JPH03144862A - Relative position measuring device - Google Patents

Relative position measuring device

Info

Publication number
JPH03144862A
JPH03144862A JP1285431A JP28543189A JPH03144862A JP H03144862 A JPH03144862 A JP H03144862A JP 1285431 A JP1285431 A JP 1285431A JP 28543189 A JP28543189 A JP 28543189A JP H03144862 A JPH03144862 A JP H03144862A
Authority
JP
Japan
Prior art keywords
detected
light
camera
distance
imaging means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1285431A
Other languages
Japanese (ja)
Other versions
JPH0775036B2 (en
Inventor
Sumihiro Ueda
上田 澄広
Masaaki Hirayama
平山 真明
Yoichi Nakamura
洋一 中村
Toshiyuki Kamiya
紙谷 利幸
Hideaki Mizuno
秀明 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP1285431A priority Critical patent/JPH0775036B2/en
Publication of JPH03144862A publication Critical patent/JPH03144862A/en
Publication of JPH0775036B2 publication Critical patent/JPH0775036B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Position Or Direction (AREA)
  • Image Analysis (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Image Processing (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

PURPOSE:To simplify and miniaturize constitution by measuring distance to an object to be detected on which a member to be detected is fixed by one set of an image pickup means provided with a light source, a reflecting mirror and a camera. CONSTITUTION:The member 3 to be detected is fixed on the flat surface 2 of the object 1 to be detected, and the object 4 opposite to the object 1 to be detected is provided with the image pickup means 5, and the image pickup means 5 is provided with the light source 8, the reflecting mirror 9 of a half mirror and the camera 10. The object 1 to be detected is irradiated with light from the light source 8, and the reflecting mirror 9 transmits the light from the light source 8, and bends and reflects the reflected light reflected from the member 3 to be detected, and the camera 10 receives this light, and images it on an image pickup element 16. Then, output from the camera 10 is inputted to a processing circuit 35, and the distance between the object 4 and the object 1 to be detected is calculated and obtained. Thus, the constitution can be simplified and miniaturized.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、被検出物体との相対的な位置、すなわち被検
出物体との間の距離およびその被検出物体の姿勢を、測
定するための装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a device for measuring a relative position to a detected object, that is, a distance to the detected object and an attitude of the detected object. .

従来の技術 典型的な先行技術では、被検出物体を、相互に異なる位
置に設けられた一対のテレビカメラによって撮像し、被
検出物体までの距離を測定している。
2. Description of the Related Art In a typical prior art, an object to be detected is imaged by a pair of television cameras installed at different positions, and the distance to the object to be detected is measured.

発明が解決すべき課題 このような先行技術では、2台のテレビカメラを必要と
し、したがって構成が明らかに複雑であり、また大形化
する。
Problems to be Solved by the Invention This prior art requires two television cameras and is therefore obviously complex and bulky in construction.

本発明の目的は、i戒を簡単にして小形化することがで
きるようにした相対位置測定装置を提供することである
An object of the present invention is to provide a relative position measuring device that can be made smaller by simplifying the i-precept.

課題を解決するための手段 本発明は、(a>被検出物体に固定され、入射光と平行
な方向に光を反射する被検出部材と、(b)撮像手段で
あって、 (bl)被検出部材に向けて光を照射する光源と、 (b2)光源の光軸上に設けられ、光源からの光を透過
し、被検出物体からの反射光の光経路を屈曲する反射鏡
と、 (b3)反射鏡からの光を受光して被検出部材を撮像す
るカメラとを有する撮像手段と、(c)カメラの出力に
応答し、被検出部材とカメラとの距離を演算処理して求
める処理手段とを含むことを特徴とする相対位置測定装
置である。
Means for Solving the Problems The present invention provides (a) a member to be detected that is fixed to an object to be detected and reflects light in a direction parallel to the incident light; (b) imaging means; a light source that irradiates light toward the detection member; (b2) a reflecting mirror that is provided on the optical axis of the light source, transmits the light from the light source, and bends the optical path of the reflected light from the detected object; b3) an imaging means having a camera that receives light from a reflecting mirror to take an image of the detected member; and (c) processing for calculating and calculating the distance between the detected member and the camera in response to the output of the camera. A relative position measuring device characterized in that it includes means.

また本発明は、前記撮像手段を、少なくとも3箇所にそ
れ・ぐれ設け、 前記処理手段は、各カメラの出力によって求めた前記距
離から、被検出物体の姿勢を演算して求めることを特徴
とする。
Further, the present invention is characterized in that the imaging means are provided in at least three locations with different positions, and the processing means calculates and obtains the attitude of the object to be detected from the distance obtained from the output of each camera. .

作  用 本発明に従えば、光源と反射鏡とカメラとを有する1台
の撮像手段によって、被検出部材が固定されている被検
出物体までの距離を測定することができる。これによっ
て横流が明らかに単純であり、小形化することができる
According to the present invention, the distance to the object to be detected to which the member to be detected is fixed can be measured by one imaging means having a light source, a reflecting mirror, and a camera. This simplifies the cross flow and allows for compactness.

しかも本発明に従えば、被検出物体は入射光と平行な方
向に光を反射する構成を有し、したがって外乱光による
誤検出を防ぐことができる。
Furthermore, according to the present invention, the object to be detected has a configuration that reflects light in a direction parallel to the incident light, and therefore, it is possible to prevent false detection due to ambient light.

さらに本発明に従えば、撮像手段を少なくとも31所に
それぞれ設け、各撮像手段に備えられているカメラの出
力によって求めた被検出部材までの距離から、その被検
出物体の姿勢を演算して求めることができる。
Furthermore, according to the present invention, imaging means are provided at at least 31 locations, and the attitude of the detected object is calculated and determined from the distance to the detected member determined by the output of the camera provided in each imaging means. be able to.

実施例 第1図は、本発明の一実施例の系統図である。Example FIG. 1 is a system diagram of one embodiment of the present invention.

ターゲットと呼ばれる被検出物体1の平坦な表面2には
、被検出部材3が固定される。この被検出物体1に対向
してチェイサと呼ぶことのできる物体4には、第2図に
その正面が示されるように、合計3つの撮像手段5,6
.7が設けられる。そのうちの1つの撮像手段5は、光
源8と、ハーフミラ−である反射鏡9と、カメラ10と
を有し、いわゆる同軸落斜照明付きカメラである。光源
8は、光軸11に沿って光を被検出物体1に向けて照射
する9反射鏡9は、この光軸11上に設けられ、光源8
からの光を透過して参照符12で示されるように、その
透過した光を被検出物体1に導き、被検出物体1の被検
出部材3から反射された反射光は参照符13.14で示
すように、屈曲して反射させる。カメラ10は、反射鏡
9からの光経路14で示される光を受光し、集束レンズ
15を介して電荷蓄積素子(略称C0D)などの撮像素
子16に結像する。もう1つの撮像手段6.7も同様な
tlItとなっており、反射鏡17.18とカメラ19
.20と、図示が省略された光源とをそれぞれ有してい
る。各撮像手段5,6.7における光軸12,21.2
2は、それらの光軸122122に垂直な一平面内で正
三角形の頂点位置にあり、その仮想正三角形の重心は参
照符23で示されている。
A member to be detected 3 is fixed to a flat surface 2 of an object to be detected 1 called a target. An object 4 that faces the detected object 1 and can be called a chaser has a total of three imaging means 5 and 6, as shown in the front in FIG.
.. 7 is provided. One of the imaging means 5 includes a light source 8, a reflecting mirror 9 which is a half mirror, and a camera 10, and is a so-called camera with coaxial falling illumination. A light source 8 emits light toward an object 1 to be detected along an optical axis 11. A reflecting mirror 9 is provided on the optical axis 11.
The transmitted light is guided to the detected object 1 as shown by reference numeral 12, and the reflected light reflected from the detected member 3 of the detected object 1 is shown by reference numeral 13.14. Bend and reflect as shown. The camera 10 receives light indicated by an optical path 14 from the reflecting mirror 9, and forms an image on an image sensor 16 such as a charge storage device (abbreviated as C0D) via a focusing lens 15. Another imaging means 6.7 has a similar tlIt, and includes a reflector 17.18 and a camera 19.
.. 20 and a light source (not shown). Optical axis 12, 21.2 in each imaging means 5, 6.7
2 is located at the apex position of an equilateral triangle within a plane perpendicular to their optical axis 122122, and the center of gravity of the virtual equilateral triangle is indicated by reference numeral 23.

第3図は、被検出物体1の正面図である。被検出部材3
の他に、さらに被検出部材24.25が設けられ、これ
らはいずれも同一の寸法形状を有し、前記3つの光軸1
2,21.22に対応して、正三角形の各頂点位置に配
置されており、その仮想正三角形の重心は参照符26で
示されている。
FIG. 3 is a front view of the object to be detected 1. FIG. Detected member 3
In addition, detection members 24 and 25 are provided, all of which have the same dimensions and shape, and which are connected to the three optical axes 1.
2, 21, and 22 are placed at each vertex of an equilateral triangle, and the center of gravity of the virtual equilateral triangle is indicated by reference numeral 26.

第4図は被検出部材3の正面図であり、第5図は第4図
の切断面線■−■から見た断面図である。
FIG. 4 is a front view of the member to be detected 3, and FIG. 5 is a cross-sectional view taken along the section line ``---'' in FIG.

これらの図面を参照して、被検出部材3は被検出物体1
の表面2上で、その表面2に垂直な対称面27に関して
第4図の左右に対称に構成されてt3す、中央の基準マ
ーク28と、その左右にそれぞれ510Iの目盛マーク
2つとを有する。基準マーク28の直径りは、たとえば
15mmφであり、目盛マーク2つの左右方向の長さ1
1は15mmであり、その幅W1は10mmであり、基
準マーク28の中心と、隣接する目盛マーク29の中心
との間の距l1li12は20mmであり、また相互に
隣接する目盛マーク2つの各重心間の距離13は20m
mであり、両端の目盛マーク29間の距離l4は200
mmである。
With reference to these drawings, the detected member 3 is the detected object 1.
The reference mark 28 is arranged symmetrically on the left and right sides of FIG. 4 with respect to the plane of symmetry 27 perpendicular to the surface 2 on the surface 2, and has a central reference mark 28 and two scale marks of 510I on each side thereof. The diameter of the reference mark 28 is, for example, 15 mmφ, and the length of the two scale marks in the left and right direction is 1.
1 is 15 mm, its width W1 is 10 mm, the distance l1li12 between the center of the reference mark 28 and the center of the adjacent scale mark 29 is 20 mm, and each center of gravity of two adjacent scale marks The distance between 13 is 20m
m, and the distance l4 between the scale marks 29 at both ends is 200
It is mm.

このようなマーク29は、被検出物体1の表面2に接着
剤30によって貼着けられ、このことは基準マーク28
に関しても同様である。
Such a mark 29 is affixed to the surface 2 of the detected object 1 with an adhesive 30, which means that the reference mark 28
The same applies to

第6図は、マーク28.29の拡大した平面図である。FIG. 6 is an enlarged plan view of marks 28,29.

これらのマーク28.29は、ガラスピーズ状である四
角錐のプリズムがプリズム31が多数個隣接して配置さ
れた槽底を有する。このプリズム31は第7図に示され
るように、撮像手段5から光軸12を経て光が入射され
たとき、反射光の光経路を、入射光と平行に反射して導
く、いわゆる回帰反射シートを構成する。したがって外
乱光が光経路13を経て撮像手段5に入射されることが
抑制され、外乱光による誤検出を防ぐことができる。
These marks 28 and 29 have a tank bottom in which a large number of square pyramid prisms 31 in the shape of glass beads are arranged adjacent to each other. As shown in FIG. 7, this prism 31 is a so-called retroreflective sheet that reflects and guides the optical path of reflected light in parallel with the incident light when light is incident from the imaging means 5 through the optical axis 12. Configure. Therefore, disturbance light is prevented from entering the imaging means 5 via the optical path 13, and erroneous detection due to disturbance light can be prevented.

第8図は、マーク28.29の他の実施例の拡大した平
面図である。この実施例では、ガラスピーズ32が多数
個配置され、このガラスピーズ32は、第9図に示され
るようにシート33に部分的に埋込まれる。ガラスピー
ズ32のシート33に埋込まれた表面には、アルミニウ
ムR34が蒸着されている。したがって光軸12を経て
入射光が入射されたとき、反射光は光経路13を辿って
、入射光12と平行に反射される。
FIG. 8 is an enlarged plan view of another embodiment of the markings 28,29. In this embodiment, a large number of glass beads 32 are arranged, and the glass beads 32 are partially embedded in the sheet 33 as shown in FIG. Aluminum R34 is deposited on the surface of the glass beads 32 embedded in the sheet 33. Therefore, when incident light enters through the optical axis 12, the reflected light follows the optical path 13 and is reflected in parallel to the incident light 12.

撮像手段5.6.7の各カメラ10,19.20からの
出力は、第1図に示されるようにマイクロコンピュータ
などによって実現される処理回路35に入力されて、物
体4と被検出物体1との間の距離およびその被検出物体
の姿勢を演算処理して求める。
The outputs from the cameras 10, 19, 20 of the imaging means 5, 6, 7 are input to a processing circuit 35 realized by a microcomputer or the like as shown in FIG. The distance between the object and the object to be detected and the attitude of the object to be detected are calculated and calculated.

第10図は、撮像手段5に才3けるカメラ10の撮像素
子16によって撮像された状態を示す。撮像素子16の
撮像面36上には、撮像手段5と被検出部材3との間の
距離に対応して、被検出部材3のマーク28.29の像
28a、29aが部分的に撮像される。この実施例では
、基準マーク28の像28aがカメラ10の撮像素子1
6の撮像面36内に存在するように、物体4、したがっ
て撮像手段5のは置を予め定めておき、このとき撮像面
36に含まれるマーク29の像29ハの数は、撮像手段
5と被検出部材3との間の距離に対応している。したが
ってこのマーク29aの数を計数することによって、撮
像手段5と被検出部材3との距離を大略的に知ることが
できる。
FIG. 10 shows a state in which an image is captured by the image sensor 16 of the camera 10 used in the image capture means 5. Images 28a and 29a of marks 28 and 29 on the detected member 3 are partially captured on the imaging surface 36 of the image sensor 16 in accordance with the distance between the imaging means 5 and the detected member 3. . In this embodiment, the image 28a of the reference mark 28 is captured by the image sensor 1 of the camera 10.
The position of the object 4, and hence the image pickup means 5, is determined in advance so that the object 4, and hence the image pickup means 5, are present in the image pickup surface 36 of 6. At this time, the number of images 29 of the mark 29 included in the image pickup surface 36 is This corresponds to the distance from the detected member 3. Therefore, by counting the number of marks 29a, the distance between the imaging means 5 and the detected member 3 can be roughly determined.

第11図を参照して、処理回路35の動作を説明する。The operation of the processing circuit 35 will be explained with reference to FIG.

ステップn1からステップn2に移り、撮像手段5のカ
メラ10に備えられた撮像素子16からの出力を、処F
1回路35の入力信号C1として入力して、2値化して
デジタル信号とする。
Moving from step n1 to step n2, the output from the image pickup device 16 provided in the camera 10 of the image pickup means 5 is transferred to the processing F.
It is inputted as an input signal C1 to one circuit 35, and is binarized into a digital signal.

同様にして、撮像手段6.7のカメラ19.20の出力
は、処理回路35に入力信号C2,C3としてステップ
ri3.r+4において与えられる。
Similarly, the output of the camera 19.20 of the imaging means 6.7 is sent to the processing circuit 35 as input signals C2, C3 in step ri3. given at r+4.

ステップn5では、カメラ10の撮像素子16からの入
力信号C1に応答し、丸や三角形の識別をするラベリン
グを行い、また面積などの特徴パラメータの抽出を行っ
て、ステップn6において予め定める値と比較し、これ
によってマーク2829の形状識別を行う。ステップn
3では、各図形であるマーク28.29の重心の2次元
位置の演算を行って求め、換言するとマーク28.29
の撮像された像28a、29a<前述の第1図参照)の
図形をそれぞれ求める。ステップn8では、撮像素子1
6の撮像面36に撮像されたマーク28.29の像28
a、29aの両端の重心間の距1i hを演算して求め
、これによって撮像手段5の3次元X a −Y a 
−Z a座標系での距離X 1 aを算出する。
In step n5, in response to the input signal C1 from the image sensor 16 of the camera 10, labeling is performed to identify circles and triangles, and feature parameters such as area are extracted and compared with predetermined values in step n6. The shape of the mark 2829 is thereby identified. step n
3, the two-dimensional position of the center of gravity of the marks 28 and 29 which are each figure is calculated and found, in other words, the marks 28 and 29
The shapes of the captured images 28a and 29a (see FIG. 1 above) are determined respectively. In step n8, the image sensor 1
Image 28 of mark 28 and 29 captured on imaging surface 36 of 6
a, the distance 1i h between the centers of gravity at both ends of 29a is calculated, and thereby the three-dimensional X a - Y a of the imaging means 5 is calculated.
- Calculate the distance X 1 a in the Z a coordinate system.

第12図は、被検出部材3を撮像手段5のカメラ10に
よって撮像する光学系を簡略化して示す図である。集束
レンズ15の焦点距離をFとし、撮像素子16上におけ
る距離を1“lとし、被検出部材3の実際の長さをHl
とするとき、第1式が成立する。
FIG. 12 is a diagram schematically showing an optical system for imaging the member 3 to be detected by the camera 10 of the imaging means 5. As shown in FIG. The focal length of the focusing lens 15 is F, the distance on the image sensor 16 is 1"l, and the actual length of the detected member 3 is Hl.
When , the first equation holds true.

したがって被検出部材3と集束レンズ15との間の距N
 X 1 aが、第1式に基づいて求められる。
Therefore, the distance N between the detected member 3 and the focusing lens 15
X 1 a is determined based on the first equation.

ステップ09〜ステツプn12は、撮(象手段6のカメ
ラ1つの出力に応答する処理回路35の動作を説明して
おり、これらのステップ「19〜ステツブn12は、前
述のステップ05〜ステツプn8と同様である。さらに
また撮像手段7のカメラ20からの出力に基づいて、前
述のステップn5〜ステツプn8と同様な動作が、ステ
ップn13〜ステツプn16において行われる。こうし
て求められた距離Xla、X2a、X3aから、被検出
物体1の姿勢を、次のようにして演算して求める。第1
3図に示されるようにオイラー角(ψ。
Steps 09 to n12 explain the operation of the processing circuit 35 in response to the output of one camera of the imaging means 6, and these steps 19 to n12 are the same as steps 05 to n8 described above. Furthermore, based on the output from the camera 20 of the imaging means 7, operations similar to the above steps n5 to n8 are performed in steps n13 to n16.The distances Xla, X2a, and X3a thus determined are , the attitude of the detected object 1 is calculated and determined as follows.
As shown in Figure 3, the Euler angle (ψ.

θ、P)によって生じる座標変換マトリクスは、第2式
で示される。
The coordinate transformation matrix generated by θ, P) is expressed by the second equation.

ここで、 まず、平行移動量の算出を行うために、第2弐を、第3
式のようにベクトルで表す。
Here, first, in order to calculate the amount of parallel movement, the second
Expressed as a vector as in the equation.

xa= M−x + xO−(3) 被検出物体1の座標を、xi、x2.x3とし、それら
のカメラ10,19.20によるtfifi検出結果を
、xal、xi2.xi3とする。
xa=M-x+xO-(3) Let the coordinates of the detected object 1 be xi, x2. x3, and the tfifi detection results by those cameras 10, 19.20 are xal, xi2. Let it be xi3.

xal = M−xi + xo          
 ・−(4)xi2 = M−x2 + xo    
       −<5)xi3 = M−x3 + x
o           ・・(6)第4式〜第6式の
両辺の各和を演算すると、第7式となる。
xal = M-xi + xo
・−(4)xi2 = M−x2 + xo
−<5) xi3 = M−x3 + x
o (6) Calculating the sums of both sides of Equations 4 to 6 yields Equation 7.

ここで、第2図および第3図で示される参照符23.2
6は重心であり、第7式の右辺の第1項は零であるので
、第8式および第9式が成立する。
Here, reference numeral 23.2 shown in FIGS. 2 and 3
6 is the center of gravity, and the first term on the right side of Equation 7 is zero, so Equations 8 and 9 hold true.

xO=、Σ xai/3              
  ・・・(9)1=1 また各カメラ10.19.20の出力に基づいて、被検
出物体1の姿勢を、次のようにして算出する。
xO=, Σ xai/3
(9) 1=1 Also, based on the output of each camera 10, 19, and 20, the attitude of the detected object 1 is calculated as follows.

であり、 xbl = xal −x。and xbl = xal - x.

とすると、 xbL=sinθ・R y bl = 5in9)−cosθ−Rzb 1 =
 cogp−cosθ・R・・・〈11〉 ・・・(12) ・・・〈13〉 ・・・(14) したがって、 sinθ= −xb 1/R−(15)sinp = 
yb 1/cosθ−R−、(1B)この第15式と第
16式から、θ、ψを算出することができる。
Then, xbL=sinθ・Rybl=5in9)−cosθ−Rzb1=
cogp-cosθ・R...<11>...(12)...<13>...(14) Therefore, sinθ=-xb 1/R-(15) sinp=
yb 1/cos θ-R-, (1B) From the 15th and 16th equations, θ and ψ can be calculated.

光軸12,21.22は、正三角形の頂点位置にあり、
また被検出部材3,24.25は同一形状の正三角形の
各頂点位置にあり、 である、したがって、 xb2=coaθ・sinp(J葎ン2> + sin
θ・R/ 2 − (19)xb3=aosθ・sin
p (−7で1看し/2)  十 sinθ、R/2−
(20)xb2− xb3 = cosθ・sinpA
へ頁−<21 >したがって、 sinψ= (xb2−xb3) /cosθ−1fi
       −(22)この第22式から、sinψ
 を求めることができる。このようにして、被検出物体
1の姿勢を検出することができる。
The optical axes 12, 21, 22 are located at the vertices of an equilateral triangle,
Moreover, the detected members 3, 24, and 25 are located at each vertex of an equilateral triangle of the same shape, and therefore, xb2=coaθ・sinp(J葎2>+sin
θ・R/2 − (19)xb3=aosθ・sin
p (-7 = 1/2) 10 sin θ, R/2-
(20) xb2- xb3 = cosθ・sinpA
Page - <21> Therefore, sinψ= (xb2-xb3) /cosθ-1fi
−(22) From this 22nd equation, sinψ
can be found. In this way, the attitude of the detected object 1 can be detected.

撮像手段5,6.7および被検出部材3.2425は、
上述の実施例では合計3つずつ設けられているけれども
、本発明の他の実施例として、さらに多くの数、設けら
れていてもよく、また距離Xlaを測定するためには、
1つの撮像手段5と1つの被検出部材3とが対応して設
けられていればよい。
The imaging means 5, 6.7 and the detected member 3.2425 are
In the above-described embodiment, three in total are provided, but in other embodiments of the present invention, a larger number may be provided, and in order to measure the distance Xla,
It is sufficient that one imaging means 5 and one detected member 3 are provided in correspondence.

発明の効果 以上のように本発明によれば、1台の撮像手段によって
、被検出部材が固定されている被検出物体までの距離を
測定することができるので、構成が単純であり、小形化
が可能となる。しかも被検出部材は、入射光と平行な方
向に光を反射する構成を有するので、外乱光による誤検
出を防ぐことができる。さらにこの撮像手段を少な・く
とも3f1所にそれぞれ設け、各撮像手段に備えられて
いるカメラの出力によって求めた距離から、被検出物体
の姿勢を演算して求めることが可能となる。
Effects of the Invention As described above, according to the present invention, the distance to the object to be detected to which the member to be detected is fixed can be measured using one imaging means, so the configuration is simple and the size is reduced. becomes possible. Moreover, since the detected member is configured to reflect light in a direction parallel to the incident light, erroneous detection due to disturbance light can be prevented. Furthermore, by providing these imaging means at least at least 3f1 locations, it becomes possible to calculate and determine the attitude of the object to be detected from the distance determined by the output of the camera provided in each imaging means.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の全体の系統図、第2図は撮
像手段5.6.7が備えられる物体4の正面図、第3図
は被検出物体1の正面図、第4図は被検出部材3の正面
図、第5図は第4(2Iの切断面線■−■から見た一部
の断面図、第6図はマーク28.29の拡大平面図、第
7図は第6図におけるプリズム31を示す斜視図、第8
図は本発明の他の実施例のマーク28.29の拡大平面
図、第9図は第8図に示されるガラスピーズ32付近の
拡大断面図、第10図はカメラ10の撮像素子16によ
って撮像される状態を示す正面図、第11図は処理回路
35の動作を説明するためのフローチャート、第12図
はカメラ10の撮像素子16の出力によって距111i
X1aを測定するための原理を説明するための図、第1
3図はオイラー角を説明するための図である。 1・・・被検出物体、3,24.25・・被検出部材、
4・・・物体、5,6.7・・・撮像手段、8・・・光
源、98・・・反射鏡、 0 。 20・・・カメラ、 28・・・基準マーク、 9・・・目盛マーク
FIG. 1 is an overall system diagram of an embodiment of the present invention, FIG. 2 is a front view of an object 4 equipped with an imaging means 5.6.7, FIG. 3 is a front view of an object to be detected 1, and FIG. The figure is a front view of the member to be detected 3, FIG. 5 is a partial sectional view taken from section line 4 (2I) - is a perspective view showing the prism 31 in FIG.
9 is an enlarged cross-sectional view of the vicinity of the glass beads 32 shown in FIG. 8, and FIG. 11 is a flowchart for explaining the operation of the processing circuit 35, and FIG. 12 is a front view showing the state in which the distance 111i is
Diagram 1 for explaining the principle for measuring X1a
FIG. 3 is a diagram for explaining Euler angles. 1... Object to be detected, 3, 24. 25... Member to be detected,
4...Object, 5,6.7...Imaging means, 8...Light source, 98...Reflector, 0. 20...Camera, 28...Reference mark, 9...Scale mark

Claims (2)

【特許請求の範囲】[Claims] (1)(a)被検出物体に固定され、入射光と平行な方
向に光を反射する被検出部材と、 (b)撮像手段であつて、 (b1)被検出部材に向けて光を照射する光源と、 (b2)光源の光軸上に設けられ、光源からの光を透過
し、被検出物体からの反射光の光経路を屈曲する反射鏡
と、 (b3)反射鏡からの光を受光して被検出部材を撮像す
るカメラとを有する撮像手段と、(c)カメラの出力に
応答し、被検出部材とカメラとの距離を演算処理して求
める処理手段とを含むことを特徴とする相対位置測定装
置。
(1) (a) A member to be detected that is fixed to the object to be detected and reflects light in a direction parallel to the incident light, (b) an imaging means, and (b1) irradiates light toward the member to be detected. (b2) a reflector provided on the optical axis of the light source, which transmits the light from the light source and bends the optical path of the reflected light from the object to be detected; (b3) a reflector that reflects the light from the reflector. (c) processing means that responds to the output of the camera and calculates the distance between the detected member and the camera by calculating the distance between the detected member and the camera; relative position measuring device.
(2)前記撮像手段を、少なくとも3箇所にそれぞれ設
け、 前記処理手段は、各カメラの出力によつて求めた前記距
離から、被検出物体の姿勢を演算して求めることを特徴
とする特許請求の範囲第1項記載の相対位置測定装置。
(2) The imaging means is provided at at least three locations, and the processing means calculates and determines the attitude of the object to be detected from the distance determined by the output of each camera. The relative position measuring device according to item 1.
JP1285431A 1989-10-31 1989-10-31 Relative position measuring device Expired - Lifetime JPH0775036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1285431A JPH0775036B2 (en) 1989-10-31 1989-10-31 Relative position measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1285431A JPH0775036B2 (en) 1989-10-31 1989-10-31 Relative position measuring device

Publications (2)

Publication Number Publication Date
JPH03144862A true JPH03144862A (en) 1991-06-20
JPH0775036B2 JPH0775036B2 (en) 1995-08-09

Family

ID=17691436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1285431A Expired - Lifetime JPH0775036B2 (en) 1989-10-31 1989-10-31 Relative position measuring device

Country Status (1)

Country Link
JP (1) JPH0775036B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011257267A (en) * 2010-06-09 2011-12-22 Kawada Industries Inc Imaging plane detection device and working robot with the same
CN111717163A (en) * 2019-03-20 2020-09-29 力特保险丝公司 Optical rain sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011257267A (en) * 2010-06-09 2011-12-22 Kawada Industries Inc Imaging plane detection device and working robot with the same
CN111717163A (en) * 2019-03-20 2020-09-29 力特保险丝公司 Optical rain sensor

Also Published As

Publication number Publication date
JPH0775036B2 (en) 1995-08-09

Similar Documents

Publication Publication Date Title
JP2564963B2 (en) Target and three-dimensional position and orientation measurement system using the target
US4534637A (en) Camera with active optical range finder
US4947202A (en) Distance measuring apparatus of a camera
US7489406B2 (en) Optical lens system and position measurement system using the same
US20090122133A1 (en) Stereo camera having 360 degree field of view
US6411327B1 (en) Stereo camera system for obtaining a stereo image of an object, and system and method for measuring distance between the stereo camera system and the object using the stereo image
CN109799514A (en) Optical system, image capture apparatus, distance-measuring device and onboard system
US4637715A (en) Optical distance measuring apparatus
JPH09113223A (en) Non-contacting method and instrument for measuring distance and attitude
JPH03144862A (en) Relative position measuring device
JPH05306915A (en) Method and instrument for measuring shape
JP5147055B2 (en) Distance measuring device and distance measuring method
JPH11512176A (en) Device that retroreflects a light beam using multiple triangular prisms
JPH08101338A (en) Multipoint range-finding device
JPH109853A (en) Distance-measuring type omnibearing visual sensor
JP5487920B2 (en) Optical three-dimensional shape measuring apparatus and optical three-dimensional shape measuring method
JP2009199247A (en) Object recognition apparatus, indicating device and program
JP2961413B1 (en) Non-contact distance measurement method for back-and-forth measurement from a measuring instrument to an object by laser projection
JPH03128409A (en) Three-dimensional shape sensor
JP2774624B2 (en) Distance / posture measuring device for moving objects
JPS5834414A (en) Focus detector
JPS6126812A (en) Detecting device for distance
US10467769B2 (en) Thin plate imaging device
JPS58127184A (en) Triaxial sensor detecting angular attitude of remote body together with transceiver and target device
JP3039623U (en) Distance measuring device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080809

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090809

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100809

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100809

Year of fee payment: 15