JPH0568859B2 - - Google Patents

Info

Publication number
JPH0568859B2
JPH0568859B2 JP23422183A JP23422183A JPH0568859B2 JP H0568859 B2 JPH0568859 B2 JP H0568859B2 JP 23422183 A JP23422183 A JP 23422183A JP 23422183 A JP23422183 A JP 23422183A JP H0568859 B2 JPH0568859 B2 JP H0568859B2
Authority
JP
Japan
Prior art keywords
fins
semiconductor device
housing
thermal conductor
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23422183A
Other languages
Japanese (ja)
Other versions
JPS60126851A (en
Inventor
Tadakatsu Nakajima
Takahiro Ooguro
Noryuki Ashiwake
Fumyuki Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23422183A priority Critical patent/JPS60126851A/en
Publication of JPS60126851A publication Critical patent/JPS60126851A/en
Publication of JPH0568859B2 publication Critical patent/JPH0568859B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • H01L23/4338Pistons, e.g. spring-loaded members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15312Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a pin array, e.g. PGA

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、半導体素子、集積回路チツプあるい
はマイクロパツケージなどの半導体デバイスなど
から発生する熱を除去するための冷却装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a cooling device for removing heat generated from a semiconductor device such as a semiconductor element, an integrated circuit chip, or a micropackage.

〔発明の背景〕[Background of the invention]

大型電子計算機では処理速度の速いことが要求
されるため、近年、半導体素子を大規模に集積し
た回路チツプが開発されている。また、その集積
回路チツプを互いに接続する電気配線をできるだ
め短かくするため、マイクロパツケージに多数の
集積回路チツプを実装する方法が開発されてい
る。この、マイクロパツケージに実装された多数
の集積回路チツプを冷却する冷却装置に関し、第
1図に示すような冷却装置が提案されている。
Since large electronic computers are required to have high processing speed, circuit chips in which semiconductor elements are integrated on a large scale have been developed in recent years. Furthermore, in order to make the electrical wiring connecting the integrated circuit chips to each other as short as possible, methods have been developed for mounting a large number of integrated circuit chips on a micropackage. Regarding a cooling device for cooling a large number of integrated circuit chips mounted on a micropackage, a cooling device as shown in FIG. 1 has been proposed.

大規模集積回路(以下LSIと略記)チツプ1
は、多数の導電層及び絶縁層からなる多層配線基
板2(以下基板と称す)上に非常に小さな半田ボ
ール3とFree Chip−Face Down Bondingとに
よつて実装され、基板2の裏面の多数のピンに電
気接続されている。多数のLSIチツプ2を覆うよ
うにハウジング5が基板2に装着されている。ハ
ウジング5内には多数のシリンダ6が開けられ、
シリンダ6の中にはLSIチツプ1の背面から熱を
導くピストン7と、ピストン7に押圧力を加える
バネ8が挿入されている。基板2とハウジング5
とで囲まれた密閉空間7には、ヘリウムガスが満
たされている。LSIチツプ2からの発生熱は、ピ
ストン7とLSIチツプ2との接触部に介存するヘ
リウムガス層を介してピストン7に伝えられる。
そして、ピストン7から更にピストン7とシリン
ダ6との隙間に介在するヘリウムガス層を伝わ
り、ハウジング5に導かれ、最終的に、ハウジン
グ5の上部に設けられた冷水または冷却空気の流
通する冷却器10により除去される。
Large-scale integrated circuit (hereinafter abbreviated as LSI) chip 1
is mounted on a multilayer wiring board 2 (hereinafter referred to as the board) consisting of many conductive layers and insulating layers using very small solder balls 3 and Free Chip-Face Down Bonding. electrically connected to the pin. A housing 5 is attached to the board 2 so as to cover a large number of LSI chips 2. A number of cylinders 6 are opened in the housing 5,
A piston 7 that guides heat from the back surface of the LSI chip 1 and a spring 8 that applies a pressing force to the piston 7 are inserted into the cylinder 6. Board 2 and housing 5
A closed space 7 surrounded by is filled with helium gas. The heat generated from the LSI chip 2 is transmitted to the piston 7 via the helium gas layer present at the contact area between the piston 7 and the LSI chip 2.
From the piston 7, the gas is further transmitted through the helium gas layer interposed in the gap between the piston 7 and the cylinder 6, and is led to the housing 5, and finally to a cooler provided at the upper part of the housing 5 through which cold water or cooling air flows. removed by 10.

しかし、このような従来技術には次のような問
題点がある。
However, such conventional technology has the following problems.

ヘリウムガスの熱伝導率は気体の中では大きい
方であるが、ピストンあるいはシリンダなど金属
体に比べ非常に小さい。したがつて、ヘリウム層
の熱抵抗を小さくするためには、ピストン7とシ
リンダ6との隙間を小さくする必要がある。この
ため、ピストン7あるいはシリンダ6は、高い加
工精度が要求される。
Although the thermal conductivity of helium gas is higher among gases, it is much lower than that of metal objects such as pistons or cylinders. Therefore, in order to reduce the thermal resistance of the helium layer, it is necessary to reduce the gap between the piston 7 and the cylinder 6. For this reason, the piston 7 or cylinder 6 is required to have high processing accuracy.

第2図の冷却構造は、第1図の冷却構造に比べ
熱伝導板13と平行溝12の側壁との間のかさな
り面積を大きくすることができる。しかし、各熱
伝導板が全く独立にバラバラに可動であるため、
その分解、組立に複雑な作業を必要とする。
The cooling structure shown in FIG. 2 can increase the bulk area between the heat conductive plate 13 and the side wall of the parallel groove 12 compared to the cooling structure shown in FIG. 1. However, since each heat conduction plate can be moved completely independently,
Its disassembly and assembly require complicated work.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、基板の反り、半導体チツプ接
続時の変位、冷却構造組立時の変形、冷却構造の
熱変形など種々の変位を吸収する能力を有し、か
つ、コンパクトで高い冷却性能を有する半導体素
子及び集積回路の冷却装置を提供することであ
る。
It is an object of the present invention to have the ability to absorb various types of displacement such as warping of substrates, displacement when connecting semiconductor chips, deformation when assembling the cooling structure, and thermal deformation of the cooling structure, and to have a compact and high cooling performance. An object of the present invention is to provide a cooling device for semiconductor devices and integrated circuits.

〔発明の概要〕[Summary of the invention]

本発明の第1の特徴は、回路基板上に実装され
た半導体デバイスの発生熱をハウジングに伝えて
冷却するようにした半導体デバイスの冷却装置に
おいて、前記半導体デバイスの表面に設けられた
ベース部と、このベース部に一体に設けられた複
数の第1フインとを有する第1の熱伝導体と、前
記第1フインと係合する複数の第2フインを前記
第1熱伝導体側に有し、かつ前記ハウジング側に
は前記第2フインと実質的に直交するように設け
られた複数の第3フインを有する第2の熱伝導体
と、前記ハウジングに設けられ、前記第2の熱伝
導体の第3フインと係合する第4フインとを備え
ていることにある。
A first feature of the present invention is a cooling device for a semiconductor device configured to cool the semiconductor device by transmitting the heat generated by the semiconductor device mounted on the circuit board to the housing. , a first thermal conductor having a plurality of first fins integrally provided on the base portion, and a plurality of second fins that engage with the first fins on the first thermal conductor side, and a second thermal conductor having a plurality of third fins provided on the housing side so as to be substantially orthogonal to the second fins; The present invention includes a fourth fin that engages with the third fin.

本発明の第2の特徴は、回路基板上に実装され
た半導体デバイスの発生熱をハウジングに伝えて
冷却するようにした半導体デバイスの冷却装置に
おいて、前記半導体デバイスの表面に設けられた
ベース部とこのベース部に一体に設けられた複数
のフインとを有する熱伝導体と、前記熱伝導体の
フインとかみ合うように前記ハウジング側に設け
られたフインと、半導体デバイス側の前記熱伝導
体のフインと前記ハウジング側のフインとの間に
介在され、前記両フインを互いに面接触させるよ
うに付勢する弾性部材とを有することにある。
A second feature of the present invention is a cooling device for a semiconductor device configured to cool the semiconductor device by transmitting heat generated by the semiconductor device mounted on a circuit board to a housing. A thermal conductor having a plurality of fins integrally provided on the base portion, fins provided on the housing side so as to engage with the fins of the thermal conductor, and fins of the thermal conductor on the semiconductor device side. and an elastic member interposed between the fins on the housing side and urging the fins to come into surface contact with each other.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第3図、第4図によ
つて説明する。
An embodiment of the present invention will be described below with reference to FIGS. 3 and 4.

図において、銅あるいはアルミニユウムのよう
な熱伝導性の良好な材料により作られたハウジン
グ15の内面には、多数のプレート状のフイン1
6が互いに平行に設けられている。LSIチツプ1
の背面の伝熱面積より大きな投影面積を有する熱
伝導体a17及び熱伝導体b18にも、前記フイ
ン16と同ピツチでフイン19,20,21が多
数設けられている。ハウジング15のフイン16
と熱伝導体a17のフイン19及び熱伝導体a1
7のもう一方のフイン20と熱伝導体b18のフ
イン21とは互いに押しつけられその片面が面接
触した状態で嵌め合わされている。また、熱伝導
体b18とLSIチツプ1とも押し付けられ面接触
している。上記フイン相互及び熱伝導体とLSIチ
ツプの圧接触構造を図4に示す。ハウジング15
と熱伝導体a17とはフイン16及び19を斜め
に横断するバネ22により連結されており、それ
ぞれのフイン16及び19は該バネ22のバネ力
の水平方向成分によつて互いにその片面が面接触
するように押し付けられている。一方、熱伝導体
a17と熱伝導体b18とは、フイン20及び2
1を斜めに横断するバネ23により連結されてお
り、それぞれのフイン20及び21は該バネ23
のバネ力の水平方向成分によつて互いにその片面
が面接触するように押し付けられている。また、
熱伝導体b18とLSIチツプ1とは上記バネ22
及び23のバネ力の垂直方向成分によつて押し付
けられ面接触している。
In the figure, a housing 15 made of a material with good thermal conductivity such as copper or aluminum has a large number of plate-like fins 1 on its inner surface.
6 are provided parallel to each other. LSI chip 1
A large number of fins 19, 20, and 21 are provided at the same pitch as the fins 16 on the heat conductor a17 and the heat conductor b18, which have a larger projected area than the heat transfer area of the back surface. Fin 16 of housing 15
and the fins 19 of the heat conductor a17 and the heat conductor a1
The other fin 20 of the heat conductor b18 and the fin 21 of the heat conductor b18 are pressed together and fitted with one side of the fins in surface contact. Further, the heat conductor b18 and the LSI chip 1 are also pressed and in surface contact. FIG. 4 shows the structure of pressure contact between the fins and between the heat conductor and the LSI chip. Housing 15
and the thermal conductor a17 are connected by a spring 22 that diagonally crosses the fins 16 and 19, and one side of each fin 16 and 19 is brought into surface contact with each other by the horizontal component of the spring force of the spring 22. being forced to do so. On the other hand, the heat conductor a17 and the heat conductor b18 are the fins 20 and 2.
The fins 20 and 21 are connected by a spring 23 diagonally across the fins 20 and 21.
are pressed against each other by the horizontal component of the spring force so that one side of them is in surface contact. Also,
Thermal conductor b18 and LSI chip 1 are connected to the above spring 22.
and 23 are pressed by the vertical component of the spring force and are in surface contact.

LSIチツプ1で発生した熱は熱伝導体b18底
面に伝えられ、その熱順次熱伝導体b18のフイ
ン21→熱伝導体a17のフイン20→熱電導体
a17のフイン19→ハウジング15のフイン1
6へとそれぞれ固体壁の面接触によつて伝えられ
る。そして、それぞれの接触面間の接触熱抵抗
は、それぞれの面の仕上げ面精度、面間に介在す
るガス或には液体の熱伝導率によつて一義的に決
まり、組立精度、運転状態などにはよらない。ま
た、ごく一般的な加工方法を用いてもフインの仕
上げ面精度はμmのオーダであり、20〜30μmの
ヘリウム層を介して熱を伝える従来例図1、図2
に比べその熱抵抗は非常に小さい。また、熱電導
体a17は方向25及び26に、熱伝導体b18
は方向27及び28に自由に動くことができるた
め、LSIチツプ1の高さのバラツキ、水平度のバ
ラツキにかかわらず、LSIチツプ1と熱伝導体b
18とは常に面で接触することができる。したが
つて、その接触熱抵抗を小さくできる。
Heat generated in the LSI chip 1 is transferred to the bottom surface of the heat conductor b18, and the heat is sequentially fin 21 of the heat conductor b18 → fin 20 of the heat conductor a17 → fin 19 of the heat conductor a17 → fin 1 of the housing 15
6 by means of surface contact with solid walls. The contact thermal resistance between each contact surface is uniquely determined by the finished surface accuracy of each surface and the thermal conductivity of the gas or liquid interposed between the surfaces, and is also dependent on assembly accuracy, operating conditions, etc. It doesn't fly. Furthermore, even if a very common processing method is used, the finished surface accuracy of the fins is on the order of μm, and conventional examples of heat transfer through a helium layer of 20 to 30 μm are shown in Figures 1 and 2.
Its thermal resistance is very small compared to . Further, the thermal conductor a17 is arranged in directions 25 and 26, and the thermal conductor b18
can move freely in directions 27 and 28, so regardless of variations in the height and horizontality of LSI chip 1, LSI chip 1 and thermal conductor b
18 can always be in surface contact. Therefore, the contact thermal resistance can be reduced.

第5図に他の実施例を示す。 FIG. 5 shows another embodiment.

熱伝導体a17とハウジング15とは互いに曲
率の等しい円筒面でかみ合わされており、方向2
6に自由に動くことができる。一方、熱伝導体の
17と熱伝導体b21、熱伝導体b21とLSIチ
ツプ1との接続は第4図に示す実施例の場合と同
様である。本実施例の場合において、LSIチツプ
1で発した熱は全て、固体面の接触によりハウジ
ング15に伝えられるため、その熱抵抗は非常に
小さく、したがつて、コンパクトな冷却構造とす
ることができる。
The heat conductor a17 and the housing 15 are engaged with each other through cylindrical surfaces with equal curvature, and are aligned in direction 2.
6 can move freely. On the other hand, the connections between the thermal conductor 17 and the thermal conductor b21 and between the thermal conductor b21 and the LSI chip 1 are the same as in the embodiment shown in FIG. In the case of this embodiment, all the heat generated by the LSI chip 1 is transferred to the housing 15 through contact with the solid surface, so its thermal resistance is extremely small, and a compact cooling structure can therefore be achieved. .

以上、本発明の一実施例第3図、第5図におい
てフイン板数として三枚の場合を示したが、この
枚数にとらわれることなく、LSIチツプの発熱量
に応じてフイン枚数を決定すればよい。また、そ
れぞれのフイン同士及び熱伝導体とLSIチツプと
を圧接触させる構造として、バネを斜めに取り付
ける構造を説明したが、水平方向用のバね、垂直
方向用のバネと二種類のバネを用いてそれぞれの
方向の押し付け力を得てもよい。
As mentioned above, the case where the number of fin plates is three is shown in FIG. 3 and FIG. good. In addition, we have explained a structure in which springs are attached diagonally to bring the fins into pressure contact with each other and the heat conductor and the LSI chip, but two types of springs are used: horizontal springs and vertical springs. may be used to obtain pressing force in each direction.

〔発明の効果〕〔Effect of the invention〕

上記第2の熱伝導体を有する本発明によれば、
基板の反り、半導体デバイス接続時の変位、冷却
構造組立時の変形、冷却構造の熱変形など種々の
変位を吸収して熱伝導体を半導体デバイスの表面
に接触させることができ、熱抵抗を低減できると
いう効果がある。
According to the present invention having the second thermal conductor,
The thermal conductor can be brought into contact with the surface of the semiconductor device by absorbing various displacements such as board warpage, displacement when connecting semiconductor devices, deformation when assembling the cooling structure, and thermal deformation of the cooling structure, reducing thermal resistance. There is an effect that it can be done.

また、フインを互いに面接触させるための弾性
部材を備えた本発明によれば、フインどうしを面
接触させることにより、フイン間の熱抵抗を小さ
くすることができる効果がある。
Further, according to the present invention, which includes an elastic member for bringing the fins into surface contact with each other, the thermal resistance between the fins can be reduced by bringing the fins into surface contact with each other.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は従来の半導体チツプの冷却装
置の縦断面図、第3図は本発明の一実施例を示す
一部断面斜視図、第4図は、第3図の実施例に示
す冷却構造の主要部の斜視断面図、第5図は、本
発明の他の一実施例の主要部の断面図。 1……LSIチツプ、2……基板、3……半田ボ
ール、5,11,15……ハウジング、7……ピ
ストン、8,22,23……バネ、12……溝、
13……熱伝導板、16,17,20,21……
フイン、17,18……熱伝導体。
1 and 2 are vertical sectional views of a conventional semiconductor chip cooling device, FIG. 3 is a partially sectional perspective view showing an embodiment of the present invention, and FIG. 4 is a view of the embodiment shown in FIG. FIG. 5 is a perspective sectional view of the main part of the cooling structure shown, and FIG. 5 is a sectional view of the main part of another embodiment of the present invention. 1... LSI chip, 2... Board, 3... Solder ball, 5, 11, 15... Housing, 7... Piston, 8, 22, 23... Spring, 12... Groove,
13... Heat conduction plate, 16, 17, 20, 21...
Finn, 17, 18...Heat conductor.

Claims (1)

【特許請求の範囲】 1 回路基板上に実装された半導体デバイスの発
生熱をハウジングに伝えて冷却するようにした半
導体デバイスの冷却装置において、前記半導体デ
バイスの表面に設けられたベース部と、このベー
ス部に一体に設けられた複数の第1フインとを有
する第1の熱伝導体と、前記第1フインと係合す
る複数の第2フインを前記第1熱伝導体側に有
し、かつ前記ハウジング側には前記第2フインと
実質的に直交するように設けられた複数の第3フ
インを有する第2の熱伝導体と、前記ハウジング
に設けられ、前記第2の熱伝導体の第3フインと
係合する第4フインとを備えていることを特徴と
する半導体デバイスの冷却装置。 2 回路基板上に実装された半導体デバイスの発
生熱をハウジングに伝えて冷却するようにした半
導体デバイスの冷却装置において、前記半導体デ
バイスの表面に設けられたベース部とこのベース
部に一体に設けられた複数のフインとを有する熱
伝導体と、前記熱伝導体のフインとかみ合うよう
に前記ハウジング側に設けられたフインと、半導
体デバイス側の前記熱伝導体のフインと前記ハウ
ジング側のフインとの間に介在され、前記両フイ
ンを互いに面接触させるように付勢する弾性部材
とを有する半導体デバイスの冷却装置。
[Scope of Claims] 1. A cooling device for a semiconductor device configured to transfer heat generated by a semiconductor device mounted on a circuit board to a housing for cooling, comprising: a base portion provided on a surface of the semiconductor device; a first thermal conductor having a plurality of first fins integrally provided on a base portion; a plurality of second fins that engage with the first fins on the first thermal conductor side; a second thermal conductor having a plurality of third fins provided on the housing side so as to be substantially perpendicular to the second fins; A cooling device for a semiconductor device, comprising a fourth fin that engages with the fin. 2. In a cooling device for a semiconductor device configured to transfer heat generated by a semiconductor device mounted on a circuit board to a housing for cooling, a base portion provided on the surface of the semiconductor device and a base portion provided integrally with the base portion are provided. a thermal conductor having a plurality of fins, fins provided on the housing side so as to engage with the fins of the thermal conductor, and fins of the thermal conductor on the semiconductor device side and fins on the housing side. A cooling device for a semiconductor device, comprising an elastic member interposed between the fins and urging the fins to come into surface contact with each other.
JP23422183A 1983-12-14 1983-12-14 Cooling device for semiconductor chip Granted JPS60126851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23422183A JPS60126851A (en) 1983-12-14 1983-12-14 Cooling device for semiconductor chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23422183A JPS60126851A (en) 1983-12-14 1983-12-14 Cooling device for semiconductor chip

Publications (2)

Publication Number Publication Date
JPS60126851A JPS60126851A (en) 1985-07-06
JPH0568859B2 true JPH0568859B2 (en) 1993-09-29

Family

ID=16967594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23422183A Granted JPS60126851A (en) 1983-12-14 1983-12-14 Cooling device for semiconductor chip

Country Status (1)

Country Link
JP (1) JPS60126851A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5052481A (en) * 1988-05-26 1991-10-01 International Business Machines Corporation High conduction cooling module having internal fins and compliant interfaces for vlsi chip technology
JP5177906B2 (en) * 2010-01-28 2013-04-10 Necアクセステクニカ株式会社 Heat sink mechanism for electrical equipment

Also Published As

Publication number Publication date
JPS60126851A (en) 1985-07-06

Similar Documents

Publication Publication Date Title
JP2926537B2 (en) Multi-chip module cooling system
US4884168A (en) Cooling plate with interboard connector apertures for circuit board assemblies
US4770242A (en) Cooling device of semiconductor chips
US4908695A (en) Cooling apparatus and semiconductor device employing the same
US5920458A (en) Enhanced cooling of a heat dissipating circuit element
US4338621A (en) Hermetic integrated circuit package for high density high power applications
US5990550A (en) Integrated circuit device cooling structure
US5155661A (en) Aluminum nitride multi-chip module
US10342160B2 (en) Heat sink attachment on existing heat sinks
JPH0786471A (en) Semiconductor module
KR20000069624A (en) A packaging structure for integrated circuits
WO2023272637A1 (en) Packaging heat dissipating cover, chip packaging structure, and electronic device
USRE35721E (en) Cooling device of semiconductor chips
JPS6132819B2 (en)
JPH0568859B2 (en)
JPH05110277A (en) Semiconductor device
JP2506885B2 (en) Semiconductor device
JPS59202654A (en) Package for integrated circuit
US20240314919A1 (en) Electronic device with below pcb thermal management
JP3395409B2 (en) Semiconductor module
JPH0322555A (en) Cooling device for integrated circuit
JPH0422022B2 (en)
JPH0637215A (en) Device for cooling electronic device
JPH0573061B2 (en)
JPH07202095A (en) Cooler for electronic device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees