JPH09113223A - Non-contacting method and instrument for measuring distance and attitude - Google Patents

Non-contacting method and instrument for measuring distance and attitude

Info

Publication number
JPH09113223A
JPH09113223A JP27038095A JP27038095A JPH09113223A JP H09113223 A JPH09113223 A JP H09113223A JP 27038095 A JP27038095 A JP 27038095A JP 27038095 A JP27038095 A JP 27038095A JP H09113223 A JPH09113223 A JP H09113223A
Authority
JP
Japan
Prior art keywords
light
plane
surface
image
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27038095A
Other languages
Japanese (ja)
Inventor
Kazuyuki Tsukamoto
一之 塚本
Original Assignee
Fuji Xerox Co Ltd
富士ゼロックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd, 富士ゼロックス株式会社 filed Critical Fuji Xerox Co Ltd
Priority to JP27038095A priority Critical patent/JPH09113223A/en
Publication of JPH09113223A publication Critical patent/JPH09113223A/en
Application status is Pending legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To simplify the constitution of a non-contacting distance and attitude measuring instrument and reduce the cost of the instrument by receiving mark light containing two nonparallel segments which cross each other at one point and are projected upon the surface of an object and computing the distance to the object and the attitude of the object.
SOLUTION: The surface 2 to be measured of an object 1 to be measured is irradiated with slit light rays 23a and 23b and mark light 3a containing straight lines L1 and L2 is projected upon the surface 2. The light 3a is reflected by the surface 2 and condensed through an image forming lens 4 so that the light 3 can form a mark light image on an image forming surface 7 provided with primary photosensors 6a and 6b. The sensors 6a and 6b detect the light intensity of picture elements at the crossing point of the mark light image formed on the image forming surface 7 and the intensity is transferred to a memory 14 after amplification 12a and 12b and A/D conversion 13a and 13b. A processor 16 computes the distance to the surface 2 and attitude of the surface 2 from the light intensity signal inputted from the memory 14 and displays the computed results on a displaying section 17.
COPYRIGHT: (C)1997,JPO

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は非接触距離姿勢測定方法及び装置に関し、特に、移動体の位置や姿勢の測定において、距離と姿勢の測定の高速化及びコストダウンを実現する非接触距離姿勢測定方法及び装置に関する。 The present invention relates to a non-contact distance and orientation measuring method and apparatus TECHNICAL FIELD OF THE INVENTION, in particular, non-contact distance and orientation to achieve the measurement of the position and posture of the movable body, the speed and cost of the measurement of the distance and orientation It relates a method and apparatus for measuring.

【0002】 [0002]

【従来技術】従来、測定対象までの距離を非接触で測定する距離測定装置として、三角測量の原理を利用した光学式距離センサが広く知られている。 BACKGROUND ART Conventionally, as a distance measuring device for measuring the distance to the measurement object in a non-contact, optical distance sensors using the principle of triangulation is widely known.

【0003】このような光学式距離センサによって、例えば、鏡面状の測定対象物までの距離を測定する場合、 [0003] Such distance sensors, for example, when measuring the distance to the mirror surface of the measurement object,
測定の過程で測定対象物の面の姿勢が傾くと、受光側の変位が距離と傾きに区別できないので、距離の測定が不可能になるという不都合がある。 If the attitude of the surface of the process by the object of measurement is tilted, the displacement of the receiving side can not distinguish the length and inclination, has the disadvantage that distance measurement is impossible.

【0004】かかる不都合を解決するものとして、傾き、即ち、姿勢に影響されないレーザーフォーカス変位計を用いた距離測定方法が提案されている。 [0004] In order to solve such an inconvenience, the slope, i.e., the distance measurement method using a laser focus displacement meter which is not affected by the posture have been proposed. この距離測定方法によると、測定対象物の面の姿勢が変化しても測定対象物までの距離を測定することができる。 According to the distance measuring method can be the attitude of the surface of the measuring object is changed to measure the distance to the measurement object. しかし、 But,
測定対象物までの距離と姿勢を同時に測定しようとすると、少なくとも3個のレーザーフォーカス変位計を用いなければならないという問題がある。 When the distance and orientation to the object of measurement to be measured at the same time, there is a problem that must be used at least three laser focus displacement meter.

【0005】測定対象物までの距離、あるいは位置と姿勢を非接触で測定する非接触位置姿勢あるいは距離姿勢測定装置が、例えば、特開平1−203907号公報、 [0005] The distance to the object of measurement, or the position and orientation measured in a non-contact non-contact position and orientation or distance and orientation measuring apparatus, for example, JP-A 1-203907, JP-
及び特開平4−148814号公報に開示されている。 And it is disclosed in JP-A 4-148814 JP.

【0006】特開平1−203907号公報に示される非接触位置姿勢測定装置では、測定対象物に対してスリット面の異なった斜めのスリット光を交互に投射してテレビカメラで撮像し、撮像された画像に基づいて測定対象物の3次元での位置と姿勢を求めている。 [0006] In a non-contact position and orientation measurement apparatus shown in JP-A-1-203907 is captured by a television camera by projecting alternately slit light obliquely having different slit plane to the object of measurement, it is imaged It was based on the image and obtain the position and orientation in three dimensions of the measurement object. また、特開平4−148814号公報に示される非接触距離姿勢測定装置では、少なくとも2個以上のマークパターン光を投影するパターン投影装置とテレビカメラとを格納したプローブを有し、プローブ内に設けられるミラーを介して被検査物の表面にマークパターン光を投影してテレビカメラで撮像し、撮像された画像に基づいて被検査物までの距離と姿勢を求めている。 Further, in a non-contact distance and orientation measurement apparatus shown in JP-A-4-148814 has a probe that contains a pattern projection device and the television camera for projecting the at least two mark patterns light, provided in the probe captured by the television camera by projecting a mark pattern light onto the surface of the object to be inspected through a mirror which is seeking distance and the orientation to the object to be inspected based on the image captured.

【0007】 [0007]

【発明が解決しようとする課題】しかし、特開平1−2 The object of the invention is to be Solved However, JP-A-1-2
03907号公報及び特開平4−148814号公報の非接触位置姿勢あるいは距離姿勢測定装置によると、テレビカメラ等の撮像手段にはCCDの2次元センサが用いられており、1画面のデータ取り込み速度は1/30 According to a non-contact position and orientation or distance and orientation measuring apparatus 03907 and JP Hei 4-148814 discloses, the imaging means such as a TV camera have been used two-dimensional sensor of the CCD, 1 data acquisition speed of the screen 1/30
秒または1/60秒である。 A second or 1/60 of a second. よって、30又は60Hz以上の高速な測定サイクルで測定が行えない。 Therefore, it can not be performed measured at 30 or 60Hz or faster measurement cycle. また、センサから取り込むデータは画像情報であるため、処理すべき情報量が多く、高速化のためには専用の処理回路が必要となってコストアップになるという問題がある。 Also, the data to be imported from the sensor because it is image information, often the amount of information to be processed, in order to speed there is a problem that the cost becomes necessary dedicated processing circuitry. 従って、本発明の目的はデータの取り込み速度及び処理速度が速く、簡素な非接触距離姿勢測定方法及び装置を提供することにある。 Accordingly, an object of the present invention has a high rate of uptake and processing speed of the data is to provide a simple non-contact distance and orientation measuring method and apparatus.

【0008】本発明の他の目的はコストダウンを図ることができる非接触距離姿勢測定方法及び装置を提供することにある。 Another object of the present invention is to provide a non-contact distance and orientation measuring method and apparatus which can reduce costs.

【0009】 [0009]

【課題を解決するための手段】本発明は上記の目的を達成するため、第1の特徴として、1つの交点を提供する平行でない2つの線分を含むマーク光を前記対象表面にある第1の平面に投影し、第2の平面に少なくとも2つの1次元センサを配置し、前記対象表面で反射された前記マーク光像に含まれる前記2つの線分の線分像を前記平面に形成して前記少なくとも2つの1次元センサに長さ方向の受光強度分布を表わす受光信号を発生させ、前記受光信号に基づいて前記2つの線分像の前記少なくとも2つの1次元センサ上の位置を演算し、前記少なくとも2つの1次元センサ上の位置に基づいて前記第1の平面の方程式を算出し、前記第1の平面の方程式に基づいて前記対象表面までの距離及び姿勢を演算する非接触距離姿勢測定方法を SUMMARY OF THE INVENTION The present invention for achieving the above object, a first feature, the first with a mark light including two line segments are not parallel to provide one of the intersections to the target surface projected in the plane, at least two one-dimensional sensor arranged to form a line image of the two line segments included in has been the mark light image reflected by the object surface to the plane to the second plane wherein to generate a light reception signal representing the received light intensity distribution in the longitudinal direction into at least two one-dimensional sensor, a position on the at least two one-dimensional sensor of the two line segments image is calculated based on the photodetection signal Te the calculated equations of the first plane based on at least two positions on the one-dimensional sensor, the non-contact distance and orientation for calculating the distance and orientation to the object surface based on the equation of the first plane how to measure 供する。 Subjected to.

【0010】上記の非接触距離姿勢測定方法において、 [0010] In the non-contact distance and orientation measuring method described above,
線分像の投影は、前記マーク光の前記1つの交点を前記少なくとも2つの1次元センサに挟まれる領域の内側に形成するようにしても良い。 Projection of the line segment image may be the one intersection of the mark light so as to form on the inside of the region between the at least two one-dimensional sensor.

【0011】また、本発明は上記した目的を達成するため、第2の特徴として、1つの交点を提供する平行でない2つの線分を含むマーク光を前記対象表面にある第1 Further, the present invention is to achieve the above object, as a second feature, the first with a mark light including two line segments are not parallel to provide one of the intersections to the target surface
の平面に投影するマーク光投影手段と、第2の平面に前記マーク光像に含まれる前記2つの線分の線分像を形成する像形成手段と、前記平面に配置され、前記2つの線分像に基づいて長さ方向の受光強度分布を表わす受光信号を出力する少なくとも2つの1次元センサと、前記受光信号に基づいて前記2つの線分像の前記少なくとも2 Mark light projection means for projecting the the plane, and an image forming means for forming a line image of the two line segments included in the mark light image in a second plane, disposed in the plane, the two lines at least two one-dimensional sensor for outputting a light reception signal representing the received light intensity distribution in the longitudinal direction on the basis of the partial image, wherein the two segments images on the basis of the received light signal at least 2
つの1次元センサ上の位置を演算する第1の演算手段と、前記第1の演算手段の演算結果に基づいて前記第1 One of the first calculating means for calculating a position on the one-dimensional sensor, the first based on the calculation result of the first arithmetic means
の平面の方程式を求め、前記第1の平面の前記方程式に基づいて前記対象表面までの距離及び姿勢を演算する第2の演算手段を有する非接触距離姿勢測定装置を提供する。 Equation for a plane, to provide a non-contact distance and orientation measurement apparatus having a second calculating means for calculating the distance and orientation to the object surface based on the equation of the first plane.

【0012】上記の非接触距離姿勢測定装置において、 [0012] In the non-contact distance and orientation measurement apparatus of the above,
マーク光投影手段は、前記線分像の前記1つの交点を前記少なくとも2つの1次元センサに挟まれる領域の内側に形成する構成とすることが望ましい。 Mark light projection means is desirably configured to form said one intersection of the line segment image inside the region between the at least two one-dimensional sensor.

【0013】 [0013]

【発明の実施の形態】以下、本発明の非接触距離姿勢測定方法及び装置を図面を参照しつつ説明する。 BEST MODE FOR CARRYING OUT THE INVENTION The following describes the non-contact distance and orientation measuring method and apparatus of the present invention with reference to accompanying drawings.

【0014】図1は、本発明の第1の形態例における非接触距離姿勢測定装置を示し、対象表面2を有する測定対象物1と、対象表面2に交差するスリット光23a, [0014] Figure 1 is a first shows a non-contact distance and orientation measuring apparatus in embodiment, the measuring object 1 with object surface 2, the slit light 23a which intersects the object surface 2 of the present invention,
23bを照射する光源3と、対象表面2で反射されたスリット光23a,23bによって形成されるマーク光3 23b and the light source 3 for irradiating the mark light 3 formed slit beam 23a is reflected by the object surface 2, by 23b
aの反射光像を結像面7に結像させる結像レンズ4と、 An imaging lens 4 for imaging the image plane 7 of the reflected light image of a,
結像面7に設けられる1次元光センサ6a,6bと、光源3,結像レンズ4及び1次元光センサ6a,6bを有する結像面7を収容したセンサヘッド8と、同期信号発生回路10から出力されるタイミング信号に基づいて1 One-dimensional optical sensor 6a provided in the image plane 7, and 6b, the light source 3, the image forming lens 4 and the one-dimensional optical sensor 6a, the sensor head 8 accommodating the imaging surface 7 having 6b, the synchronization signal generation circuit 10 based on the timing signal output from the 1
次元光センサ6a,6bを駆動する駆動回路11a,1 Drive circuit 11a for driving dimensional light sensor 6a, the 6b, 1
1bと、1次元光センサ6a,6bから出力される光強度信号を増幅するアンプ12a,12bと、増幅された光強度信号をデジタル信号に変換するA/D変換器13 1b and, one-dimensional optical sensor 6a, amplifier 12a, 12b and, A / D converter 13 for converting the amplified light intensity signal into a digital signal for amplifying the light intensity signals output from 6b
a,13bと、デジタル信号に変換された光強度信号を記憶するためのメモリ14と、メモリ14への光強度信号の書き込み、及びメモリ14からの光強度信号の読み出しを制御するメモリ制御回路15と、メモリ14から光強度信号を入力して所定の演算を行うプロセッサ16 a, and 13b, a memory 14 for storing a light intensity signal is converted into a digital signal, the memory control circuit 15 for controlling writing of the light intensity signal to the memory 14, and reading of the light intensity signal from the memory 14 When the processor 16 to enter a light intensity signal from the memory 14 performs a predetermined operation
と、プロセッサ16における対象表面2までの距離と対象表面2の姿勢の演算結果を表示する表示部17とを有する。 When, and a display unit 17 for displaying the calculation result of the distance and the object surface 2 orientation to the target surface 2 in the processor 16.

【0015】マーク光3aは、所定の幅を有するスリット光23a,23bを照射するスリット光源を2つ用いて照射される光束が交差するようにスリット光源を配置することにより形成される。 The mark light 3a, a slit light 23a having a predetermined width, the light beam to be irradiated with a slit light source for irradiating 23b 2 one used is formed by arranging a slit light source so as to intersect. スリット光23a,23b Slit light 23a, 23b
は、例えば、レーザ光源から照射されるレーザビームをシリンドリカルレンズ等の光学系に透過させて一方向にのみ集束させることにより形成しても良い。 It is, for example, may be formed by by transmitting the laser beam emitted from the laser light source to the optical system such as a cylindrical lens focusing in one direction only.

【0016】図1の構成において、測定対象物1の対象表面2には光源3からスリット光23a,23bが照射されることによって、直線L 1 ,L 2を有するマーク光3aが投影される。 [0016] In the configuration of FIG. 1, a slit light 23a from the light source 3 on the object surface 2 of the measuring object 1 by 23b is irradiated mark light 3a having linear L 1, L 2 is projected. このマーク光3aは、対象表面2で反射され、結像レンズ4によって集光されて1次元光センサ6a,6bが設けられる結像面7にマーク光像3 The mark light 3a is reflected by the object surface 2, the image forming lens 4 is condensed one-dimensional optical sensor 6a, the mark light image 3 on the imaging surface 7 6b is provided
a'(図2)として結像する。 a 'is imaged (FIG. 2). 1次元光センサ6a,6 One-dimensional optical sensor 6a, 6
bは1次元CCDや受光素子アレイ等であり、結像面7 b is such a one-dimensional CCD or photodetector array, imaging plane 7
に結像されるマーク光像3a'が交差する位置の画素における光強度を検出してアンプ12a,12bに出力する。 Detecting the light intensity at the position of the pixel mark light image 3a imaged 'intersects the output amplifier 12a, to 12b. アンプ12a,12bで増幅された光強度信号はA Amplifier 12a, the amplified light intensity signal 12b is A
/D変換器13a,13bにおいてデジタル信号に変換されてメモリ14に転送される。 / D converter 13a, is transferred are converted into digital signals in the memory 14 at 13b. メモリ14はプロセッサ16から出力される制御信号によってメモリ制御回路15から出力される書き込み信号に基づいて光強度信号の書き込みを行い、更に、メモリ制御回路15から出力される読み出し信号に基づいて光強度信号をプロセッサ16に出力する。 Memory 14 writes the light intensity signal based on the write signal output from the memory control circuit 15 by a control signal outputted from the processor 16, further, the light intensity on the basis of a read signal output from the memory control circuit 15 and outputs a signal to the processor 16. プロセッサ16はメモリ14から入力される光強度信号に基づいて測定対象物1の対象表面2 The processor 16 subjects the surface 2 of the measuring object 1 based on the light intensity signal received from the memory 14
までの距離と対象表面2の姿勢を演算し、その演算結果を表示部17に出力させる。 It calculates the orientation of the distance and the target surface 2 up to, and outputs the calculation result to the display unit 17.

【0017】図2は、結像面7に結像されたマーク光像3a'を示し、対象表面(図示せず)で反射されたマーク光3aは、結像面7に結像されることによって交点P'及び直線L 1R ,L 2Rを有するマーク光像3a'を形成する。 [0017] Figure 2 shows a has been marked light image 3a 'imaged on the image plane 7, has been marked light 3a is reflected by the target surface (not shown), to be imaged on the image plane 7 forming the intersection point P 'and the straight line L 1R, mark light image 3a having L 2R' by. このマーク光像3a'と1次元光センサ6a, The mark light image 3a 'and the one-dimensional optical sensor 6a,
6bとが交わる点A 11とA 21から直線L 1Rが復元され、 Linear L 1R is restored from the point A 11 and A 21 which intersect and 6b,
マーク光像3a'と1次元光センサ6a,6bとが交わる点A 12 ,A 22から直線L 2Rが復元される。 Mark light image 3a 'and the one-dimensional optical sensor 6a, the straight line L 2R is restored from A 12, A 22 that intersect and 6b.

【0018】図3は、測定対象物1の対象表面2における物体座標系と結像面7における2次元座標系の対応関係を示し、図3においては仮想的に結像面7を主点O R [0018] FIG. 3 shows the correspondence between the two-dimensional coordinate system in the object coordinate system and the image plane 7 in the object surface 2 of the measuring object 1, the principal point O virtually imaged surface 7 in FIG. 3 R
を有する結像レンズ(図示せず)の前に配置した光学系構成としており、以下の記載においては説明を容易にするために図3の光学系構成を用いて説明する。 Has an optical system configuration disposed in front of the imaging lens (not shown) having, is described by using an optical system configuration of FIG. 3 for ease of explanation in the following description.

【0019】物体座標を(x,y,z)、1次元光センサ6a,6bが設けられる結像面7での2次元座標を(h R ,v R )として、1次元光センサ6a,6bを有する撮像ユニットのカメラパラメータをCとすると、式(1)によって [0019] The object coordinates as (x, y, z), 1 -dimensional photosensor 6a, the two-dimensional coordinates on the image plane 7 6b is provided (h R, v R), 1 -dimensional photosensor 6a, 6b When C camera parameters of the imaging unit having a by equation (1)

【数1】 [Number 1] と表される。 Denoted.

【0020】また、物体座標と結像面7における2次元座標は、媒介変数fを用いて 〔fh R fv R f〕 t =C〔x,y,z,1〕 t −−−(2) と表わすことができる。 Further, two-dimensional coordinates in the object coordinate and the image plane 7, using the parametric f [fh R fv R f] t = C [x, y, z, 1] t --- (2) it can be expressed as. ここで、〔〕 tは転置行列を表わす。 Here, [] t represents the transposed matrix.

【0021】図3において、平面F 1L及びF 2Lはスリット光23a,23bの光束であり、平面F 1L及びF 2Lの交線はL 3で表される。 [0021] In FIG. 3, the plane F 1L and F 2L is a light beam of the slit light 23a, 23b, the line of intersection of the plane F 1L and F 2L is represented by L 3. この平面F 1L ,F 2L及び交線L This plane F 1L, F 2L and the intersection line L
3は一度設定すれば不変であるので、距離及び姿勢の測定の前に測定しておく。 Since 3 is unchanged Once set, previously measured prior to the measurement of the distance and posture.

【0022】図4は、結像面7aにおけるマーク光像3 [0022] Figure 4, the mark light image 3 in the image plane 7a
a'の直線L 1R ,L 2Rの位置と1次元光センサ6a,6 linear L 1R of a ', L 2R positions and one-dimensional optical sensor 6a, 6
bの信号出力との関係を示し、マーク光像3a'の直線L 1R ,L 2Rは一定の幅を持つ線であり、1次元光センサ6a,6bと交差する部位ではセンサ値は高くなる。 shows the relationship between b signal output, linear L 1R, L 2R mark light image 3a 'is a line having a constant width, the sensor value is high at the site that crosses one-dimensional optical sensor 6a, and 6b. よって、マーク光像3a'の直線L 1R ,L 2Rの位置q Accordingly, the position q of the straight line L 1R, L 2R mark light image 3a '
ij (i=1,2、j=1,2)は、図5に示すように、 ij (i = 1,2, j = 1,2) , as shown in FIG. 5,
その近傍で適当な閾値I以上の範囲の画素データを用いて、例えば、斜線で示す部分の重心位置として求める。 In the vicinity by using the pixel data of the appropriate threshold I above range, for example, determined as the center of gravity of the portion indicated by oblique lines.
そのときの重心位置q ijは、例えば、式(3)で演算する。 Gravity position q ij at that time, for example, be calculated by Equation (3).

【数2】 [Number 2] ここで、D(q)は画素qにおける出力値である。 Here, D (q) is the output value of the pixel q.

【0023】また、i番目の1次元光センサが結像面7 Further, i-th one-dimensional optical sensor imaging surface 7
aでの2次元座標で 〔h R ,v Rt =q〔a i ,b it +〔c i ,d it (i=1,2) −−−(4) (ここで、〔a i ,b itは大きさが画素ピッチの方向ベクトル、〔c i ,d [h R, v R] in two-dimensional coordinates in a t = q [a i, b i] t + [c i, d i] t (i = 1,2) --- ( 4) ( where , [a i, b i] t is the direction vector of the pixel pitch size, [c i, d itは1次元光センサの端の画素の中心座標、qは画素番号である。 i] t is the center coordinates of the end pixels of the one-dimensional optical sensor, q denotes a pixel number. )と表されるとき、1次元光センサ6a,6b上のマーク光像3a'の位置は、式(4)により結像面7での2次元座標(h R ,v R )に変換される。 ) And when expressed, the position of the one-dimensional optical sensor 6a, the mark light image 3a on 6b 'is converted by Equation (4) two-dimensional coordinates (h R of the image plane 7, the v R) . よって、A Thus, A 11 〜A 22はq 11 ~A 22 is q
11 〜q 22を式(4)に代入することにより得られる。 The 11 to q 22 is obtained by substituting the equation (4). そして、A ijを(h ij ,v ij )とするとき、直線L 1R ,L Then, when the A ij and (h ij, v ij), the straight line L 1R, L
2Rの結像面7における直線の方程式は L 1R :(h 21 −h 11 )(v R −v 11 )=(v 21 −v 11 )(h R −h 11 ) −−−(5) L 2R :(h 22 −h 12 )(v R −v 12 )=(v 22 −v 12 )(h R −h 12 ) −−−(6) となる。 The equation of a straight line of the imaging surface 7 of the 2R L 1R: (h 21 -h 11) (v R -v 11) = (v 21 -v 11) (h R -h 11) --- (5) L 2R: (h 22 -h 12) (v R -v 12) = become (v 22 -v 12) (h R -h 12) --- (6).

【0024】次に、上記の過程で求めたマーク光像3 Next, the mark light image 3 obtained in the above process
a'の直線L 1R ,L 2Rに基づいて対象表面2の平面としての方程式を求める。 linear L 1R of a ', an equation as the plane of the object surface 2 on the basis of the L 2R. 求め方にはいくつかの方法があるが、例えば、レンズ主点O Rを通り直線L 1RとL 1を含む平面F 1Rと、レンズ主点O Rを通り直線L 2RとL 2を含む平面F 2Rの平面の方程式を求め、平面F 1Lと平面F The method of obtaining a number of ways, for example, the plane containing the plane F 1R lens principal point O R containing as linear L 1R and L 1, the lens principal point O R street straight L 2R and L 2 equation for a plane F 2R, plane F 1L and the plane F
1Rより、その交線であるL 1 、平面F 2Lと平面F 2Rより、その交線であるL 2の直線の方程式を求め、この2 From 1R, L 1 is the line of intersection, the plane F 2L and the plane F 2R, obtains an equation of the intersection line which is of L 2 straight, this 2
直線L 1 ,L 2を含む平面として演算する。 Computed as the plane containing the straight line L 1, L 2. しかし、この方法によると、撮像時の撮像素子による読み取り誤差やモデル誤差等により、演算される直線L 1 ,L 2は、 However, according to this method, the reading error and model error, etc. by the image pickup device at the time of imaging, the straight line L 1, L 2 that is computed, the
ねじれの関係になることがあり、対象表面の平面の方程式が求まらない場合がある。 May become twisted relationship, there is a case where the equation of the plane of the target surface is not obtained.

【0025】このことより、本形態例では、対象表面2 [0025] From this, in the present embodiment, the object surface 2
に投影されたマーク光3aの直線L Straight line L of the projected mark light 3a to 1 ,L 2の交点Pの座標(x 1 ,y 1 ,z 1 )と、平面の法線ベクトルq 1, and L 2 of the intersection P of coordinates (x 1, y 1, z 1), the normal of the plane vector q
(a P ,b P ,c P )を別に求めて、以下の平面の方程式 a P (x−x 1 )+b P (y−y 1 )+c P (z−z 1 )=0−−−(7) を求める。 (A P, b P, c P) of seeking Separately, equation a P (x-x 1) of the following plan + b P (y-y 1 ) + c P (z-z 1) = 0 --- ( seek 7).

【0026】まず、交点Pの座標の求め方について説明する。 [0026] First, a description will be given of how to determine the coordinates of the point of intersection P. 交点Pの座標を演算する方法は幾つかあるが、例えば、平面F 1LとF 2Lの交線L 3と平面F 1Lとの交点をP 1 (図示せず)、交線L 3と平面F 2Lとの交点をP 2 A method of calculating the coordinates of the intersection point P are several, for example, plane F and 1L and F intersection between the intersection line L 3 and the plane F 1L of 2L (not shown) P 1, the intersection line L 3 and the plane F the intersection of the 2L P 2
(図示せず)とし、交点P 1 ,P 2の中点をPとして演算する。 And (not shown), it calculates a middle point of intersection P 1, P 2 as P.

【0027】次に、平面F 1Rの方程式を求める。 Next, an equation of a plane F 1R. 式(2)よりfを消去して h R =(C 11 x+C 12 y+C 13 z+C 14 ) /(C 31 x+C 32 y+C 33 z+C 34 )−−−(8) v R =(C 21 x+C 22 y+C 23 z+C 24 ) /(C 31 x+C 32 y+C 33 z+C 34 )−−−(9) となり、これを直線L 1Rの式(5)に代入すると、平面F 1Rは F 1R : a 1R x+b 1R y+c 1R z+d 1R =0 −−−(10) a 1R =n 1 (C 21 −v 1131 )−m 1 (C 11 −h 1131 ) b 1R =n 1 (C 22 −v 1131 )−m 1 (C 12 −h 1131 ) c 1R =n 1 (C 23 −v 1131 )−m 1 (C 13 −h 1131 ) d 1R =n 1 (C 24 −v 1131 )−m 1 (C 14 −h 1131 ) n 1 =h 21 −h 111 =v 21 −v 11となる。 Clear the f from the formula (2) h R = (C 11 x + C 12 y + C 13 z + C 14) / (C 31 x + C 32 y + C 33 z + C 34) --- (8) v R = (C 21 x + C 22 y + C 23 z + C 24) / (C 31 x + C 32 y + C 33 z + C 34) --- (9) next, when this is substituted into the equation of the straight line L 1R (5), plane F 1R is F 1R: a 1R x + b 1R y + c 1R z + d 1R = 0 --- (10) a 1R = n 1 (C 21 -v 11 C 31) -m 1 (C 11 -h 11 C 31) b 1R = n 1 (C 22 -v 11 C 31) - m 1 (C 12 -h 11 C 31) c 1R = n 1 (C 23 -v 11 C 31) -m 1 (C 13 -h 11 C 31) d 1R = n 1 (C 24 -v 11 C 31 ) becomes -m 1 (C 14 -h 11 C 31) n 1 = h 21 -h 11 m 1 = v 21 -v 11. この式(10)と交線L 3の方程式によって交点P 1 (図示せず)を演算する。 And the equation of the intersection line L 3 The equation (10) calculates an intersection point P 1 (not shown). また、式(8)(9) In addition, equation (8) (9)
に式(6)を代入することによって平面F 2Rの方程式が得られ、この平面F 2Rの方程式と交線L 3の交点P In the equation of the plane F 2R obtained by substituting the equation (6), the intersection point P of the equations and the intersection line L 3 of the planar F 2R
2 (図示せず)を演算し、交点P 1と交点P 2との中点Pを演算する。 2 (not shown) is calculated, it calculates a middle point P between the intersection P 1 and the intersection P 2.

【0028】次に、法線ベクトルqの求め方について説明する。 [0028] Next, a description will be given of how to obtain the normal vector q. 法線ベクトルqは、平面F 1L ,F 2L ,F 1R ,F Normal vector q is a plan F 1L, F 2L, F 1R , F
2Rの法線ベクトルをf 1L ,f 2L ,f 1R ,f 2Rとすると q =(f 1L ×f 1R )×(f 2L ×f 2R ) −−−(11) となる。 The normal vector f 1L of 2R, f 2L, f 1R, When f 2R q = (f 1L × f 1R) × (f 2L × f 2R) --- a (11).

【0029】以上のようにして求めた交点Pと、法線ベクトルqに基づいて物体座標系の原点O Mからz軸と平行な方向に対象表面2の平面までの距離gは、式(7) [0029] and the intersection P obtained as described above, the distance g from the origin O M of the object coordinate system based on the normal vector q to the plane of the object surface 2 in a direction parallel to the z-axis, the equation (7 )
にx=0,y=0を代入して得られるzの値であり、 g =(a P x1+b P y1+c P z1)/c P −−−(12) として求められる。 To a value of z which is obtained by substituting x = 0, y = 0, g = is determined as (a P x1 + b P y1 + c P z1) / c P --- (12).

【0030】図6は、対象表面2の平面の各座標軸回りの姿勢を示し、対象表面2の姿勢をθx,θyで示すとき、法線ベクトルqがz軸の平行なときを基準の姿勢とすると θx =−tan -1 (b P /c P ) −−−(13) θy = tan -1 (a P /c P ) −−−(14) FIG. 6 shows the respective coordinate axes around the orientation of the plane of the object surface 2, when indicating the posture of the object surface 2 [theta] x, with [theta] y, the reference posture when the normal vector q is parallel z-axis Then θx = -tan -1 (b P / c P) --- (13) θy = tan -1 (a P / c P) --- (14)

【0031】図7は、プロセッサ16における演算処理過程を示すフローチャートであり、ステップS 1 FIG. 7 is a flowchart illustrating a processing procedure in the processor 16, step S 1,
2 ,S 3 ,S 4 ,S 5 ,S 6 ,S 7で対象表面2の距離を求めることができ、ステップS 1 ,S 2 ,S 3 ,S S 2, S 3, S 4 , S 5, S 6, S 7 in can determine the distance of the object surface 2, Step S 1, S 2, S 3 , S
4 ,S 6 ,S 8で対象表面2の姿勢を求めることができる。 4, S 6, it is possible to determine the orientation of the object surface 2 at S 8.

【0032】図8は、他のパターンのマーク光19を形成する光源3を示す。 [0032] Figure 8 shows a light source 3 for forming a mark light 19 of the other pattern. 光源3は、対象表面2において互いに平行でない2直線L 1 ,L 2を投影できれば良いことから、ランプ8から出射される光をマークパターン2 Light source 3 is not parallel to each other in the target surface 2 two lines L 1, since the L 2 need only be projected, marking the light emitted from the lamp 8 pattern 2
0がくり抜かれた板21に照射させてマークパターン光19を発生させ、測定対象物1の対象表面2に投影する構成であっても良い。 0 is irradiated to the plate 21 hollowed out by generating a mark pattern light 19 may be configured to be projected onto the target surface 2 of the measuring object 1.

【0033】図9は、対象表面2に投影されたマークパターン光19の輪郭線をマーク光像3a'として利用するものであり、1次元光センサ6a,6bの信号出力レベルに所定の閾値Iを設けることによってマーク光像3 [0033] Figure 9 is to use contour lines of the mark pattern light 19 projected on the object surface 2 as the mark light image 3a ', 1-dimensional photosensor 6a, given to 6b signal output level of the threshold value I mark light image 3 by providing the
a'の直線位置q 11 〜q 22を検出する。 detecting the linear position q 11 to q 22 of a '. 図4と共通する部分については共通する引用数字及び引用符号を附しているので、重複する説明は省略する。 Since the portions common to the case of FIG. 4 are denoted by the reference numerals and reference signs in common, overlapping description will be omitted.

【0034】図10は、結像面7における1次元光センサ6a,6bの配置の変形例を示し、(a)のように1 [0034] FIG. 10 is a one-dimensional optical sensor 6a in the image plane 7, shows a modification of the arrangement of 6b, 1 as (a)
次元光センサ6a,6bを非平行に配置したり、(b) Dimension light sensor 6a, or to place 6b nonparallel, (b)
のように直交して配置する構成としても良い。 Orthogonally it may be arranged as.

【0035】図11は、1次元光センサ6a,6bの配置の他の変形例を示す。 [0035] FIG. 11 is a one-dimensional optical sensor 6a, showing another modification of the arrangement of 6b. (a)では、直線L 1Rが1次元光センサ6a,6bに結像し、直線L 2Rが1次元光センサ6b,6cに結像している。 (A), the straight line L 1R is one-dimensional optical sensor 6a, imaged in 6b, linear L 2R are imaged one-dimensional optical sensor 6b, the 6c. (b)では、直線L 1Rが1次元光センサ6a,6bに結像し、直線L 2Rが1次元光センサ6c,6dに結像している。 (B), the straight line L 1R is focused on the one-dimensional optical sensor 6a, 6b, linear L 2R is focused on one-dimensional optical sensor 6c, 6d. (c)では、直線L 1Rが1次元光センサ6a,6bに結像し、直線L 2Rが1次元光センサ6b,6cに結像している。 (C), the straight line L 1R is one-dimensional optical sensor 6a, imaged in 6b, linear L 2R are imaged one-dimensional optical sensor 6b, the 6c. (d)では、交点P'が1次元光センサ6a,6bによって形成される領域内に位置している。 In (d), the intersection point P 'is located within the area formed by the one-dimensional optical sensor 6a, 6b. 一方、(b)では交点P'が1次元光センサ6a,6bによって形成される領域外に位置している。 On the other hand, it is located outside a region formed by (b) the intersection P 'is the one-dimensional optical sensor 6a, 6b.

【0036】次に、マーク光像3a'の直線L 1R ,L 2R [0036] Next, the line L 1R mark light image 3a ', L 2R
の交点P'の検出精度を検討する。 Consider the detection accuracy of the intersection P '. 例えば、図12に示すように、1次元光センサ6a,6bがv R =1及びv For example, as shown in FIG. 12, one-dimensional optical sensor 6a, 6b is v R = 1 and v
R =−1、直線L 1R ,L 2Rの交点が(0,w)、直線L R = -1, the straight line L 1R, the intersection of the L 2R (0, w), the straight line L
1Rが1次元光センサ6aとなす角度が45度、直線L 1R ,L 2Rのなす角度が90度とし、このときの交点P'の座標(h R ,v R )の検出精度を検討する。 Angle of 45 degrees 1R makes with one-dimensional optical sensor 6a, the straight line L 1R, angle between L 2R is set to 90 degrees, considering the detection accuracy of the coordinates (h R, v R) of the intersection point P 'at this time.

【0037】1次元光センサ6a,6bにおける直線L The one-dimensional optical sensor 6a, lines in 6b L
1R ,L 2Rの検出誤差が、平均零、標準偏差σ Sの正規分布にそれぞれ従うとき、交点P'の座標(h R ,v R 1R, detection error of L 2R has an average zero, when following each normal distribution of standard deviation sigma S, the coordinates of the intersection point P '(h R, v R )
の検出誤差をシミュレートすると、それらの標準偏差σ When simulating detection error, their standard deviation σ
h 、σ v h, σ v is

【数3】 [Number 3] と近似される。 It is approximated with.

【0038】図13にこのグラフを示す。 [0038] Figure 13 shows this graph. w=0のとき、つまり交点P'が1次元光センサ6a,6bの中心にあるほど検出精度が高いことが示されている。 When w = 0, i.e. the intersection point P 'is the one-dimensional optical sensor 6a, the detection accuracy as in the center of 6b it has been shown to be high. 直線L Straight line L
1Rの傾きや直線L 1R ,L 2Rのなす角の値が異なる場合でも、σ h 、σ vの絶対値は異なるが、交点P'が1次元光センサ6a,6bの中心にあるほど検出精度が高いという特徴は同様である。 1R slope and the straight line L 1R, even if the value of the angle of the L 2R are different, sigma h, sigma absolute value of v is different, the detection accuracy as the intersection P 'is at the center of the one-dimensional optical sensor 6a, 6b wherein is the same as high. また、1次元光センサ6a,6 Also, one-dimensional optical sensor 6a, 6
bが平行になっていない場合でも、同じように直線L 1R ,L 2Rの交点P'が比較的内側にあるほど検出精度が高い。 Even when b is not parallel, just as the straight line L 1R, detection accuracy is high enough L 2R intersection P 'is relatively inside. このことも、シミュレーションにより確認された。 This was also confirmed by simulation.

【0039】次に、図14に示すように、1次元光センサ6a,6b,6cがv R =1、h Next, as shown in FIG. 14, one-dimensional optical sensor 6a, 6b, 6c is v R = 1, h R =−1及びh R R = -1 and h R =
1、直線L 1R ,L 2Rの交点が(0,w)、直線L 1Rが1 1, the straight line L 1R, the intersection of the L 2R (0, w), the straight line L 1R is 1
次元光センサ6aとなす角度が45度、直線L 1RとL 2R Angle of 45 degrees formed by the dimension optical sensor 6a, the straight line L 1R and L 2R
のなす角度が90度のときの交点P'の座標(h R ,v The coordinates of the intersection point P 'when the angle is 90 degrees (h R, v
R )の検出精度を検討する。 Consider the detection accuracy of R).

【0040】1次元光センサ6a,6b,6cにおける直線L 1R ,L 2Rの位置の検出誤差が、平均零、標準偏差σ Sの正規分布にそれぞれ従うとき、交点P'の座標(h R ,v R )の検出誤差をシミュレートする。 The one-dimensional optical sensor 6a, 6b, linear L 1R in 6c, the detection error of the position of the L 2R has an average zero, when following each normal distribution of standard deviation sigma S, the coordinates of the intersection point P '(h R, v to simulate the detection error of R).

【0041】図15は、それらの標準偏差σ h 、σ vを示す。 [0041] Figure 15, their standard deviation sigma h, shows a sigma v. この場合も直線L 1R ,L 2Rの交点P'が内側にあるほど検出精度が高い。 In this case also the straight line L 1R, L 2R intersection P 'is higher detection accuracy as the inside.

【0042】以上のように、マーク光像の直線の交点位置の検出精度を少しでも高めるためには、図11 [0042] As described above, in order to increase the accuracy of detection of the intersection of the straight line of the mark light image even slightly, 11
(c),(d)に示すように、マーク光像の直線の交点が1次元光センサの内側になるように、マーク光像及び1次元光センサを設定する必要がある。 (C), (d), the manner intersection of straight mark light image is inside the one-dimensional optical sensor, it is necessary to set the mark light image and the one-dimensional optical sensor. 図3にみるように、マーク光の交点Pの位置は、レンズ主点O Rからマーク光像の交点P'へ伸ばした直線の延長線上にあるので、マーク光の交点Pの測定精度を上げるには、マーク光像の交点P'を1次元光センサ6a,6bの内側にしてマーク光像の交点P'の検出精度を上げることが必要である。 As seen in FIG. 3, the position of the intersection point P of the mark light, because the lens principal point O R on an extension of a straight line extended to the intersection P 'of the mark light image, improve the measurement accuracy of the intersection P of the mark light the, it is necessary to improve the detection accuracy of the 'intersection P of the mark light image by the one-dimensional optical sensor 6a, to the inside of 6b' intersection P of the mark light image.

【0043】 [0043]

【発明の効果】以上説明した通り、本発明の非接触距離姿勢測定方法及び装置によると、対象表面に投影された1つの交点を提供する平行でない2つの線分を含むマーク光を少なくとも2本の1次元光センサで受光して対象表面の距離と姿勢を演算するようにしたため、非接触距離姿勢測定装置の簡素化及びコストダウンを図ることができ、また、高速測定が可能となる。 As described in the foregoing, according to the non-contact distance and orientation measuring method and apparatus of the present invention, at least two marks light including two line segments are not parallel to provide one of the intersection points projected on the object surface due to so as to calculate the distance and orientation of the object surface is received by one-dimensional optical sensor, it can be simplified and the cost of the non-contact distance and orientation measuring apparatus, also enables high speed measurement.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明の第1の実施の形態における非接触距離姿勢測定装置を示す説明図である。 FIG. 1 is an explanatory diagram showing the non-contact distance and orientation measuring apparatus according to the first embodiment of the present invention.

【図2】結像面に形成されるマーク光像を示す説明図である。 FIG. 2 is an explanatory diagram showing a mark light image formed on the imaging surface.

【図3】物体座標系と結像面における2次元座標系との関係を示す説明図である。 3 is an explanatory diagram showing the relationship between the two-dimensional coordinate system in the object coordinate system and the image plane.

【図4】第1の実施の形態の結像面における1次元光センサとマーク光像の直線の位置の関係を示す説明図である。 4 is an explanatory diagram showing the relationship between the position of the straight line of one-dimensional optical sensor and the mark light image on the imaging surface of the first embodiment.

【図5】マーク光像3a'の重心位置を求める説明図である。 5 is an explanatory diagram for obtaining the center of gravity of the mark light image 3a '.

【図6】対象表面の平面の各座標軸回りの姿勢を示す説明図である。 6 is an explanatory diagram showing the respective coordinate axes around the orientation of the plane of the target surface.

【図7】第1の実施の形態において対象表面までの距離と姿勢を演算するフローチャートである。 7 is a flowchart for calculating the distance and orientation to the target surface in the first embodiment.

【図8】第1の実施の形態における光源の変形例を示す説明図である。 8 is an explanatory view showing a modified example of the light source in the first embodiment.

【図9】第1の実施の形態において対象表面に投影されたマークパターン光をマーク光像として使用する変形例を示す説明図である。 9 is an explanatory view showing a modified example to be used as the mark light image of the mark pattern light projected onto the object surface in the first embodiment.

【図10】(a)及び(b)は結像面における1次元光センサの配置の変形例を示す説明図である。 [10] (a) and (b) are explanatory views showing a modification of the arrangement of one-dimensional optical sensor in the image plane.

【図11】(a)〜(d)はマーク光像の読み取り形態の変形例を示す説明図である。 11 (a) ~ (d) are explanatory views showing a modification of the reading mode of the mark light image.

【図12】マーク光像の直線の交点の位置と2つの1次元光センサの位置関係を示す説明図である。 12 is an explanatory view showing the positional relationship between the position and the two one-dimensional optical sensor linear intersections mark light image.

【図13】図12におけるマーク光像の直線の交点の位置と交点位置検出誤差の標準偏差のグラフである。 13 is a graph of the standard deviation of the position and the intersection position detection error of a straight line of intersection of the mark light image in FIG.

【図14】マーク光像の直線の交点の位置と3つの1次元光センサの位置関係を示す説明図である。 14 is an explanatory view showing the positional relationship of the one-dimensional optical sensor position and three linear intersections mark light image.

【図15】図14におけるマーク光像の直線の交点の位置と交点位置検出誤差の標準偏差のグラフである。 15 is a graph of the standard deviation of the position and the intersection position detection error of a straight line of intersection of the mark light image in FIG.

【符号の説明】 DESCRIPTION OF SYMBOLS

1,測定対象物 2,対象表面 3,光源 3a,マーク光 3a',マーク光像 4,結像レンズ 6a,6b,1次元光センサ 7,結像面 8,センサヘッド 10,同期信号発生器 11a,11b,駆動回路 12a,12b,アンプ 13a,13b,A/D変換器 14,メモリ 15,メモリ制御回路 16,プロセッサ 17,表示部 18a,18b,18c,読み取りライン L 1 ,L 2 ,マーク光の直線 L 1 ',L 2 ' ,マーク光像の直線 P,マーク光の交点 P',マーク光像の交点 1, the object 2, object surface 3, the light source 3a, the mark light 3a ', mark light image 4, imaging lens 6a, 6b, 1-dimensional photosensor 7, the image plane 8, the sensor head 10, the synchronization signal generator 11a, 11b, the drive circuit 12a, 12b, amplifiers 13a, 13b, A / D converter 14, a memory 15, a memory control circuit 16, a processor 17, a display unit 18a, 18b, 18c, the reading line L 1, L 2, mark lines L 1 of the light ', L 2', linear P, the intersection of the mark light P of the mark light image ', the intersection of the mark light image

Claims (4)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 光源から測定対象物の対象表面にマーク光を照射して得られる反射光像に基づいて前記対象表面までの距離と前記対象表面の姿勢を測定する非接触距離姿勢測定方法において、 1つの交点を提供する平行でない2つの線分を含むマーク光を前記対象表面にある第1の平面に投影し、 第2の平面に少なくとも2つの1次元センサを配置し、 前記対象表面で反射された前記マーク光像に含まれる前記2つの線分の線分像を前記平面に形成して前記少なくとも2つの1次元センサに長さ方向の受光強度分布を表わす受光信号を発生させ、 前記受光信号に基づいて前記2つの線分像の前記少なくとも2つの1次元センサ上の位置を演算し、 前記少なくとも2つの1次元センサ上の位置に基づいて前記第1の平面の方程式を算出し、 前 The non-contact distance and orientation measuring method for measuring the orientation of the distance between the target surface to the target surface on the basis of 1. A reflected light image obtained by irradiating the mark light to the target surface of the measurement object from the light source the mark light including two line segments are not parallel to provide a single point of intersection is projected in a first plane in said object surface, placing at least two one-dimensional sensor in a second plane, with the object surface a line segment image of the two line segments included in the reflected the mark light image formed on the plane to generate a light reception signal representing the received light intensity distribution in the length direction of the at least two one-dimensional sensor, wherein based on the received light signal and computing a position on the at least two one-dimensional sensor of the two line segments images, calculates the equation of the first plane based on the position on the at least two one-dimensional sensor, Previous 記第1の平面の方程式に基づいて前記対象表面までの距離及び姿勢を演算することを特徴とする非接触距離姿勢測定方法。 Non-contact distance and orientation measurement method characterized by calculating the distance and orientation to the object surface based on the serial equation of the first plane.
  2. 【請求項2】 前記マーク光の投影は、前記線分像の前記1つの交点を前記少なくとも2つの1次元センサに挟まれる領域の内側に形成する請求項第1項記載の非接触距離姿勢測定方法。 Wherein the projection of the mark light, non-contact distance and orientation measurement as in claim 1 wherein forming said one intersecting point of the line segment image inside the region between the at least two one-dimensional sensor Method.
  3. 【請求項3】 光源から測定対象物の対象表面にマーク光を照射して得られるマーク光像に基づいて前記対象表面までの距離と前記対象表面の姿勢を測定する非接触距離姿勢測定装置において、 1つの交点を提供する平行でない2つの線分を含むマーク光を前記対象表面にある第1の平面に投影するマーク光投影手段と、 第2の平面に前記反射光像に含まれる前記2つの線分の線分像を形成する像形成手段と、 前記平面に配置され、前記2つの線分像に基づいて長さ方向の受光強度分布を表わす受光信号を出力する少なくとも2つの1次元センサと、 前記受光信号に基づいて前記2つの線分像の前記少なくとも2つの1次元センサ上の位置を演算する第1の演算手段と、 前記第1の演算手段の演算結果に基づいて前記第1の平面の方程式を 3. The non-contact distance and orientation measuring apparatus for measuring the orientation of the distance between the target surface to the target surface on the basis of the mark light image obtained by irradiating the mark light to the target surface of the measurement object from the light source , a mark light projection means for projecting the mark light in a first plane in said object surface including two line segments are not parallel to provide a single point of intersection, wherein included in the reflected light image to the second plane 2 one of the image forming means for forming a line image of a line segment, is disposed in the plane, at least two one-dimensional sensor that outputs a light reception signal representing the received light intensity distribution in the longitudinal direction on the basis of the two line segments image When a first calculating means for calculating a position on the at least two one-dimensional sensor of the two line segments images on the basis of the light reception signal, the first based on the calculation result of the first arithmetic means the equation of the plane of the め、前記第1の平面の前記方程式に基づいて前記対象表面までの距離及び姿勢を演算する第2の演算手段を有することを特徴とする非接触距離姿勢測定装置。 Because, the non-contact distance and orientation measuring apparatus characterized by having a second calculating means for calculating the distance and orientation to the object surface based on the equation of the first plane.
  4. 【請求項4】 前記マーク光投影手段は、前記線分像の前記1つの交点を前記少なくとも2つの1次元センサに挟まれる領域の内側に形成する構成の請求項第3項記載の非接触距離姿勢測定装置。 Wherein said mark light projecting means, non-contact distance of the structure of claim 3 wherein wherein forming said one intersecting point of the line segment image inside the region between the at least two one-dimensional sensor attitude measurement device.
JP27038095A 1995-10-18 1995-10-18 Non-contacting method and instrument for measuring distance and attitude Pending JPH09113223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27038095A JPH09113223A (en) 1995-10-18 1995-10-18 Non-contacting method and instrument for measuring distance and attitude

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27038095A JPH09113223A (en) 1995-10-18 1995-10-18 Non-contacting method and instrument for measuring distance and attitude

Publications (1)

Publication Number Publication Date
JPH09113223A true JPH09113223A (en) 1997-05-02

Family

ID=17485457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27038095A Pending JPH09113223A (en) 1995-10-18 1995-10-18 Non-contacting method and instrument for measuring distance and attitude

Country Status (1)

Country Link
JP (1) JPH09113223A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012509464A (en) * 2008-11-17 2012-04-19 ファロ テクノロジーズ インコーポレーテッド Six-degree-of-freedom measuring device and method
US9041914B2 (en) 2013-03-15 2015-05-26 Faro Technologies, Inc. Three-dimensional coordinate scanner and method of operation
US9146094B2 (en) 2010-04-21 2015-09-29 Faro Technologies, Inc. Automatic measurement of dimensional data with a laser tracker
US9188430B2 (en) 2013-03-14 2015-11-17 Faro Technologies, Inc. Compensation of a structured light scanner that is tracked in six degrees-of-freedom
US9377885B2 (en) 2010-04-21 2016-06-28 Faro Technologies, Inc. Method and apparatus for locking onto a retroreflector with a laser tracker
US9395174B2 (en) 2014-06-27 2016-07-19 Faro Technologies, Inc. Determining retroreflector orientation by optimizing spatial fit
US9453913B2 (en) 2008-11-17 2016-09-27 Faro Technologies, Inc. Target apparatus for three-dimensional measurement system
US9482746B2 (en) 2011-04-15 2016-11-01 Faro Technologies, Inc. Six degree-of-freedom laser tracker that cooperates with a remote sensor
US9482755B2 (en) 2008-11-17 2016-11-01 Faro Technologies, Inc. Measurement system having air temperature compensation between a target and a laser tracker
US9482529B2 (en) 2011-04-15 2016-11-01 Faro Technologies, Inc. Three-dimensional coordinate scanner and method of operation
US9638507B2 (en) 2012-01-27 2017-05-02 Faro Technologies, Inc. Measurement machine utilizing a barcode to identify an inspection plan for an object
US9772394B2 (en) 2010-04-21 2017-09-26 Faro Technologies, Inc. Method and apparatus for following an operator and locking onto a retroreflector with a laser tracker

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9453913B2 (en) 2008-11-17 2016-09-27 Faro Technologies, Inc. Target apparatus for three-dimensional measurement system
US9482755B2 (en) 2008-11-17 2016-11-01 Faro Technologies, Inc. Measurement system having air temperature compensation between a target and a laser tracker
JP2012509464A (en) * 2008-11-17 2012-04-19 ファロ テクノロジーズ インコーポレーテッド Six-degree-of-freedom measuring device and method
US9146094B2 (en) 2010-04-21 2015-09-29 Faro Technologies, Inc. Automatic measurement of dimensional data with a laser tracker
US9377885B2 (en) 2010-04-21 2016-06-28 Faro Technologies, Inc. Method and apparatus for locking onto a retroreflector with a laser tracker
US9772394B2 (en) 2010-04-21 2017-09-26 Faro Technologies, Inc. Method and apparatus for following an operator and locking onto a retroreflector with a laser tracker
US10480929B2 (en) 2010-04-21 2019-11-19 Faro Technologies, Inc. Method and apparatus for following an operator and locking onto a retroreflector with a laser tracker
US10209059B2 (en) 2010-04-21 2019-02-19 Faro Technologies, Inc. Method and apparatus for following an operator and locking onto a retroreflector with a laser tracker
US10267619B2 (en) 2011-04-15 2019-04-23 Faro Technologies, Inc. Three-dimensional coordinate scanner and method of operation
US9482746B2 (en) 2011-04-15 2016-11-01 Faro Technologies, Inc. Six degree-of-freedom laser tracker that cooperates with a remote sensor
US9453717B2 (en) 2011-04-15 2016-09-27 Faro Technologies, Inc. Diagnosing multipath interference and eliminating multipath interference in 3D scanners using projection patterns
US9482529B2 (en) 2011-04-15 2016-11-01 Faro Technologies, Inc. Three-dimensional coordinate scanner and method of operation
US9448059B2 (en) 2011-04-15 2016-09-20 Faro Technologies, Inc. Three-dimensional scanner with external tactical probe and illuminated guidance
US9494412B2 (en) 2011-04-15 2016-11-15 Faro Technologies, Inc. Diagnosing multipath interference and eliminating multipath interference in 3D scanners using automated repositioning
US10302413B2 (en) 2011-04-15 2019-05-28 Faro Technologies, Inc. Six degree-of-freedom laser tracker that cooperates with a remote sensor
US10119805B2 (en) 2011-04-15 2018-11-06 Faro Technologies, Inc. Three-dimensional coordinate scanner and method of operation
US9638507B2 (en) 2012-01-27 2017-05-02 Faro Technologies, Inc. Measurement machine utilizing a barcode to identify an inspection plan for an object
US9188430B2 (en) 2013-03-14 2015-11-17 Faro Technologies, Inc. Compensation of a structured light scanner that is tracked in six degrees-of-freedom
US9041914B2 (en) 2013-03-15 2015-05-26 Faro Technologies, Inc. Three-dimensional coordinate scanner and method of operation
US9482514B2 (en) 2013-03-15 2016-11-01 Faro Technologies, Inc. Diagnosing multipath interference and eliminating multipath interference in 3D scanners by directed probing
US9395174B2 (en) 2014-06-27 2016-07-19 Faro Technologies, Inc. Determining retroreflector orientation by optimizing spatial fit

Similar Documents

Publication Publication Date Title
US7312862B2 (en) Measurement system for determining six degrees of freedom of an object
JP4607095B2 (en) Method and apparatus for image processing in surveying instrument
DE60202198T2 (en) Device and method for generating three-dimensional position data from a collected two-dimensional image
US5135309A (en) Method and apparatus for non-contact measuring of object surfaces
KR100753885B1 (en) Image obtaining apparatus
US6823080B2 (en) Three-dimensional information processing apparatus and method
JP3975892B2 (en) Position measurement system
US5974365A (en) System for measuring the location and orientation of an object
US7023536B2 (en) Apparatus and method for determining orientation parameters of an elongate object
KR101601331B1 (en) System and method for three-dimensional measurment of the shape of material object
US20090096783A1 (en) Three-dimensional sensing using speckle patterns
KR940004917B1 (en) Apparatus for measuring three dimensional curved surface shapes
ES2324658T3 (en) Laser digitalizing system for dental applications.
DE10246067B4 (en) Method and device for calibrating an image sensor system in a motor vehicle
US6389158B1 (en) System and method for determining spatial coordinates
EP2183546B1 (en) Non-contact probe
US5646733A (en) Scanning phase measuring method and system for an object at a vision station
US4146926A (en) Process and apparatus for optically exploring the surface of a body
US7489406B2 (en) Optical lens system and position measurement system using the same
US5193120A (en) Machine vision three dimensional profiling system
US5070401A (en) Video measurement system with automatic calibration and distortion correction
CN101957195B (en) Surveying instrument and method of providing survey data of a target region using a surveying instrument
Zhang et al. A novel calibration approach to structured light 3D vision inspection
US8243286B2 (en) Device and method for the contactless detection of a three-dimensional contour
JP3213003B2 (en) Validation method of the optical distance measurement of the target surface in a turbulent environment