JPH0521663A - Cooling structure of integrated circuit - Google Patents

Cooling structure of integrated circuit

Info

Publication number
JPH0521663A
JPH0521663A JP3173643A JP17364391A JPH0521663A JP H0521663 A JPH0521663 A JP H0521663A JP 3173643 A JP3173643 A JP 3173643A JP 17364391 A JP17364391 A JP 17364391A JP H0521663 A JPH0521663 A JP H0521663A
Authority
JP
Japan
Prior art keywords
integrated circuit
heat
cooling
pistons
cooling structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3173643A
Other languages
Japanese (ja)
Inventor
Yoshikatsu Watanabe
美勝 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3173643A priority Critical patent/JPH0521663A/en
Publication of JPH0521663A publication Critical patent/JPH0521663A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To enhance the cooling capacity of the water cooling structure of an equipment such as a computer where an integrated circuit large in heat release value is mounted by a method wherein a heat transfer path between the integrated circuit and cooling water is lessened in heat resistance. CONSTITUTION:Thermal conduction pistons 5 are prepared for each of integrated circuits 4, whereby the contact surface of the integrated circuit 4 with the thermal conduction pistons 5 can be increased in area, so that thermal resistance between the integrated circuit 4 and the thermal conduction pistons 5 can be lessened. Even if the integrated circuit 4 is mounted as tilted, the thermal conduction pistons 5 move independently, so that the circuit 4 can be cooled down without any trouble. A heat transfer path between the integrated circuit 4 and cooling water can be lessened in thermal resistance, so that a cooling structure of this design can be enhanced in cooling capacity. Therefore, the highly integrated circuit 4 larger in heat release value can be mounted on an electronic equipment such as a computer, so that the equipment can be enhanced in capacity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、集積回路の冷却構造に
係り、特に大型コンピュータのように発熱量の大きな集
積回路が実装されている電子機器の、集積回路からの発
熱を効率良く冷却する冷却構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an integrated circuit cooling structure, and more particularly, efficiently cools heat generated from an integrated circuit of an electronic device in which an integrated circuit having a large heat generation amount is mounted such as a large computer. Regarding cooling structure.

【0002】[0002]

【従来の技術】従来、回路基板上に搭載された集積回路
を冷却する手段としては、強制対流による空冷方式が多
く採用されてきた。しかし、近年、大型コンピュータ等
においては、素子の集積度の向上による発熱量の増大に
より空冷方式では対応しきれなくなってきている。そこ
で、液冷方式の採用が行なわれるようになってきた。
2. Description of the Related Art Conventionally, as a means for cooling an integrated circuit mounted on a circuit board, an air cooling system by forced convection has been widely adopted. However, in recent years, in large computers and the like, the air-cooling method has become insufficient to cope with the increase in the amount of heat generated by the improvement in the degree of integration of elements. Therefore, the liquid cooling system has been adopted.

【0003】図3は、液体冷却モジュールの従来例で、
セラミック回路基板1に集積回路4を半田ボール7で半
田付けしたものに、熱伝導ブロック2、熱伝導ピストン
5、ばね6、低温プレート3からなる液体冷却構造体を
被せ、熱伝導ピストン5を集積回路4に押し当てること
により冷却するものである。この方式の問題点として熱
伝導ピストンと集積回路の接触部が一点となり熱抵抗が
大きくなってしまう点を上げることが出来る。この理由
は、製造技術上、回路基板に集積回路が多少傾いて半田
付けされてしまう誤差を吸収するため、熱伝導ピストン
の、集積回路との接触面を丸く加工しなければならず、
このため、集積回路との接触部が一点となってしまうの
である。
FIG. 3 shows a conventional example of a liquid cooling module.
A ceramic circuit board 1 on which an integrated circuit 4 is soldered with solder balls 7 is covered with a liquid cooling structure composed of a heat conduction block 2, a heat conduction piston 5, a spring 6, and a low temperature plate 3 to integrate the heat conduction piston 5. It is cooled by being pressed against the circuit 4. The problem with this method is that the contact point between the heat-conducting piston and the integrated circuit becomes one point and the thermal resistance increases. The reason for this is that, due to the manufacturing technology, the integrated circuit is slightly tilted on the circuit board to absorb the error that is soldered, so the contact surface of the heat conducting piston with the integrated circuit must be rounded,
Therefore, there is only one contact point with the integrated circuit.

【0004】半田付け誤差を吸収する他の方法として、
熱伝導ピストンと集積回路を接触させず微小なギャップ
を設け、このギャップに高熱伝導性充填剤を詰める方法
がしられている。しかし、この方法では充填剤の更年変
化に不安があるのと、直接接触させるのと比べて熱抵抗
が大きくなる欠点がある。
As another method of absorbing soldering error,
There is a method in which a minute gap is provided without bringing the heat conducting piston and the integrated circuit into contact with each other, and the gap is filled with a high heat conductive filler. However, this method has the drawbacks that there is concern about the aging change of the filler and that the thermal resistance becomes larger than that of direct contact.

【0005】また、集積回路と冷却体の接触面を平面に
しようとした方法として図4の方式(特開昭62−13
9346)があげられる。この方式では、熱伝導ピスト
ンの変わりに上部が櫛の歯状に切り込みが入っているセ
ラミック製のマイクロフィン9を集積回路4に載せ、低
温プレート3と接触しモジュールを封止するセラミック
の底面に同様の切り込みを入れたもの8を噛み合わせる
ことによって冷却する。この噛み合わせ部には微小な隙
間があるため、集積回路の半田付け誤差を吸収すること
が出来る。しかし、セラミックに櫛の歯状の切り込みを
いれるのが難しい、製造に時間が掛る等、製造技術的問
題がある。
As a method for making the contact surface between the integrated circuit and the cooling body flat, the method of FIG. 4 (Japanese Patent Laid-Open No. 62-13).
9346). In this method, instead of the heat-conducting piston, a micro fin 9 made of ceramic, whose upper part is notched like a comb tooth, is placed on the integrated circuit 4, and the bottom surface of the ceramic that contacts the low temperature plate 3 and seals the module. It is cooled by meshing the same notches 8 with each other. Since the meshing portion has a minute gap, it is possible to absorb the soldering error of the integrated circuit. However, there are manufacturing technical problems such as it is difficult to make a tooth-shaped cut in a ceramic, and it takes time to manufacture.

【0006】[0006]

【発明が解決しようとする課題】集積回路の半田付け誤
差が熱抵抗を下げるための障害となっており、この誤差
を吸収しつつ冷却体と集積回路をなるべく密に接触させ
る方式の開発が重要な課題となっている。また、あまり
複雑な構造を採らずに製造コストを下げることも課題と
なっている。
An error in soldering an integrated circuit is an obstacle to lowering thermal resistance. It is important to develop a method of absorbing the error and bringing the cooling body and the integrated circuit into contact with each other as closely as possible. Has become a problem. Another problem is to reduce the manufacturing cost without adopting a complicated structure.

【0007】[0007]

【課題を解決するための手段】本発明は、集積回路一つ
当り複数の熱伝導ピストンを設けることにある。
SUMMARY OF THE INVENTION The present invention resides in the provision of multiple heat transfer pistons per integrated circuit.

【0008】[0008]

【作用】上記手段をとれば、半田付け誤差を吸収すると
共に、集積回路と熱伝導ピストンの接触部分を多くして
熱抵抗を下げ、冷却効率を向上させる事ができる。ま
た、熱伝導ピストンを円柱状にすれば、熱伝導ブロック
には円柱状の穴を加工すれば良く、さほど複雑な構造で
無いため製造コストの上昇を抑える事が出来る。
With the above means, it is possible to absorb the soldering error and reduce the thermal resistance by increasing the contact portion between the integrated circuit and the heat conducting piston to improve the cooling efficiency. Further, if the heat conducting piston has a cylindrical shape, a cylindrical hole may be formed in the heat conducting block, and since the structure is not so complicated, it is possible to suppress an increase in manufacturing cost.

【0009】[0009]

【実施例】以下、本発明の実施例を、図1、図2、図5
を用いて説明する。
Embodiments of the present invention will be described below with reference to FIGS.
Will be explained.

【0010】図2は液体冷却モジュールのカットモデル
を示したもので、セラミック回路基板1に集積回路4を
半田付けしたものに、熱伝導ブロック2、熱伝導ピスト
ン5、低温プレート3からなる液体冷却構造体を被せ、
集積回路4一つ当り、三つの熱伝導ピストン5が押し当
てられているようすを示したものである。集積回路で発
生した熱は、熱伝導ピストン、熱伝導ブロック、低温プ
レートの順で伝わっていき、低温プレートの中を流れる
冷却水によって、液体冷却モジュールの外に運び去られ
る構造となっている。
FIG. 2 shows a cut model of a liquid cooling module, in which a ceramic circuit board 1 on which an integrated circuit 4 is soldered, a heat-conducting block 2, a heat-conducting piston 5, and a low-temperature plate 3 are used for liquid cooling. Cover the structure,
It is shown that three heat conduction pistons 5 are pressed against one integrated circuit 4. The heat generated in the integrated circuit is transmitted in the order of the heat conduction piston, the heat conduction block, and the low temperature plate, and is carried away by the cooling water flowing in the low temperature plate to the outside of the liquid cooling module.

【0011】図1は液体冷却モジュールの断面図であ
り、図2のうち集積回路の冷却に係る部分を拡大して示
したものである。集積回路4はセラミック回路基板1に
半田ボール7で半田付けされている。また、熱伝導ピス
トン5はバネ6によって集積回路4に押しつけられてい
る。
FIG. 1 is a sectional view of the liquid cooling module, which is an enlarged view of a portion related to cooling of the integrated circuit in FIG. The integrated circuit 4 is soldered to the ceramic circuit board 1 with solder balls 7. The heat conducting piston 5 is pressed against the integrated circuit 4 by the spring 6.

【0012】ここで、熱抵抗は、集積回路から熱伝導ピ
ストンへの熱抵抗、熱伝導ピストンから熱伝導ブロッ
ク、熱伝導ブロックから低温プレート、低温プレートか
ら冷却水の、四つの熱抵抗を足したものになる。
Here, the thermal resistance is the sum of four thermal resistances from the integrated circuit to the heat conducting piston, the heat conducting piston to the heat conducting block, the heat conducting block to the low temperature plate, and the low temperature plate to the cooling water. It becomes a thing.

【0013】本実施例のように熱伝導ピストンの本数を
増やすならば、ピストン一本の場合に比べ、集積回路と
熱伝導ピストンの接触面積を増やすことになるから、集
積回路から熱伝導ピストンへの熱抵抗を減らす(1/熱
伝導ピストン数)ことができる。また、熱伝導ピストン
の本数を増やすために、ピストンを細くしなければなら
ないが、このために生ずる、熱伝導ブロックとの境界面
の面積の減少は、熱伝導ピストンを長くすれば吸収でき
るので、熱伝導ピストンから熱伝導ブロック間の熱抵抗
の増加をなくすことができる。さらに、熱伝導ブロック
から低温プレート、低温プレートから冷却水への熱抵抗
の変化はないので、結局、集積回路から冷却水までの熱
抵抗を減らすことができる。
If the number of heat conducting pistons is increased as in this embodiment, the contact area between the integrated circuit and the heat conducting piston is increased as compared with the case of one piston. It is possible to reduce the heat resistance of (1 / the number of heat conduction pistons). Also, in order to increase the number of heat transfer pistons, the pistons must be made thin, but the decrease in the area of the boundary surface with the heat transfer block that occurs due to this can be absorbed by making the heat transfer pistons longer, An increase in the thermal resistance between the heat conducting piston and the heat conducting block can be eliminated. Furthermore, since there is no change in the thermal resistance from the heat conduction block to the cold plate and from the cold plate to the cooling water, the thermal resistance from the integrated circuit to the cooling water can be reduced eventually.

【0014】また、集積回路が傾いて実装されても、図
5のように熱伝導ピストンが各々独立に動くため、熱伝
導ピストンと集積回路との接触面が浮き上がったり、集
積回路を強く押し付けてしまったりすることはなく、問
題なく冷却することができる。
Even when the integrated circuit is mounted in an inclined manner, the heat conducting pistons move independently as shown in FIG. 5, so that the contact surface between the heat conducting piston and the integrated circuit is lifted or the integrated circuit is strongly pressed. It does not get stuck and can be cooled without problems.

【0015】[0015]

【発明の効果】以上説明したように、本発明によれば、
集積回路から冷却水までの熱抵抗を減らすことができ、
冷却能力が向上する。したがって、より発熱量の多い高
集積な集積回路を使用することができ、コンピュータ等
の電子機器の能力を向上させることができる。
As described above, according to the present invention,
The thermal resistance from the integrated circuit to the cooling water can be reduced,
Cooling capacity is improved. Therefore, it is possible to use a highly-integrated integrated circuit that generates a larger amount of heat, and it is possible to improve the capabilities of electronic devices such as computers.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における液体冷却モジュール
の説明図である。
FIG. 1 is an explanatory diagram of a liquid cooling module according to an embodiment of the present invention.

【図2】本発明の一実施例における液体冷却モジュール
のカットモデルを示す図である。
FIG. 2 is a diagram showing a cut model of a liquid cooling module according to an embodiment of the present invention.

【図3】液体冷却モジュールの従来例を示す図である。FIG. 3 is a diagram showing a conventional example of a liquid cooling module.

【図4】マイクロフィンを用いた液体冷却モジュールの
例を示す図である。
FIG. 4 is a diagram showing an example of a liquid cooling module using micro fins.

【図5】本発明の一実施例において、集積回路が傾いて
実装された例を示す図である。
FIG. 5 is a diagram showing an example in which an integrated circuit is tilted and mounted in an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…セラミック回路基板、 2…熱伝導ブロック、 3…低温プレート、 4…集積回路、 5…熱伝導ピストン、 6…ばね、 7…半田ボール。 DESCRIPTION OF SYMBOLS 1 ... Ceramic circuit board, 2 ... Heat conduction block, 3 ... Low temperature plate, 4 ... Integrated circuit, 5 ... Heat conduction piston, 6 ... Spring, 7 ... Solder ball.

Claims (1)

【特許請求の範囲】 【請求項1】プリント配線基板やセラミック配線基板等
の回路基板上に搭載・実装された集積回路から発生する
熱を、冷媒が流れるようになっている冷却体を前記集積
回路に接触させることによって冷却するような集積回路
の冷却構造において、前記冷却体と前記集積回路の接触
部が、前記集積回路一つ当り、複数個用意されている事
を特徴とする集積回路の冷却構造。
Claim: What is claimed is: 1. A cooling body, in which a refrigerant flows heat generated from an integrated circuit mounted and mounted on a circuit board such as a printed wiring board or a ceramic wiring board. In an integrated circuit cooling structure for cooling by contacting a circuit, a plurality of contact portions between the cooling body and the integrated circuit are provided for each integrated circuit. Cooling structure.
JP3173643A 1991-07-15 1991-07-15 Cooling structure of integrated circuit Pending JPH0521663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3173643A JPH0521663A (en) 1991-07-15 1991-07-15 Cooling structure of integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3173643A JPH0521663A (en) 1991-07-15 1991-07-15 Cooling structure of integrated circuit

Publications (1)

Publication Number Publication Date
JPH0521663A true JPH0521663A (en) 1993-01-29

Family

ID=15964418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3173643A Pending JPH0521663A (en) 1991-07-15 1991-07-15 Cooling structure of integrated circuit

Country Status (1)

Country Link
JP (1) JPH0521663A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7477519B2 (en) 2003-04-16 2009-01-13 Fujitsu Limited Electronic component package including heat spreading member
US9265176B2 (en) 2013-03-08 2016-02-16 International Business Machines Corporation Multi-component electronic module with integral coolant-cooling

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7477519B2 (en) 2003-04-16 2009-01-13 Fujitsu Limited Electronic component package including heat spreading member
US9265176B2 (en) 2013-03-08 2016-02-16 International Business Machines Corporation Multi-component electronic module with integral coolant-cooling
US9265177B2 (en) 2013-03-08 2016-02-16 International Business Machines Corporation Fabricating multi-component electronic module with integral coolant-cooling
US9661784B2 (en) 2013-03-08 2017-05-23 International Business Machines Corporation Multi-component electronic module with integral coolant-cooling

Similar Documents

Publication Publication Date Title
US5933324A (en) Apparatus for dissipating heat from a conductive layer in a circuit board
US5920458A (en) Enhanced cooling of a heat dissipating circuit element
US6269864B1 (en) Parallel-plate/pin-fin hybrid copper heat sink for cooling high-powered microprocessors
US6831836B2 (en) Low thermal resistance interface for attachment of thermal materials to a processor die
US20050018407A1 (en) Stack up assembly
JPH09213851A (en) Heat radiation method and heat radiation means for ic device
JP2845227B2 (en) Multi-chip module mounting structure
US5805418A (en) Cooling cap method and apparatus for tab packaged integrated circuits
JPH0521663A (en) Cooling structure of integrated circuit
JPH04291750A (en) Head radiating fin and semiconductor integrated circuit device
JPH1163862A (en) Plate type heat pipe and cooling structure using it
JPS60126852A (en) Cooling device for semiconductor
JP2003152365A (en) Cooling structure of electronic circuit package and heat sink
JPS59155158A (en) Cooling structure of semiconductor device
JP2006135202A (en) Heat radiating structure for electronic appliance
JPH02301159A (en) Structure for cooling integrated circuit
JPH0710950U (en) Radiator of electronic components
JPH06181395A (en) Heat dissipation printed-wiring board
JPH04259246A (en) Cooling mechanism for integrated circuit
JPH0828588B2 (en) LSI package cooling structure
JPH0573061B2 (en)
JPH0568859B2 (en)
JPH0573268B2 (en)
JPH07202095A (en) Cooler for electronic device
JPH0623259U (en) Liquid cooling type LSI cooling device