configuring the magnetic recording medium in the storage device as a longitudinal magnetic recording medium that can achieve the above-described object of the present invention.

【0013】[0013]

【作用】Co基合金磁性薄膜を面内磁気記録媒体として
最適化するためには、hcp構造をとるCo基合金の磁
化容易軸であるc軸をディスク面内に配向させる必要が
ある。このためには、Co合金磁性層の(hk0)面を
下地層面上に成長させる必要がある。そして、このよう
な要求は、fcc構造をとる非磁性Ni基合金下地層の
(100)面を記録面と平行にすることにより格子の整
合性を向上させ、Co合金磁性層の(110)面を前記
下地層上にエピタキシャル成長させることにより実現す
ることができる。
[Operation] In order to optimize the Co-based alloy magnetic thin film as an in-plane magnetic recording medium, it is necessary to orient the c-axis, which is the axis of easy magnetization of the Co-based alloy having an hcp structure, within the disk plane. For this purpose, it is necessary to grow the (hk0) plane of the Co alloy magnetic layer on the surface of the underlayer. These requirements can be met by improving lattice matching by making the (100) plane of the non-magnetic Ni-based alloy underlayer parallel to the recording surface, and by making the (110) plane of the Co alloy magnetic layer parallel to the recording surface. This can be realized by epitaxially growing on the base layer.

【0014】非磁性Ni基合金下地層は、高真空蒸着あ
るいは高速のスパッタ条件等で形成することにより、主
として(100)配向した薄膜として得ることができる
。この下地膜上にCo−Ni−Cr合金、Co−Pt合
金、Co−Cr−Pt合金、Co−Cr−Ta合金、C
o−Cr−Ta−Pt合金のようなCo基合金磁性膜を
形成すると、磁化容易軸(c軸)がディスク面内にある
ようなエピタキシャル成長を行わせることが可能になる
[0014] The nonmagnetic Ni-based alloy underlayer can be obtained as a thin film mainly oriented in (100) by forming it under high vacuum evaporation or high speed sputtering conditions. Co-Ni-Cr alloy, Co-Pt alloy, Co-Cr-Pt alloy, Co-Cr-Ta alloy, C
When a Co-based alloy magnetic film such as an o-Cr-Ta-Pt alloy is formed, it becomes possible to perform epitaxial growth such that the axis of easy magnetization (c-axis) lies within the disk plane.

【0015】非磁性金属下地層を形成する前工程として
、Ni−P等の基板下地表面を、略ヘッド走行方向に沿
って微細な傷が入るように加工し、ヘッド走行方向の中
心線粗さRaを1〜10nm、これに直角方向のRaを
2〜30nmとすることにより、ヘッド走行方向の保磁
力を半径方向のそれよりも大きくすることができ、出力
を1〜2割高くすることができる。ヘッド走行方向に直
角方向のRaについては、2nm以上でないと効果が小
さく、また、30nmよりも大きくすると耐摺動性が劣
化するので好ましくない。
As a pre-process for forming the non-magnetic metal underlayer, the surface of the Ni--P substrate underlayer is processed so that fine scratches are formed approximately along the head running direction, and the center line roughness in the head running direction is By setting Ra to 1 to 10 nm and Ra in the direction perpendicular to this to 2 to 30 nm, the coercive force in the head running direction can be made larger than that in the radial direction, and the output can be increased by 10 to 20%. can. Regarding Ra in the direction perpendicular to the head running direction, if it is not 2 nm or more, the effect will be small, and if it is larger than 30 nm, the sliding resistance will deteriorate, which is not preferable.

【0016】下地膜の膜厚を20〜90nmとしたのは
、膜厚が20nmよりも薄い場合に、下地膜の結晶粒が
小さく、連続して形成した磁性膜の結晶粒径も微細化し
てしまい、1200Oe以上の保磁力を得ることが困難
になり、一方、膜厚が90nmを超えると、fcc構造
の(100)面以外の例えば(111)面が下地膜表面
に生じやすくなるため、やはり、1200Oe以上の保
磁力を得ることが困難になるからである。
The reason why the thickness of the base film is set to 20 to 90 nm is that when the film thickness is thinner than 20 nm, the crystal grains of the base film are small and the crystal grain size of the continuously formed magnetic film is also fine. On the other hand, if the film thickness exceeds 90 nm, for example, the (111) plane other than the (100) plane of the fcc structure tends to occur on the surface of the underlying film. , it becomes difficult to obtain a coercive force of 1200 Oe or more.

【0017】すなわち、下地膜の膜厚を20〜90nm
とした場合に、1200Oe以上の保磁力が得られるよ
うな大きさの結晶粒径を得ることができ、かつ、fcc
の(111)面に比べ優位的に(100)配向した下地
膜が形成可能である。そして、このような下地膜であっ
ても、格子の整合性が8%以上ずれると、Taあるいは
白金から選ばれる少なくとも1つの元素を含有するhc
p構造のCo基合金のc軸は垂直に配向しやすくなるた
め、下地膜に用いる合金材料の選択時には、格子の整合
性を8%以内、より好ましくは4%以内にする必要があ
る。
That is, the thickness of the base film is 20 to 90 nm.
In this case, it is possible to obtain a crystal grain size large enough to obtain a coercive force of 1200 Oe or more, and fcc
It is possible to form a base film that is preferentially oriented in the (100) plane compared to the (111) plane. Even with such a base film, if the lattice matching shifts by 8% or more, the hc containing at least one element selected from Ta or platinum
Since the c-axis of a p-structured Co-based alloy tends to be vertically oriented, when selecting an alloy material to be used for the base film, the lattice matching needs to be within 8%, more preferably within 4%.

【0018】本発明の磁気記録媒体を、作動ギャップ近
傍にCo−Nb−Zr、Fe−Al−Si、Ni−Fe
等の強磁性金属を設けたメタルインギャップタイプある
いは薄膜による磁気ヘッドを使用して記録再生したとこ
ろ、ディスク円周方向の面内保磁力を1200Oe以上
とすれば、再生出力を格段に向上させることができるこ
とが確認された。さらに、面内保磁力を1500Oeに
すれば、さらに出力記録密度特性を向上させることがで
きる。
The magnetic recording medium of the present invention has Co-Nb-Zr, Fe-Al-Si, Ni-Fe near the working gap.
When recording and reproducing using a metal-in-gap type or thin-film magnetic head equipped with ferromagnetic metal such as It has been confirmed that this is possible. Further, by setting the in-plane coercive force to 1500 Oe, the output recording density characteristics can be further improved.

【0019】そして、少なくとも磁極の一部を前述のよ
うな金属磁性材料で構成した磁気ヘッドは、本発明によ
る磁気記録媒体との整合性が良好なものであり、これを
用いて記録再生を行うようにすることにより効率を向上
させることができ、大容量の磁気記憶装置を提供するこ
とができる。
A magnetic head in which at least a part of the magnetic pole is made of the metal magnetic material as described above has good compatibility with the magnetic recording medium according to the present invention, and is used for recording and reproducing. By doing so, efficiency can be improved and a large capacity magnetic storage device can be provided.

【0020】[0020]

【実施例】以下、本発明による磁気記録媒体及び磁気記
憶装置の実施例を図面により詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of a magnetic recording medium and a magnetic storage device according to the present invention will be explained in detail with reference to the drawings.

【0021】図1は本発明による磁気記録媒体の実施例
の構成を示す図である。図1において、11は基板、1
2、12’は下地層、13、13’は磁性層、14、1
4’は保護被覆膜層である。
FIG. 1 is a diagram showing the structure of an embodiment of a magnetic recording medium according to the present invention. In FIG. 1, 11 is a substrate;
2, 12' are underlayers, 13, 13' are magnetic layers, 14, 1
4' is a protective coating layer.

【0022】[実施例1]本発明の第1の実施例は、図
1に示すように、基板11の両面に、下地層12、12
’、磁性層13、13’、保護被覆膜層14、14’を
備えて構成され、これらは、次のような材料により形成
される。
[Embodiment 1] In the first embodiment of the present invention, as shown in FIG.
', magnetic layers 13, 13', and protective coating layers 14, 14', which are made of the following materials.

【0023】基板11は、Ni−P、Ni−W−P等を
メッキしたAl−Mg合金、アルマイト処理したAl−
Mg合金、ガラス、セラミックス等により形成される。
The substrate 11 is made of an Al-Mg alloy plated with Ni-P, Ni-W-P, etc., or an Al-Mg alloy plated with anodized aluminum.
It is formed from Mg alloy, glass, ceramics, etc.

【0024】下地層12、12’は、Ti、V、Nb、
Ta、Cr、Mo、Mn、Fe、Co、Cu、Al、S
iから選択された少なくとも1つの元素をNiに添加し
た非磁性合金により形成される。
The base layers 12, 12' are made of Ti, V, Nb,
Ta, Cr, Mo, Mn, Fe, Co, Cu, Al, S
It is formed from a non-magnetic alloy in which at least one element selected from i is added to Ni.

【0025】磁性層13、13’は、Co−Pt、Co
−Cr−Pt、Co−Ni−Pt、Co−Cr−Ta、
Co−Cr−Ta−Pt、Co−Ni−Cr、Co−C
r−Ni−Pt、あるいは、これらの合金に酸素を含有
させた合金により形成される。
The magnetic layers 13 and 13' are made of Co-Pt, Co
-Cr-Pt, Co-Ni-Pt, Co-Cr-Ta,
Co-Cr-Ta-Pt, Co-Ni-Cr, Co-C
It is formed of r-Ni-Pt or an alloy of these containing oxygen.

【0026】保護被覆膜層14、14’は、C、W−M
o−C、B、炭化硼素、酸化珪素、Rh、二硫化モリブ
デン、Al−Ta合金の酸化物の1つにより形成される
。この保護被覆膜14、14’の上には、さらに有機系
潤滑剤層があってもよい。
The protective coating layers 14, 14' are made of C, W-M
o-C, B, boron carbide, silicon oxide, Rh, molybdenum disulfide, and one of the oxides of Al-Ta alloy. An organic lubricant layer may further be provided on the protective coating films 14, 14'.

【0027】次に、この本発明の第1の実施例によるデ
ィスクの形成方法を説明する。
Next, a method for forming a disk according to the first embodiment of the present invention will be explained.

【0028】(1)外径130mm、内径40mm、厚
さ1.9mmのAl合金基板上に、12μm厚の非磁性
Ni−12wt%Pのメッキ層を形成して非磁性基板1
1を形成する。
(1) A nonmagnetic substrate 1 is formed by forming a 12 μm thick nonmagnetic Ni-12wt%P plating layer on an Al alloy substrate with an outer diameter of 130 mm, an inner diameter of 40 mm, and a thickness of 1.9 mm.
form 1.

【0029】(2)この基板11上に、RFマグネトロ
ンスパッタリング法により、基板温度250℃、放電A
rガス圧力2mTorr、RF投入電力4W/cm2で
、Ni−28wt%Mo−5wt%Fe(ハステロイB
)の合金タ−ゲットをスパッタし、膜厚10、20、5
0、90または150nmの非磁性下地層12、12’
を形成する。これにより、下地層12、12’は、該下
地層表面で、記録面に平行名面心立方構造の(100)
面を有するように形成される。
(2) On this substrate 11, a discharge A is applied at a substrate temperature of 250° C. by RF magnetron sputtering method.
Ni-28wt%Mo-5wt%Fe (Hastelloy B
) alloy target was sputtered, and the film thickness was 10, 20, 5.
0, 90 or 150 nm non-magnetic underlayer 12, 12'
form. As a result, the underlayers 12 and 12' have a (100) face-centered cubic structure parallel to the recording surface on the surface of the underlayer.
It is formed to have a surface.

【0030】(3)次に、前述と同様にして、膜厚60
nmのCo−12at%Cr−4at%Pt合金による
磁性層13、13’を前記下地層の上にエピタキシャル
成長させて形成する。この結果、磁性層13、13’は
、六方稠密充填構造の(110)面が記録面に平行にな
るように形成される。
(3) Next, in the same manner as described above, the film thickness was set to 60
Magnetic layers 13 and 13' made of Co-12at%Cr-4at%Pt alloy with a thickness of 100 nm are formed by epitaxial growth on the underlayer. As a result, the magnetic layers 13 and 13' are formed so that the (110) plane of the hexagonal close-packed structure is parallel to the recording surface.

【0031】(4)その後、膜厚30nmのCからなる
保護被覆膜層14、14’を形成して磁気ディスクとす
る。
(4) Thereafter, a protective coating layer 14, 14' made of C and having a thickness of 30 nm is formed to form a magnetic disk.

【0032】本発明の第1の実施例による磁気ディスク
の保磁力Hcを測定したところ、下地層12、12’の
膜厚を20〜90nmとした場合、Hcを1200Oe
以上とすることができた。これに対し、下地層の膜厚を
10nm、150nmとした場合、Hcは、それぞれ8
60Oe、1080Oeと小さな値となった。
When the coercive force Hc of the magnetic disk according to the first embodiment of the present invention was measured, it was found that when the thickness of the underlayers 12 and 12' was 20 to 90 nm, Hc was 1200 Oe.
I was able to do more than that. On the other hand, when the underlying layer thickness is 10 nm and 150 nm, Hc is 8 nm and 150 nm, respectively.
The values were small at 60 Oe and 1080 Oe.

【0033】下地層の膜厚を10nm、150nmとし
た場合にHcの値が小さくなる理由は、下地層の膜厚が
10nmと薄い場合、下地層12、12’の結晶粒が微
細であるため、その上に形成される磁性層13、13’
の結晶粒も微細化されるからてらあり、下地膜厚が15
0nmと厚い場合、hcp構造の最稠密面である(11
1)面が下地層表面に生じやすくなるためである。この
ことは、静磁気特性評価、走査電子顕微鏡観察、透過電
子顕微鏡観察、及びX線回折の測定により明らかとなっ
た。
[0033] The reason why the value of Hc becomes small when the thickness of the base layer is 10 nm and 150 nm is that when the thickness of the base layer is as thin as 10 nm, the crystal grains of the base layers 12 and 12' are fine. , magnetic layers 13, 13' formed thereon
The crystal grains are also made finer, so the thickness of the base film is 15
When it is as thick as 0 nm, it is the most densely packed plane of the hcp structure (11
1) This is because surfaces tend to form on the surface of the base layer. This was revealed by magnetostatic property evaluation, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction measurements.

【0034】前述の効果は、磁性層13、13’として
用いる合金組成と下地層12、12’として用いる非磁
性Ni基合金との格子整合性が8%以内である場合に、
下地層12、12’を、ハステロイC、インコネル、ア
ロイGDS、アロイ20Cb3(以上、全て商品名)等
の非磁性Ni基合金をスパッタタ−ゲットとして形成し
た場合に認められた。
The above-mentioned effect is obtained when the lattice matching between the alloy composition used for the magnetic layers 13, 13' and the non-magnetic Ni-based alloy used for the underlayers 12, 12' is within 8%.
This was observed when the underlayers 12 and 12' were formed using a non-magnetic Ni-based alloy such as Hastelloy C, Inconel, Alloy GDS, Alloy 20Cb3 (all trade names) as a sputter target.

【0035】[実施例2]次に、図1に示す構造と同様
な構造を持つ本発明の第2の実施例の形成方法を説明す
る。
[Embodiment 2] Next, a method of forming a second embodiment of the present invention having a structure similar to that shown in FIG. 1 will be described.

【0036】(1)外径130mm、内径40mm、厚
さ1.27mmのAl合金基板の表面に15μmの非磁
性Ni−11wt%Pメッキ層を形成して非磁性基板1
1を形成する。
(1) A nonmagnetic substrate 1 is formed by forming a 15 μm nonmagnetic Ni-11wt%P plating layer on the surface of an Al alloy substrate with an outer diameter of 130 mm, an inner diameter of 40 mm, and a thickness of 1.27 mm.
form 1.

【0037】(2)前述で形成した非磁性基板11上に
、インライン型のDCマグネトロンスパッタ装置を用い
、基板加熱温度200℃、Arガス圧力3mTorr、
投入電力3W/cm2で、膜厚50nmのNi−17w
t%Mo−16wt%Cr−4wt%W−5wt%Fe
合金による非磁性下地層12、12’を形成する。
(2) On the non-magnetic substrate 11 formed above, using an in-line type DC magnetron sputtering device, a substrate heating temperature of 200° C., an Ar gas pressure of 3 mTorr,
Ni-17w with a film thickness of 50 nm at an input power of 3 W/cm2
t%Mo-16wt%Cr-4wt%W-5wt%Fe
Nonmagnetic underlayers 12 and 12' made of an alloy are formed.

【0038】(3)次に、前述と同様にして、膜厚60
nmのCo−10at%Cr−4at%Ta、Co−1
0at%Cr−4at%Pt、または、Co−9at%
Cr−4at%Ta−2at%Ptの合金磁性膜13、
13’を形成する。
(3) Next, in the same manner as described above, the film thickness was set to 60
nm Co-10at%Cr-4at%Ta, Co-1
0at%Cr-4at%Pt or Co-9at%
Cr-4at%Ta-2at%Pt alloy magnetic film 13,
13' is formed.

【0039】(5)その後、膜厚25nmのCからなる
非磁性保護被覆層14、14’を形成し、固体潤滑剤を
4nm厚さに被覆して磁気ディスクとする。
(5) Thereafter, a nonmagnetic protective coating layer 14, 14' made of C with a thickness of 25 nm is formed, and a solid lubricant is coated with a thickness of 4 nm to form a magnetic disk.

【0040】前述した本発明の第2の実施例による磁気
ディスクの保磁力Hcを測定したところ、いずれも保磁
力は1400Oe以上であった。
When the coercive force Hc of the magnetic disks according to the second embodiment of the present invention described above was measured, the coercive force was 1400 Oe or more in all cases.

【0041】図2は前述した本発明の第1、第2の実施
例による磁気記録媒体を使用した磁気記憶装置の構成を
説明する図であり、(a)は平面図、(b)は断面図で
ある。図2において、41は磁気記録媒体、42は磁気
記録媒体駆動部、43は磁気ヘッド、44は磁気ヘッド
駆動部、45は記録再生信号処理系である。
FIG. 2 is a diagram illustrating the configuration of a magnetic storage device using magnetic recording media according to the first and second embodiments of the present invention, in which (a) is a plan view and (b) is a cross-sectional view. It is a diagram. In FIG. 2, 41 is a magnetic recording medium, 42 is a magnetic recording medium drive section, 43 is a magnetic head, 44 is a magnetic head drive section, and 45 is a recording/reproducing signal processing system.

【0042】図2に示す磁気記憶装置は、前述した本発
明の第1または第2の実施例による磁気ディスクを磁気
記録媒体41として使用したもので、この磁気記録媒体
41を1〜9枚組み込んだディスク部と、磁気コアの一
部に膜厚2μmのFe−Al−Si−Ruあるいは膜厚
16μmのCo−Nb−Zrを用い、メタルインギャッ
プ型あるいは薄膜型に形成された磁気ヘッド43とによ
り構成されている。そして、ディスク部は、磁気記録媒
体駆動部42により回転駆動され、磁気ヘッド43は、
磁気ヘッド駆動部44により駆動されるように構成され
ている。
The magnetic storage device shown in FIG. 2 uses the above-described magnetic disk according to the first or second embodiment of the present invention as a magnetic recording medium 41, and incorporates one to nine magnetic recording media 41. The magnetic head 43 is formed into a metal-in-gap type or thin-film type using Fe-Al-Si-Ru with a thickness of 2 μm or Co-Nb-Zr with a thickness of 16 μm for the disk portion and a part of the magnetic core. It is made up of. The disk unit is rotationally driven by a magnetic recording medium drive unit 42, and the magnetic head 43 is
It is configured to be driven by a magnetic head drive section 44.

【0043】前述した磁気記憶装置は、コ−ティング等
の従来型の塗布による磁気記録媒体、Co−Ni合金に
よる連続媒体等を用いて構成した磁気記録媒体を使用し
た装置に比べ、1.5倍以上の大容量の記録が可能であ
る。
The above-mentioned magnetic storage device has a magnetic storage capacity of 1.5% compared to a device using a magnetic recording medium constructed using a conventional coating such as a coating, a continuous medium made of a Co--Ni alloy, or the like. It is possible to record more than double the capacity.

【0044】[0044]

【発明の効果】以上説明したように本発明によれば、高
密度の面内磁気記録を行うために最適な磁気特性を磁性
層に与えることが可能となり、大容量の記憶が可能な磁
気記録媒体を提供することができ、大容量の記憶装置を
提供することができる。
Effects of the Invention As explained above, according to the present invention, it is possible to provide the magnetic layer with optimal magnetic properties for performing high-density in-plane magnetic recording, and magnetic recording that enables large-capacity storage. Media can be provided and mass storage can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例による磁気記録媒体の構造を示
す断面図である。
FIG. 1 is a sectional view showing the structure of a magnetic recording medium according to an embodiment of the present invention.

【図2】磁気記憶装置の構成を説明する図である。FIG. 2 is a diagram illustrating the configuration of a magnetic storage device.

【符号の説明】[Explanation of symbols]

11  基板 12、12’  下地層 13、13’  磁性層 14、14’  保護被覆層 41  磁気記録媒体 42  磁気記録媒体駆動部 43  磁気ヘッド 44  磁気ヘッド駆動部 45  記録再生信号処理系 11 Board 12, 12' Base layer 13, 13' Magnetic layer 14, 14' Protective coating layer 41 Magnetic recording medium 42 Magnetic recording medium drive unit 43 Magnetic head 44 Magnetic head drive unit 45 Recording/playback signal processing system

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】  硬質の非磁性基板と、該基板上に設け
た面心立方構造の非磁性ニッケル基合金からなる下地層
と、該下地層上に設けたコバルト基合金磁性層とを備え
て構成されることを特徴とする磁気記録媒体。
1. A hard nonmagnetic substrate, an underlayer made of a nonmagnetic nickel-based alloy with a face-centered cubic structure provided on the substrate, and a cobalt-based alloy magnetic layer provided on the underlayer. A magnetic recording medium characterized by comprising:
【請求項2】  前記下地層の膜厚は、20ないし90
nmであることを特徴とする請求項1記載の磁気記録媒
体。
2. The thickness of the base layer is between 20 and 90 mm.
2. The magnetic recording medium according to claim 1, wherein the magnetic recording medium has a diameter of nm.
【請求項3】  前記下地層は、記録面に平行に下地層
表面で面心立方構造の(100)面を有する非磁性ニッ
ケル基合金からなる下地層であり、前記コバルト基合金
磁性層は、前記下地層の(100)面上にエピタキシャ
ル成長して六方稠密充填構造の(110)面が前記記録
面に平行になっていることを特徴とする請求項1または
2記載の磁気記録媒体。
3. The underlayer is an underlayer made of a non-magnetic nickel-based alloy having a (100) plane of a face-centered cubic structure on the surface of the underlayer parallel to the recording surface, and the cobalt-based alloy magnetic layer is 3. The magnetic recording medium according to claim 1, wherein the underlayer is epitaxially grown on the (100) plane so that the (110) plane of the hexagonal close-packed structure is parallel to the recording surface.
【請求項4】  前記コバルト基合金磁性層は、タンタ
ルあるいは白金から選ばれる少なくとも1つの元素を含
有していることを特徴とする請求項1、2または3記載
の磁気記録媒体。
4. The magnetic recording medium according to claim 1, wherein the cobalt-based alloy magnetic layer contains at least one element selected from tantalum and platinum.
【請求項5】  磁気記録媒体と、これを回転駆動する
駆動部と、磁気ヘッド及びその駆動手段と、磁気ヘッド
の記録再生信号処理手段とを備えて構成される磁気記憶
装置において、前記磁気記録媒体として、請求項1ない
し4のうち1記載の磁気記録媒体を使用することを特徴
とする磁気記憶装置。
5. A magnetic storage device comprising a magnetic recording medium, a drive section for rotationally driving the magnetic recording medium, a magnetic head and its driving means, and a recording/reproduction signal processing means for the magnetic head, wherein the magnetic recording medium is A magnetic storage device characterized in that the magnetic recording medium according to claim 1 is used as a medium.
JP3056495A 1991-03-20 1991-03-20 Magnetic recording medium and magnetic storage device Expired - Lifetime JP3052406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3056495A JP3052406B2 (en) 1991-03-20 1991-03-20 Magnetic recording medium and magnetic storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3056495A JP3052406B2 (en) 1991-03-20 1991-03-20 Magnetic recording medium and magnetic storage device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP11269866A Division JP2000076647A (en) 1999-09-24 1999-09-24 Magnetic recording medium and magnetic storage device

Publications (2)

Publication Number Publication Date
JPH04291017A true JPH04291017A (en) 1992-10-15
JP3052406B2 JP3052406B2 (en) 2000-06-12

Family

ID=13028681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3056495A Expired - Lifetime JP3052406B2 (en) 1991-03-20 1991-03-20 Magnetic recording medium and magnetic storage device

Country Status (1)

Country Link
JP (1) JP3052406B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6562489B2 (en) 1999-11-12 2003-05-13 Fujitsu Limited Magnetic recording medium and magnetic storage apparatus
US6613460B1 (en) 1999-11-12 2003-09-02 Fujitsu Limited Magnetic recording medium and magnetic storage apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6562489B2 (en) 1999-11-12 2003-05-13 Fujitsu Limited Magnetic recording medium and magnetic storage apparatus
US6613460B1 (en) 1999-11-12 2003-09-02 Fujitsu Limited Magnetic recording medium and magnetic storage apparatus
US6828047B2 (en) 1999-11-12 2004-12-07 Fujitsu Limited Magnetic recording medium and magnetic storage apparatus

Also Published As

Publication number Publication date
JP3052406B2 (en) 2000-06-12

Similar Documents

Publication Publication Date Title
US6156404A (en) Method of making high performance, low noise isotropic magnetic media including a chromium underlayer
JP3143611B2 (en) Ultrathin nucleation layer for magnetic thin film media and method of making the layer
JP3652976B2 (en) Perpendicular magnetic recording medium and magnetic storage device using the same
US4833020A (en) Magnetic recording medium
JPH07334832A (en) Perpendicular magnetic recording medium and magnetic recorder
US5879783A (en) Low noise magnetic recording medium and method of manufacturing
US6403241B1 (en) CoCrPtB medium with a 1010 crystallographic orientation
US6740397B1 (en) Subseedlayers for magnetic recording media
US6593009B2 (en) Magnetic thin film media with a pre-seed layer of CrTi
JP2991672B2 (en) Magnetic recording media
US6872478B2 (en) Magnetic thin film media with a pre-seed layer of CrTiAl
US6348276B1 (en) Magnetic recording media with a surface-oxidized nial sub-seedlayer
JP3052406B2 (en) Magnetic recording medium and magnetic storage device
JP3052915B2 (en) Perpendicular magnetic recording medium and method of manufacturing the same
US6908689B1 (en) Ruthenium-aluminum underlayer for magnetic recording media
JP2515771B2 (en) Magnetic recording media
US6787251B1 (en) Recording medium with a varying composition underlayer
JP3663289B2 (en) Magnetic recording medium and magnetic storage device
JP2000076647A (en) Magnetic recording medium and magnetic storage device
US6849326B1 (en) Niobium alloy seedlayer for magnetic recording media
JPH0268716A (en) Production of magnetic disk medium
JP2001351226A (en) Magnetic recording medium, method for producing the same and magnetic recorder
JP3390957B2 (en) In-plane magnetic recording medium, method of manufacturing the in-plane magnetic recording medium, and magnetic storage device
JP3045797B2 (en) Perpendicular magnetic recording media
JP2845974B2 (en) In-plane magnetic recording medium and magnetic storage device using the same