JPH04523B2 - - Google Patents

Info

Publication number
JPH04523B2
JPH04523B2 JP15343884A JP15343884A JPH04523B2 JP H04523 B2 JPH04523 B2 JP H04523B2 JP 15343884 A JP15343884 A JP 15343884A JP 15343884 A JP15343884 A JP 15343884A JP H04523 B2 JPH04523 B2 JP H04523B2
Authority
JP
Japan
Prior art keywords
optical axis
imaging lens
axis
mirror
reflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15343884A
Other languages
Japanese (ja)
Other versions
JPS6130705A (en
Inventor
Masanori Idesawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP15343884A priority Critical patent/JPS6130705A/en
Publication of JPS6130705A publication Critical patent/JPS6130705A/en
Publication of JPH04523B2 publication Critical patent/JPH04523B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Optical Distance (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は光触針装置に係るものである。[Detailed description of the invention] Industrial applications The present invention relates to an optical stylus device.

物体の形状、運動、変形などの計測において
は、距離(長さ、位置)の計測が基本となつてい
る。本発明はそのような距離の計測に使用する光
触針装置に係るものである。
Measurement of distance (length, position) is fundamental in measuring the shape, movement, deformation, etc. of objects. The present invention relates to an optical stylus device used for measuring such distances.

従来の技術 物体の形状、運動、変形などの計測に利用する
距離検知法としては、機械式の触針によるものか
ら、光、音波、電気、磁気などの種々の物理現象
を利用した様々な方式の計測法が考案され使用さ
れている。触針法では変形してしまうような対象
物、運動物体の計測、さらには計測速度の向上な
どの観点から機械的な触針法に代る非接触式の距
離センサとして光触針装置が使用されている。
Conventional technology There are various distance detection methods used to measure the shape, motion, deformation, etc. of objects, from those using mechanical stylus to those using various physical phenomena such as light, sound waves, electricity, and magnetism. measurement methods have been devised and used. An optical stylus device is used as a non-contact distance sensor to replace the mechanical stylus method from the viewpoint of measuring objects that are deformed or moving objects, and improving measurement speed. has been done.

第2図にこの従来の光触針装置を示す。半径方
向位置検出センサ11,12,13,14は観測面P
上に配置されており、この観測面Pの中心から光
ビームBの投射方向に沿つて撮像レンズ2と円筒
鏡3とを配置する。被測定物4の上の任意の標点
Tに投射した光ビームBは標点Tから反射され、
更に円筒鏡3で撮像レンズ2に向けて反射され、
観測面P上に半径rの円となつて結像する。観測
面Pから被測定物体上の標点Tまでの距離は半径
rの直接の関数である(第3図参照)。
FIG. 2 shows this conventional optical stylus device. Radial position detection sensors 1 1 , 1 2 , 1 3 , 1 4 are on the observation plane P
An imaging lens 2 and a cylindrical mirror 3 are arranged along the projection direction of the light beam B from the center of the observation plane P. The light beam B projected onto an arbitrary gauge point T on the object to be measured 4 is reflected from the gauge point T,
It is further reflected toward the imaging lens 2 by the cylindrical mirror 3,
An image is formed on the observation plane P as a circle with radius r. The distance from the observation plane P to the reference point T on the object to be measured is a direct function of the radius r (see FIG. 3).

発明が解決しようとする問題点 この従来の光触針装置はZ軸方向の距離検知に
有効であるが、Z軸方向以外の軸方向の距離は光
触針装置自体の向きを変えないと検知することは
できない。被測定物体が直径の比較的小さい深い
孔又は凹みを有している場合、その孔又は凹みの
深さと半径方向の大きさを計測しようとしても従
来の光触針装置では半径方向の大きさを計測する
ことはできなかつた。
Problems to be Solved by the Invention This conventional optical stylus device is effective in detecting distances in the Z-axis direction, but distances in axial directions other than the Z-axis cannot be detected unless the orientation of the optical stylus device itself is changed. I can't. When an object to be measured has a deep hole or recess with a relatively small diameter, conventional optical stylus devices cannot measure the depth and radial size of the hole or recess. It was not possible to measure it.

発明が解決しようとする問題点 本発明の目的は多軸方向3次元的な距離計測を
実施できる光触針装置を提供することである。
Problems to be Solved by the Invention An object of the present invention is to provide an optical stylus device that can perform three-dimensional distance measurement in multiple axes.

問題点を解決するための手段と作用 多軸方向3次元的な距離計測を光学的に実施す
る本発明の光触針装置では、半径方向位置検出セ
ンサ、撮像レンズ、円筒面又は円錐面反射鏡及び
多軸方向投射手段を光ビームの投射方向に前記の
撮像レンズの光軸に沿つて配置し、前記の多軸方
向投射手段はそれぞれの中心部分を前記の光軸に
合わせ、前記の光軸に対し交差方向にそして相互
に交差させて配置した、中心部分を半透鏡とし、
その他の部分を完全反射鏡とした少なくとも1つ
の細長い反射体から構成されている。
Means and Effects for Solving the Problems The optical stylus device of the present invention optically performs three-dimensional distance measurement in multiple axes, including a radial position detection sensor, an imaging lens, and a cylindrical or conical reflecting mirror. and a multi-axis direction projection means arranged along the optical axis of the imaging lens in the projection direction of the light beam, and each of the multi-axis direction projection means has its center portion aligned with the optical axis, and the multi-axis direction projection means The central part is a semi-transparent mirror, arranged in the cross direction and mutually.
It consists of at least one elongated reflector, the other part of which is a perfect reflector.

光源からの光ビームは撮像レンズを通して反射
体の交さ部分(半透鏡部分)に投射され、こゝで
光軸方向(Z軸)と、光軸方向に交差し且つ相互
に交差する方向(X軸、Y軸)とに光ビームを分
ける。各方向の光ビームは被測定物体に投射さ
れ、そしてX軸とY軸方向の投射点からの反射光
は反射体の完全反射鏡の部分から円筒鏡もしくは
円錐鏡に反射され、また、Z軸方向の投射点から
の反射光は、前記の相互に交差する2つの反射体
の重なりの間〓から円筒面鏡もしくは円錐面鏡に
入射され、そして再びこの円筒鏡もしくは円錐鏡
から撮像レンズへ向けて反射されそして撮像レン
ズを通つて半径方向位置検出センサに向け投射さ
れ結像する。この結像位置の半径から各方向の距
離を検知する。
The light beam from the light source is projected through the imaging lens onto the intersecting part (semi-transparent mirror part) of the reflector, where it is projected in the optical axis direction (Z-axis) and in the direction that intersects the optical axis direction and intersects each other (X-axis). splits the light beam into two (axis, Y axis). The light beams in each direction are projected onto the object to be measured, and the reflected light from the projection points in the X-axis and Y-axis directions is reflected from the perfect reflection mirror part of the reflector to a cylindrical mirror or a conical mirror, and the light beams in the Z-axis The reflected light from the projection point in the direction enters the cylindrical mirror or conical mirror from between the overlapping of the two mutually intersecting reflectors, and is directed from this cylindrical mirror or conical mirror again to the imaging lens. The light is reflected by the image pickup lens and projected toward the radial position detection sensor to form an image. The distance in each direction is detected from the radius of this imaging position.

実施例 本発明の実施例を第1図に示す。半径方向位置
検出センサ1x,1-x;1y,1-y;1z,1-zは被
測定物体上の標点Tx,Ty,Tzが観測面上で結像
する範囲に配置されている。光ビームの投射方向
に沿つて撮像レンズ2、円筒面又は円錐面反射鏡
3、そして3軸方向へのビーム投射手段として中
心部分を半透鏡としその他の部分を全反射鏡とし
た第1と第2の反射体を使用し、これらの反射体
をそれぞれの中心部分を光軸に合わせ、そして光
軸に対し交差させ且つ相互にも交差させて配置す
る。直角に交差させればX軸、Y軸、Z軸の3軸
へ投射することができるが、直角以外の角度で交
差させてもよい。三方向への光ビームの光量を同
じにするには例えば反射に伴なう損失を考慮し第
1の反射体の透過率を70%とし、第2の反射体の
透過率を50%とすればよい。
Embodiment An embodiment of the present invention is shown in FIG. Radial position detection sensor 1 _ _ _ _ It is located in Along the projection direction of the light beam, there is an imaging lens 2, a cylindrical surface or a conical surface reflecting mirror 3, and a first and second lens whose center part is a semi-transparent mirror and the other parts are total reflection mirrors as beam projection means in three axial directions. Two reflectors are used, and these reflectors are arranged with their center portions aligned with the optical axis and intersecting the optical axis as well as intersecting each other. If they intersect at right angles, it is possible to project onto the three axes of the X, Y, and Z axes, but they may also intersect at angles other than right angles. To make the amount of light beams in three directions the same, for example, the transmittance of the first reflector should be set to 70% and the transmittance of the second reflector should be set to 50%, taking into account loss due to reflection. Bye.

動作において、多軸方向の位置検知は、X,
Y,Z軸方向でそれぞれ個別に行われる。光軸に
沿つて投射される光ビームBは撮像レンズ2にり
収斂され、反射鏡3内を直進し、そして第1反射
体51の中心をその光量の70%が透過し、残りの
30%がX軸方向に向かつて凹面の半径方向の点
Txへ投射される。透過した光ビームは第2の反
射体52の中心部でその光量の50%が透過し、残
りの50%がY軸方向に向つて凹面の半径方向の点
Tyに投射される。第1と第2の反射体を透過し
た光ビームは光軸、すなわちZ軸に沿つて直進
し、凹面の底の点Tzに投射される。これらの点
TX,TYからの反射ビームは第1と第2の反射体
の完全反射鏡部分から反射鏡3内の鏡面へ向けて
反射される。また、TZからの反射ビームは前記
の第1、第2の反射体の間〓をぬつて反射鏡3内
に入射される。反射鏡3の鏡面の反射ビームは撮
像レンズ2を通つて観測面上に結像し、センサ1
によつて検知され、その結像位置の半径から各軸
の点Tx,Ty,Tzまでの距離が決定される。
In operation, position sensing in multiple axes is
This is done separately in the Y and Z axis directions. The light beam B projected along the optical axis is converged by the imaging lens 2, travels straight through the reflector 3, and 70% of its light intensity passes through the center of the first reflector 51 , while the remaining
30% points in the radial direction of the concave surface towards the X-axis direction
Projected to T x . 50% of the transmitted light beam is transmitted at the center of the second reflector 52 , and the remaining 50% is transmitted at the radial point of the concave surface in the Y-axis direction.
Projected to T y . The light beam transmitted through the first and second reflectors travels straight along the optical axis, that is, the Z axis, and is projected to a point T z at the bottom of the concave surface. these points
The reflected beams from T X and T Y are reflected from the fully reflective mirror portions of the first and second reflectors toward the mirror surface within the reflector 3. Further, the reflected beam from T Z passes between the first and second reflectors and enters the reflecting mirror 3. The reflected beam from the mirror surface of the reflector 3 passes through the imaging lens 2 and forms an image on the observation surface, and the sensor 1
The distance from the radius of the imaging position to the points T x , T y , and T z on each axis is determined.

この実施例では円筒面鏡を使用しているが円錐
面鏡を使用してもよい。撮像レンズから被測定物
体に向つて末広がりに円錐面鏡を配置すると像位
置検出半径と距離との関係は第3図の曲線にほゞ
沿つてそれより上側でのびる曲線で表わされ、撮
像レンズから被測定物体に向つて先細りに円錐面
鏡を配置すると像位置検出半径と距離との関係は
第3図の曲線にほゞ沿つてそれより下側でのびる
曲線で表わされる。
Although a cylindrical mirror is used in this embodiment, a conical mirror may also be used. When a conical mirror is arranged to widen from the imaging lens toward the object to be measured, the relationship between the image position detection radius and the distance is expressed by a curve that extends above the curve approximately along the curve in Figure 3. When a conical mirror is arranged to taper toward the object to be measured, the relationship between the image position detection radius and the distance is represented by a curve that extends below the curve approximately along the curve in FIG.

この実施例は2つの反射体を使用してX,Yお
よびZの3軸に沿つて測定している。しかし、1
つの反射体を使用しこれを光軸に沿うように傾け
て配置すると反射ビームは光軸に寄つてのびてい
き、そのTXまたはTYの反射ビームをTZからの直
進ビームと一緒に使用すると凹面の傾斜を測定で
きる。また、反射体の数を増やすことにより4
軸、5軸の測定も可能となる。
This example uses two reflectors to measure along three axes: X, Y, and Z. However, 1
If two reflectors are used and placed at an angle along the optical axis, the reflected beam will extend toward the optical axis, and the reflected beam of T X or T Y will be used together with the straight beam from T Z. Then, the slope of the concave surface can be measured. Also, by increasing the number of reflectors, 4
Axis and 5-axis measurements are also possible.

発明の効果 本発明により被測定物体の凹面又は孔の多軸方
向3次元的計測が可能となる。
Effects of the Invention According to the present invention, it is possible to three-dimensionally measure a concave surface or hole of an object to be measured in a multiaxial direction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の略図である。第2図
は従来の光触針装置の略図である。第3図は従来
の光触針装置の光軸方向位置と結像位置検出半径
との関係を示すグラフである。 図中:1x,1-x;1y,1-y;1z,1-z……半
径方向位置検出センサ、2……撮像レンズ、3…
…円筒面鏡、4……被測定物体、51,52……第
1と第2の反射体。
FIG. 1 is a schematic diagram of an embodiment of the invention. FIG. 2 is a schematic diagram of a conventional optical stylus device. FIG. 3 is a graph showing the relationship between the position in the optical axis direction and the imaging position detection radius of a conventional optical stylus device. In the figure: 1 x , 1 -x ; 1 y , 1 -y ; 1 z , 1 -z ...Radial position detection sensor, 2...Imaging lens, 3...
...Cylindrical mirror, 4...Object to be measured, 51 , 52 ...First and second reflectors.

Claims (1)

【特許請求の範囲】[Claims] 1 半径方向位置検出センサ、撮像レンズ、円筒
面又は円錐面反射鏡及び多軸方向投射手段を光ビ
ームの投射方向に前記の撮像レンズの光軸に沿つ
て配置し、前記の多軸方向投射手段はそれぞれの
中心部分を前記の光軸に合わせ、前記の光軸に対
し交差方向に、そして相互に交差させて配置し
た、中心部分を半透鏡とし、その他の部分を完全
反射鏡とした少なくとも1つの細長い反射体であ
ることを特徴とした光触針装置。
1. A radial position detection sensor, an imaging lens, a cylindrical surface or a conical surface reflector, and a multi-axial projection means are arranged along the optical axis of the imaging lens in the projection direction of the light beam, and the multi-axial projection means is arranged along the optical axis of the imaging lens. are arranged with their respective central portions aligned with the optical axis, in a direction crossing the optical axis, and intersecting each other, with the central portion being a semi-transparent mirror and the other portions being fully reflective mirrors. An optical stylus device characterized by two elongated reflectors.
JP15343884A 1984-07-24 1984-07-24 Optical probe apparatus Granted JPS6130705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15343884A JPS6130705A (en) 1984-07-24 1984-07-24 Optical probe apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15343884A JPS6130705A (en) 1984-07-24 1984-07-24 Optical probe apparatus

Publications (2)

Publication Number Publication Date
JPS6130705A JPS6130705A (en) 1986-02-13
JPH04523B2 true JPH04523B2 (en) 1992-01-07

Family

ID=15562524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15343884A Granted JPS6130705A (en) 1984-07-24 1984-07-24 Optical probe apparatus

Country Status (1)

Country Link
JP (1) JPS6130705A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726841B2 (en) * 1987-04-21 1995-03-29 理化学研究所 Optical distance detector
JP2584630B2 (en) * 1987-05-29 1997-02-26 理化学研究所 Configuration of optical stylus for side profile measurement
JP5309542B2 (en) * 2007-12-05 2013-10-09 株式会社ニコン Measuring apparatus and method

Also Published As

Publication number Publication date
JPS6130705A (en) 1986-02-13

Similar Documents

Publication Publication Date Title
Takatsuji et al. Whole-viewing-angle cat's-eye retroreflector as a target of laser trackers
US4897536A (en) Optical axis displacement sensor with cylindrical lens means
JPH03282203A (en) Target and three-dimensional position and attitude measuring system using same
JPH10501890A (en) Optical device for determining the position of a reflective target mark
US4787748A (en) Synchronous optical scanning apparatus
US6327038B1 (en) Linear and angular retroreflecting interferometric alignment target
JPS6052710A (en) Distance detector
JPH04523B2 (en)
CN100582678C (en) Off-axis rotational symmetry type laser trigone displacement transducer
JPH0262903A (en) Method and device for measuring hole internal surface
JPH03264804A (en) Surface-shape measuring apparatus
Stevenson Use of laser triangulation probes in coordinate measuring machines for part tolerance inspection and reverse engineering
JPH01188254A (en) Noncontact copying digitizing
JP2002250621A (en) Shape-measuring method and device for optical element, and its type
JPH0521165B2 (en)
JPH0519641B2 (en)
JPH07332954A (en) Method and apparatus for measuring displacement and inclination
SU879298A1 (en) Optical electronic device for checking object angular turn
JPH02272308A (en) Non-contact type shape measuring instrument
JP2584630B2 (en) Configuration of optical stylus for side profile measurement
JPS63263411A (en) Optical distance detector
JPS61189405A (en) Non-contacting shape measuring instrument
JPH0542509Y2 (en)
JPS62179605A (en) Normal direction detecting sensor
JPS63187103A (en) Non-contact measurement of three-dimensional shape