JPH0521165B2 - - Google Patents

Info

Publication number
JPH0521165B2
JPH0521165B2 JP59148339A JP14833984A JPH0521165B2 JP H0521165 B2 JPH0521165 B2 JP H0521165B2 JP 59148339 A JP59148339 A JP 59148339A JP 14833984 A JP14833984 A JP 14833984A JP H0521165 B2 JPH0521165 B2 JP H0521165B2
Authority
JP
Japan
Prior art keywords
observation
distance
observation lens
reflector
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59148339A
Other languages
Japanese (ja)
Other versions
JPS6126812A (en
Inventor
Masanori Idesawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP14833984A priority Critical patent/JPS6126812A/en
Publication of JPS6126812A publication Critical patent/JPS6126812A/en
Publication of JPH0521165B2 publication Critical patent/JPH0521165B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Measurement Of Optical Distance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は3角測量の原理を使用した小型の距離
検知装置に係るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a compact distance sensing device using the principle of triangulation.

物体の形状、運動、変形などの計測において
は、距離(長さ、位置)の計測が基本となつてい
る。本発明はそのような距離の計測に使用する距
離検知装置に係るものである。
Measurement of distance (length, position) is fundamental in measuring the shape, movement, deformation, etc. of objects. The present invention relates to a distance detection device used to measure such distances.

従来の技術 物体の形状、運動、変形などの計測に利用する
距離検知法としては、機械式の触針によるものか
ら、光、音波、電気、磁気などの種々の物理現象
を利用した様々な方式の計測法が考案され使用さ
れている。しかし、機械工業における形状計測に
は依然として機械的な触針法が広く用いられてい
る。触針法では変形してしまうような対象物、運
動物体の計測、さらには計測速度の向上などの観
点から、機械的な触針法に代る非接触式の距離セ
ンサの出現が切望されている。光学的な手法を用
いれば対象物に接触しないで距離計測が可能であ
る。
Conventional technology There are various distance detection methods used to measure the shape, motion, deformation, etc. of objects, from those using mechanical stylus to those using various physical phenomena such as light, sound waves, electricity, and magnetism. measurement methods have been devised and used. However, the mechanical stylus method is still widely used for shape measurement in the mechanical industry. There is a strong desire for a non-contact distance sensor to replace the mechanical stylus method, in order to measure objects that are deformed or in motion using the stylus method, and to improve measurement speed. There is. Using an optical method, it is possible to measure distance without touching the object.

本発明者は3角測量の原理を利用した光学的な
距離検知装置を提案した(特願昭58−161088)。
これについて第2図と第3図を参照して説明す
る。3角測量の原理に基づいた計測方法では、3
角形において一辺とその両端における角度が定ま
ると、3角形は一意的に決定され、その一辺に相
対する頂点の位置を求めることができる。この原
理に基づいた距離計測系の1例を第2図に示し
た。2つの観測光学系1,2をある一定距離Lだ
け離し光軸が平行となる様に配置する。そして2
つの観測光学系1,2より非測定物体3の注目点
Tまでの距離をZ、注目点Tの像が2つの観測光
学系1,2から距離Aだけ離れた観測位置で、そ
れぞれの光軸よりそれぞれXa,Xbの位置で検出
されるものとすると、注目点Tまでの距離Zは次
式により求められる。
The present inventor proposed an optical distance detection device using the principle of triangulation (Japanese Patent Application No. 58-161088).
This will be explained with reference to FIGS. 2 and 3. In the measurement method based on the principle of triangulation, 3
When one side and the angles at both ends of the triangle are determined, the triangle is uniquely determined, and the position of the vertex relative to that side can be determined. An example of a distance measuring system based on this principle is shown in FIG. Two observation optical systems 1 and 2 are arranged so that they are separated by a certain distance L and their optical axes are parallel. And 2
The distance from the two observation optical systems 1 and 2 to the point of interest T of the non-measurement object 3 is Z, and the image of the point of interest T is at the observation position separated by the distance A from the two observation optical systems 1 and 2, and the respective optical axes are Assuming that the detection is performed at the positions Xa and Xb, respectively, the distance Z to the point of interest T is determined by the following equation.

Z=A×L/(Xa+Xb) しかし、この距離計測方法においては、測定精
度上どうしても2つの観測光学系間の距離Lを一
定距離離して配置する必要がある。その結果装置
全体として大きくなつてしまい、内視鏡などの様
に全体としてできるだけ小さくしたい場合には、
適用できないのが欠点であつた。この欠点を解消
するものとして第3図の距離検知装置の構成を提
案した(特願昭58−161088)。第3図において、
観測レンズ5、観測レンズの光軸6に対し観測レ
ンズの節点0の部分において光軸6より距離dだ
け離れた点を通り観測レンズの光軸に平行な線に
対しφの角度傾いた線7上に反射体8を配置す
る。被測定物体3上の任意の1点Tからの光は反
射体8により反射され観測レンズ5により観測面
9上のT1に結像する。一方被測定物体3上の一
点Tからの、反射体で反射されない光は観測レン
ズにより観測面上のT0に結像する。
Z=A×L/(Xa+Xb) However, in this distance measuring method, the distance L between the two observation optical systems must be set apart by a certain distance from the viewpoint of measurement accuracy. As a result, the device as a whole becomes large, and if you want to make it as small as possible, such as with an endoscope,
The drawback was that it could not be applied. To overcome this drawback, we proposed the configuration of the distance detection device shown in Fig. 3 (Japanese Patent Application No. 161088/1988). In Figure 3,
With respect to the observation lens 5 and the optical axis 6 of the observation lens, a line 7 that passes through a point distanced by a distance d from the optical axis 6 at the node 0 of the observation lens and is inclined at an angle of φ with respect to a line parallel to the optical axis of the observation lens. A reflector 8 is placed above. Light from an arbitrary point T on the object to be measured 3 is reflected by the reflector 8 and focused on T 1 on the observation surface 9 by the observation lens 5 . On the other hand, light from one point T on the object to be measured 3 that is not reflected by the reflector is imaged by the observation lens at T 0 on the observation surface.

反射体に対し観測レンズ5と対称な位置に配置
された仮想的なレンズ10により仮想的な観測面
11上につくられるTの仮想的な像T1vは反射体
8により反射され観測面9上に結像されたTの像
T1と互いに線7に対し対称の関係となる。像T0
は観測レンズ5を通じて観測されたものであり、
又T1は線7に対し観測レンズ5と鏡像の関係の
位置に配置された仮想的レンズ10を通じて観測
されたT1vと等価である。但し観測面上でT1
T1vとの検出される座標値の符号は反対である。
A virtual image T 1 v of T created on a virtual observation surface 11 by a virtual lens 10 placed at a position symmetrical to the observation lens 5 with respect to the reflector is reflected by the reflector 8 and is reflected by the observation surface 9. Image of T formed above
T 1 and each other have a symmetrical relationship with respect to line 7. Statue T 0
is observed through the observation lens 5,
Further, T 1 is equivalent to T 1 v observed through a virtual lens 10 placed in a mirror image position with respect to the observation lens 5 with respect to the line 7 . However, on the observation plane, T 1 and
The sign of the detected coordinate value is opposite to that of T 1 v.

これは観測レンズ5と仮想的なレンズ10とに
よる従来の三角測量における構成と等価であり、
第3図においてφ=0、d=L/2とした配置は
第2図に示した配置と基本的には同一となる。し
たがつて、反射体8と観測レンズ5を第3図の様
に配置することにより観測レンズと仮想的なレン
ズを用いた三角測量の原理による距離計測検知装
置を構成したものと同様な効果を得ることができ
る。しかもその大きさは2つのレンズを使用した
第2図の距離検知装置に比べ約半分程度の大きさ
になり装置全体を小型化できる。第3図の配置に
おいては距離を算出する式は第2図の場合よりや
や複雑になる。
This is equivalent to the configuration in conventional triangulation using the observation lens 5 and the virtual lens 10,
The arrangement in which φ=0 and d=L/2 in FIG. 3 is basically the same as the arrangement shown in FIG. Therefore, by arranging the reflector 8 and the observation lens 5 as shown in Fig. 3, it is possible to obtain the same effect as that of a distance measurement detection device based on the principle of triangulation using the observation lens and a virtual lens. Obtainable. Moreover, its size is about half that of the distance detection device shown in FIG. 2, which uses two lenses, so the entire device can be miniaturized. In the arrangement of FIG. 3, the formula for calculating the distance is slightly more complex than in the case of FIG.

いまT0,T1の観測面上での座標値をそれぞれ、
Xn0,Xn1とすると、注目する1点Tまでの距離
およびx座標値は次式で与えられる。
Now, let the coordinate values of T 0 and T 1 on the observation plane be respectively,
Assuming X n0 and X n1 , the distance and x-coordinate value to a point T of interest are given by the following equation.

Z=ad(xn1・sin2φ−2acos2φ)/a(asi
n2φ+xn1・cos2φ)−xn0・(acos2φ−xn1・sin2φ)
x=−xn0・Z/a 第3図の例では反射体を1個使用しているが、
2枚の反射鏡を光軸に平行に、又は観測レンズに
向かつて末広がりに配置してもよいし、1個の円
筒形形もしくは円錐形の反射体を使用してもよ
い。
Z=ad(x n1・sin2φ−2acos )/a(asi
n2φ+x n1・cos2φ)−x n0・(acos2φ−x n1・sin2φ)
x=-x n0・Z/a In the example in Figure 3, one reflector is used,
Two reflectors may be arranged parallel to the optical axis or divergent toward the observation lens, or a single cylindrical or conical reflector may be used.

発明が解決しようとする問題点 観測レンズの光軸方向における対象物上の任意
の一点の変位(距離変化△Z)に対する検出感度
(対象物上の点の光軸方向の変位△Zに対する観
測面上の像の位置変化△Yの比:△Y/△Z)を
高めようとすると、観測レンズ5から観測面9ま
での距離aを観測レンズ5から対象物上の点まで
の距離Zに比してはるかに大きくしなければなら
ないが(a≫Z)、そのような拡大光学系とする
と観測面上での像形成位置が観測レンズの光軸か
ら大きく離れ、結局距離検知装置を大きくしてし
まうという問題があつた(第1図参照)。
Problems to be solved by the invention Detection sensitivity for displacement (distance change △Z) of any point on the object in the optical axis direction of the observation lens (observation surface for displacement △Z of the point on the object in the optical axis direction) In order to increase the ratio of the position change △Y of the upper image (△Y/△Z), the distance a from the observation lens 5 to the observation surface 9 is compared to the distance Z from the observation lens 5 to a point on the object. However, with such a magnifying optical system, the image formation position on the observation plane will be far away from the optical axis of the observation lens, and in the end, the distance detection device will have to be made larger. There was a problem with storage (see Figure 1).

本発明の目的は距離検知装置の寸法を増大する
ことなく検出感度を高めた距離検知装置を提供す
ることである。
An object of the present invention is to provide a distance detection device with improved detection sensitivity without increasing the size of the distance detection device.

問題点を解決するための手段 この目的は本発明に従つて、1つの観測レンズ
と、この観測レンズの一側に配置した少なくとも
1つの第1反射体と、前記の観測レンズの他側に
配置した少なくとも1つの第2反射体とを備え、
被測定物体上の任意の一点からの光が直接入射
し、且つ前記の任意の一点からの光が前記の第1
反射体により反射されて入射する位置に前記の観
測レンズを配置し、そして第1反射体から反射さ
れ観測レンズを通つた光を反射する位置に第2反
射体を配置することにより達成される(第1図破
線参照)。すなわち第2反射体12を観測レンズ
5の他側に配置することにより第1反射体8から
反射され観測レンズ5を通つた光を反射して観測
レンズ5の光軸から比較的近い距離に結像させる
(T1;T1′)。この場合、距離変化に対する結像位
置の変化の比は、反射させずに結像した場合と変
わらず、従つて検出感度は高められ、しかも距離
検知装置の寸法を増大せしめてはいない。
Means for Solving the Problem This object, according to the invention, comprises an observation lens, at least one first reflector arranged on one side of said observation lens, and at least one first reflector arranged on the other side of said observation lens. at least one second reflector,
Light from an arbitrary point on the object to be measured is directly incident, and light from the arbitrary point is directly incident on the object to be measured, and the light from the arbitrary point is directly incident on the object to be measured.
This is achieved by arranging the observation lens at a position where the light is reflected by the reflector and entering the observation lens, and by arranging the second reflector at a position where the light is reflected from the first reflector and passes through the observation lens. (See broken line in Figure 1). That is, by arranging the second reflector 12 on the other side of the observation lens 5, the light reflected from the first reflector 8 and passed through the observation lens 5 is reflected and focused at a relatively short distance from the optical axis of the observation lens 5. image (T 1 ; T 1 ′). In this case, the ratio of the change in the imaging position to the change in distance is the same as in the case of imaging without reflection, and therefore the detection sensitivity is increased without increasing the size of the distance detection device.

以下に第4,5図を参照して本発明の実施例に
ついてその構成と作用を説明する。
The structure and operation of an embodiment of the present invention will be explained below with reference to FIGS. 4 and 5.

第4図を参照する。第4図において、1つの観
測レンズ5の一側に平面鏡8を2枚光軸に平行に
配置し、そして観測レンズ5の他側に別の平面鏡
12を2枚光軸に平行に配置する。形状、運動、
変形などについて計測しようとしている被測定物
体上へ観測レンズ5を通つて光ビーム13が投射
され、被測定物体3の上に輝点Tをつくる。この
輝点からの光は第1反射体8で反射され観測レン
ズを通つて第2反射体12で反射され最終的に観
察面9上に結像する。
Please refer to FIG. In FIG. 4, two plane mirrors 8 are arranged parallel to the optical axis on one side of one observation lens 5, and another two plane mirrors 12 are arranged parallel to the optical axis on the other side of the observation lens 5. shape, movement,
A light beam 13 is projected onto the object to be measured whose deformation or the like is to be measured through the observation lens 5, creating a bright spot T on the object to be measured 3. The light from this bright spot is reflected by the first reflector 8, passes through the observation lens, is reflected by the second reflector 12, and finally forms an image on the observation surface 9.

第5図は反射体として円筒状のものを使用した
場合で、ビームを観測レンズ5の光軸に沿つて投
射すると観察面上で被測定物体上の輝点Tの像は
環状となつて観察面に現れ、被測定物体上の任意
の点までの距離はこの環の半径の直接の関数とし
て計測することができる。
Figure 5 shows the case where a cylindrical reflector is used. When the beam is projected along the optical axis of the observation lens 5, the image of the bright spot T on the object to be measured becomes annular on the observation surface. The distance to any point on the object to be measured can be measured as a direct function of the radius of this ring.

実施例はいずれもたゞ1つの第2反射体を使用
しているが、拡大率(a/z)が大きい場合には
観測レンズの他側で複数回反射させることも必要
となり、その場合はそれに応じた個数の第2反射
体を使用する。又、第2反射体を光軸に対して末
広がりに配置させることにより平行に配置した場
合よりも更に光軸に直交する方向の寸法を減少さ
せることもできる。
All of the examples use only one second reflector, but if the magnification (a/z) is large, it may be necessary to reflect multiple times on the other side of the observation lens. A corresponding number of second reflectors are used. Further, by arranging the second reflector so as to diverge toward the optical axis, the dimension in the direction perpendicular to the optical axis can be further reduced than when the second reflector is arranged parallel to the optical axis.

効 果 叙上から明らかなように、本発明により距離検
知装置は拡大光学系を使用して距離検出感度を高
めているにもかゝわらずその光軸に直交する方向
の寸法は大きくされることはない。又、第2反射
体として円筒または円錐鏡を使用した場合には観
測面上に得られる像のS/N比は高められる。
Effects As is clear from the description, although the distance detection device of the present invention uses a magnifying optical system to increase the distance detection sensitivity, the dimension in the direction perpendicular to the optical axis is increased. Never. Furthermore, when a cylindrical or conical mirror is used as the second reflector, the S/N ratio of the image obtained on the observation surface is increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第3図の距離検知装置に拡大光学系を
採用した場合の構成と、本発明の構成とを対比し
て示す説明図である。第2図は従来の距離計測法
の説明図である。第3図は既に本発明者が提案し
た距離検知装置の一例を示す説明図である。第4
図は本発明の距離検知装置の一実施例を示す斜視
図である。第5図は本発明の別の実施例を示す斜
視図である。 図中;3…被測定物体、5…観測レンズ、8…
第1反射体、12…第2反射体。
FIG. 1 is an explanatory diagram showing a comparison between a configuration in which a magnifying optical system is employed in the distance detection device shown in FIG. 3 and a configuration of the present invention. FIG. 2 is an explanatory diagram of the conventional distance measurement method. FIG. 3 is an explanatory diagram showing an example of a distance detection device already proposed by the present inventor. Fourth
The figure is a perspective view showing an embodiment of the distance detection device of the present invention. FIG. 5 is a perspective view showing another embodiment of the invention. In the figure; 3...object to be measured, 5...observation lens, 8...
1st reflector, 12...2nd reflector.

Claims (1)

【特許請求の範囲】[Claims] 1 1つの観測レンズと、この観測レンズの一側
に配置した少なくとも1つの第1完全反射体と、
前記の観測レンズの他側に配置した少なくとも1
つの第2完全反射体とを備え、被測定物体上の任
意の一点からの光が直接入射し、且つ前記の任意
の一点からの光が前記の第1完全反射体により反
射されて入射する位置に前記の観測レンズを配置
し、そして第1完全反射体から反射され観測レン
ズを通つた光を反射する位置に第2完全反射体を
配置したことを特徴とする距離検知装置。
1 one observation lens and at least one first perfect reflector disposed on one side of the observation lens;
at least one disposed on the other side of the observation lens;
a position where light from an arbitrary point on the object to be measured directly enters, and where light from the arbitrary point is reflected by the first perfect reflector and enters the object; A distance detecting device characterized in that the above-mentioned observation lens is disposed at a position, and a second perfect reflector is disposed at a position to reflect the light reflected from the first perfect reflector and passed through the observation lens.
JP14833984A 1984-07-17 1984-07-17 Detecting device for distance Granted JPS6126812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14833984A JPS6126812A (en) 1984-07-17 1984-07-17 Detecting device for distance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14833984A JPS6126812A (en) 1984-07-17 1984-07-17 Detecting device for distance

Publications (2)

Publication Number Publication Date
JPS6126812A JPS6126812A (en) 1986-02-06
JPH0521165B2 true JPH0521165B2 (en) 1993-03-23

Family

ID=15450556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14833984A Granted JPS6126812A (en) 1984-07-17 1984-07-17 Detecting device for distance

Country Status (1)

Country Link
JP (1) JPS6126812A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011064617A (en) * 2009-09-18 2011-03-31 Fukuoka Institute Of Technology Three-dimensional information measuring device and three-dimensional information measuring method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0689228B2 (en) * 1986-02-12 1994-11-09 帝人化成株式会社 Resin composition
JPS63298113A (en) * 1987-05-29 1988-12-05 Rikagaku Kenkyusho Structure of image forming optical system of optical range detector

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56168104A (en) * 1980-05-28 1981-12-24 Rikagaku Kenkyusho Detector for mark position
JPS59154314A (en) * 1983-02-24 1984-09-03 Dainippon Screen Mfg Co Ltd Apparatus for measuring distance and slanting angle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56168104A (en) * 1980-05-28 1981-12-24 Rikagaku Kenkyusho Detector for mark position
JPS59154314A (en) * 1983-02-24 1984-09-03 Dainippon Screen Mfg Co Ltd Apparatus for measuring distance and slanting angle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011064617A (en) * 2009-09-18 2011-03-31 Fukuoka Institute Of Technology Three-dimensional information measuring device and three-dimensional information measuring method

Also Published As

Publication number Publication date
JPS6126812A (en) 1986-02-06

Similar Documents

Publication Publication Date Title
US4708483A (en) Optical measuring apparatus and method
US4897536A (en) Optical axis displacement sensor with cylindrical lens means
JPH03282203A (en) Target and three-dimensional position and attitude measuring system using same
US4637715A (en) Optical distance measuring apparatus
US7804605B2 (en) Optical multi-axis linear displacement measurement system and a method thereof
JPH0521165B2 (en)
Stevenson Use of laser triangulation probes in coordinate measuring machines for part tolerance inspection and reverse engineering
JPH04523B2 (en)
JPH0721409B2 (en) Optical distance detector
JPS63142210A (en) Method and apparatus for measuring distance
Golnabi Image evaluation for the synchronised laser scanning systems
JPS6222019A (en) Detector for fundamental position
JPS63292015A (en) Construction of image-sensing optical system of optical distance detecting apparatus
JPH07122566B2 (en) Optical displacement measuring device
JPH03128409A (en) Three-dimensional shape sensor
JP2584630B2 (en) Configuration of optical stylus for side profile measurement
JPH0665965B2 (en) Distance detection device
JP6005506B2 (en) Optical measuring device
JP2000137132A (en) Method and device for testing array element
JPH0726841B2 (en) Optical distance detector
CN117367323A (en) Spatial rotation angle detection device and method
JPH03144862A (en) Relative position measuring device
Nakazawa Development of 3-D robot vision sensor
JPH08219742A (en) Enhancement of sensitivity in measurement of angular displacement or displacement using laser and short focal length lens
JPH03249517A (en) Optical ring type noncontact length measuring sensor