JPH109853A - Distance-measuring type omnibearing visual sensor - Google Patents

Distance-measuring type omnibearing visual sensor

Info

Publication number
JPH109853A
JPH109853A JP8159896A JP15989696A JPH109853A JP H109853 A JPH109853 A JP H109853A JP 8159896 A JP8159896 A JP 8159896A JP 15989696 A JP15989696 A JP 15989696A JP H109853 A JPH109853 A JP H109853A
Authority
JP
Japan
Prior art keywords
mirror
distance
image
imaging device
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8159896A
Other languages
Japanese (ja)
Other versions
JP3723282B2 (en
Inventor
Riyuuichi Oka
嶐一 岡
Takuichi Nishimura
拓一 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GIJUTSU KENKYU KUMIAI SHINJOHO
GIJUTSU KENKYU KUMIAI SHINJOHO SHIYORI KAIHATSU KIKO
NIPPON TEKKO RENMEI
Original Assignee
GIJUTSU KENKYU KUMIAI SHINJOHO
GIJUTSU KENKYU KUMIAI SHINJOHO SHIYORI KAIHATSU KIKO
NIPPON TEKKO RENMEI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GIJUTSU KENKYU KUMIAI SHINJOHO, GIJUTSU KENKYU KUMIAI SHINJOHO SHIYORI KAIHATSU KIKO, NIPPON TEKKO RENMEI filed Critical GIJUTSU KENKYU KUMIAI SHINJOHO
Priority to JP15989696A priority Critical patent/JP3723282B2/en
Publication of JPH109853A publication Critical patent/JPH109853A/en
Application granted granted Critical
Publication of JP3723282B2 publication Critical patent/JP3723282B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Optical Distance (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable measurement of the distance to a target in omnibearings by obtaining the distance to an object based on a predetermined corresponding relationship from photographing positions of two images of the object guided with two different optical paths. SOLUTION: Light from a target, for example, from a light source 50 is guided to a CCD (image pickup device using a solid image sensor) 6 with a first optical path through a cone mirror 8 and a fisheye lens 7 and directly with a second optical path through the fisheye lens 7. Then, a light source image 10 reflected by the cone mirror 8 is formed in a cone image 9 of the cone mirror 8. A light source image 11 guided through the fisheye lens 7 is formed outside the cone image 9. So, distances d1 and d2 of the two light source images 10 and 11 from the center 0 of the cone image 9 are obtained to determine the distance to the target (light source) 50 from a corresponding relationship of both the images (determined by optical characteristics of the cone mirror 8 and the fisheye lens 7).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、全方位で目標物ま
での距離を測定する測距型全方位視覚センサに関し、特
にロボットの目として好適な測距型全方位視覚センサに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a distance-measuring omnidirectional visual sensor for measuring a distance to a target in all directions, and more particularly to a distance-measuring omnidirectional visual sensor suitable for a robot eye.

【0002】[0002]

【従来の技術】環境を広い視野で撮影した画像系列から
なるトボロジー地図(光景地図)を使用し、移動ロボッ
トの誘導を行う場合に、超音波センサなどにより障害物
を検知し、光景地図情報から大局的な位置と局所的な位
置を推定する提案がなされている(連続DPを利用した
移動ロボットの動画像による位置同定、信学報、pp1
39〜144、1995等)。
2. Description of the Related Art When a mobile robot is guided by using a tobology map (spectacle map) composed of a series of images captured in a wide field of view of an environment, an obstacle is detected by an ultrasonic sensor or the like, and the scene map information is used. Proposals have been made for estimating global and local positions (position identification using moving images of mobile robots using continuous DP, IEICE, pp1
39-144, 1995 etc.).

【0003】[0003]

【発明が解決しようとする課題】しかしながら超音波セ
ンサが目標物を捕捉できる範囲は限られており、全方位
というわけにはいかない。
However, the range in which the ultrasonic sensor can capture the target is limited, and it is not always possible to capture the target in all directions.

【0004】なお、全方位で目標物を撮影する装置とし
ては反射ミラーを介して全方位の映像を撮像装置に取り
込むようにした全方位視覚センサが提案されているが
(電子情報通信学会論文誌D−11,Vol,J79d
−11 No.5 pp698−707 1996年5
月)、距離を測定する方法までは提案していない。
As an apparatus for photographing a target in all directions, an omnidirectional visual sensor has been proposed in which an omnidirectional image is taken into an image pickup apparatus via a reflection mirror (Transactions of the Institute of Electronics, Information and Communication Engineers). D-11, Vol, J79d
-11 No. 5 pp698-707 1996
Mon), the method of measuring distance is not proposed.

【0005】そこで、本発明は、全方位視覚センサを使
用して、特定の目標物の距離を測定できる測距型全方位
視覚センサを提供することを目的とする。
Accordingly, an object of the present invention is to provide a distance-measuring omnidirectional vision sensor that can measure the distance of a specific target by using the omnidirectional vision sensor.

【0006】[0006]

【課題を解決するための手段】このような目的を達成す
るために、請求項1の発明は、撮像装置と、第1の光路
および該第1の光路とは異なる第2の光路で前記撮像装
置に対して被写体画像を導き、該撮像装置に2つの被写
体画像を結像させる光学系と、前記撮像装置において結
像された2つの被写体画像の撮像位置から予め定めた対
応関係に基づき、被写体までの距離を取得する情報処理
手段とを具えたことを特徴とする。
In order to achieve the above object, according to a first aspect of the present invention, there is provided an image pickup apparatus comprising: a first optical path; and a second optical path different from the first optical path. An optical system that guides a subject image to the device and forms two subject images on the imaging device, and a subject based on a predetermined correspondence relationship from the imaging positions of the two subject images formed by the imaging device. And information processing means for acquiring a distance to the vehicle.

【0007】請求項2の発明は、請求項1に記載の測距
型全方位視覚センサにおいて、前記光学系は前記被写体
画像を反射するミラーと、該ミラーにより反射した被写
体画像と、被写体からの直接の被写体画像とを前記撮像
装置に導くレンズを有することを特徴とする。
According to a second aspect of the present invention, in the distance measuring type omnidirectional vision sensor according to the first aspect, the optical system includes a mirror for reflecting the subject image, a subject image reflected by the mirror, A lens for directing a direct subject image to the imaging device is provided.

【0008】請求項3の発明は、請求項2に記載の測距
型全方位視覚センサにおいて、前記ミラーは前記撮像装
置の光軸上に配置され、前記情報処理手段は、該ミラー
そのものの撮影画像領域の中で該ミラーにより反射した
被写体画像の撮像位置を検出し、前記撮像装置の光軸に
対応する撮像位置と前記反射した被写体画像の撮像位置
とを結ぶ直線上で前記直接の被写体画像の撮像位置を検
出することを特徴とする。
According to a third aspect of the present invention, in the distance measuring type omnidirectional vision sensor according to the second aspect, the mirror is arranged on an optical axis of the image pickup device, and the information processing means takes a picture of the mirror itself. Detecting the imaging position of the subject image reflected by the mirror in the image area, and forming the direct subject image on a straight line connecting the imaging position corresponding to the optical axis of the imaging device and the imaging position of the reflected subject image; Is characterized by detecting the imaging position of the image.

【0009】請求項4の発明は、請求項1に記載の測距
型全方位視覚センサにおいて、前記光学系は前記被写体
画像を反射する第1のミラーおよび第2のミラーを有
し、当該第1のミラーおよび第2のミラーにより前記第
1の光路および第2の光路を形成することを特徴とす
る。
According to a fourth aspect of the present invention, in the distance measuring type omnidirectional vision sensor according to the first aspect, the optical system has a first mirror and a second mirror that reflect the subject image. The first optical path and the second optical path are formed by a first mirror and a second mirror.

【0010】請求項5の発明は、請求項4に記載の測距
型全方位視覚センサにおいて、前記撮像装置の光軸上に
前記第1のミラーおよび第2のミラーは配置され、前記
第1のミラーにより反射された被写体画像を前記撮像装
置に導くための開口部を前記第2のミラーに設けたこと
を特徴とする。
According to a fifth aspect of the present invention, in the distance measuring type omnidirectional vision sensor according to the fourth aspect, the first mirror and the second mirror are arranged on an optical axis of the imaging device, and The second mirror is provided with an opening for guiding the subject image reflected by the mirror to the image pickup device.

【0011】[0011]

【発明の実施の形態】以下、図面を参照して本発明の実
施例を詳細に説明する。図1は本発明を適用した測距型
全方位センサの構成を示す。図1において50は目標
物、例えば、光源である。光源50からの光は第1の方
向、すなわち、円錐ミラー8、魚眼レンズ7を介してC
CD(個体撮像素子を使用した撮像装置)6に導かれ
る。光源50からの光は第2の方向、すなわち、光源5
0から直接、魚眼レンズ7に入射され、CCD50に導
かれる。また、円錐ミラー8の中心が魚眼レンズ7の中
心、すなわち、CCD6の光軸に一致するように光学系
が構成されている。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 shows a configuration of a distance measuring type omnidirectional sensor to which the present invention is applied. In FIG. 1, reference numeral 50 denotes a target, for example, a light source. The light from the light source 50 passes through the first direction, namely, through the conical mirror 8 and the fisheye lens 7,
It is guided to a CD (imaging device using an individual imaging device) 6. The light from the light source 50 is in the second direction,
The light is directly incident on the fisheye lens 7 from 0 and is guided to the CCD 50. The optical system is configured such that the center of the conical mirror 8 coincides with the center of the fisheye lens 7, that is, the optical axis of the CCD 6.

【0012】このようにして、撮像された光源50の画
像はCCD6の撮影画面上で図2の符号10、11の位
置に2つ生じる。10は円錐ミラー8により反射された
光による光源50の画像である。11は光源50から直
接魚眼レンズ7を介して導かれた光により生じる画像で
ある。
In this way, two images of the light source 50 taken at the positions indicated by reference numerals 10 and 11 in FIG. Reference numeral 10 denotes an image of the light source 50 due to the light reflected by the conical mirror 8. Reference numeral 11 denotes an image generated by light guided directly from the light source 50 via the fisheye lens 7.

【0013】円錐ミラー8により反射された光の光源画
像10は円錐ミラー8の円錐画像9の中に生じ、光源5
0から直接魚眼レンズ7を介して導かれた光により生じ
る光源画像11は円錐画像9の外側に存在する。また光
源画像10と、光源画像11を結ぶ直線は必ず、円錐画
像の中心O(光軸中心に対応)を通るという特徴があ
る。
The light source image 10 of the light reflected by the conical mirror 8 is generated in the conical image 9 of the conical mirror 8 and the light source 5
The light source image 11 generated by the light guided directly from 0 through the fisheye lens 7 exists outside the cone image 9. Further, there is a feature that a straight line connecting the light source image 10 and the light source image 11 always passes through the center O (corresponding to the optical axis center) of the cone image.

【0014】本実施例ではこのような特徴に着目して、
2つの光源画像10、11の円錐画像10からの距離d
1,d2を求めることにより目標物までの距離を求め
る。
In this embodiment, focusing on such features,
Distance d between two light source images 10 and 11 from cone image 10
By calculating 1, d2, the distance to the target is obtained.

【0015】距離Lと、画面中の距離d1,d2との対
応関係は円錐ミラー8と魚眼レンズ7の光学特性が定ま
れば、三角測量の技法を使用して数式で表すことができ
る。また、光源位置50を3次元空間上の距離が判明し
ている位置複数へ移動させて、そのときの光源位置1
0、11を取得し、実質距離Lと、画面内距離10、1
1の対応関係をテーブル形態に装置内に記憶しておくこ
ともできる。
If the optical characteristics of the conical mirror 8 and the fisheye lens 7 are determined, the correspondence between the distance L and the distances d1 and d2 in the screen can be expressed by a mathematical formula using a triangulation technique. Further, the light source position 50 is moved to a plurality of positions where the distance in the three-dimensional space is known, and the light source position 1 at that time is moved.
0 and 11 are obtained, and the actual distance L and the in-screen distances 10 and 1 are obtained.
One correspondence may be stored in the apparatus in the form of a table.

【0016】このような測距型全方位視覚センサの制御
系の回路構成を図3に示す。図3において、CCD6に
取り込まれた画像についての1画面分の画像データはア
ナログ/デジタル信号によりアナログ信号からデジタル
信号に変換器6Aにより変換される。デジタル信号形態
の画像データ、より具体的には、画素毎の輝度データは
入出力インタフェース(I/O)5を介してCPU(中
央演算処理装置)1に転送され、次にRAM(ランダム
アクセスメモリ)3に格納される。CPU1はROM
(リードオンリメモリ)2に格納された図4のプログラ
ムに従って、RAM3の画像データを使用して距離の計
算を行う。その計算結果はCPU1の制御で表示器4に
表示される。
FIG. 3 shows a circuit configuration of a control system of such a distance measuring type omnidirectional vision sensor. In FIG. 3, image data for one screen of an image captured by the CCD 6 is converted from an analog signal to a digital signal by an analog / digital signal by a converter 6A. Image data in the form of digital signals, more specifically, luminance data for each pixel, is transferred to a CPU (Central Processing Unit) 1 via an input / output interface (I / O) 5 and then to a RAM (random access memory). 3) is stored. CPU1 is ROM
According to the program shown in FIG. 4 stored in the (read only memory) 2, the distance is calculated using the image data in the RAM 3. The calculation result is displayed on the display 4 under the control of the CPU 1.

【0017】このようなシステムの動作を図4のフロー
チャートを使用して説明する。電源が投入されると、C
PU1は距離計算における初期化処理を行う(ステップ
S10)。次に、CPU1はI/O5経由で1画面分の
画像データを取り込む(ステップS20)。CPU1は
RAM3上の画像データを調べ、まず、円錐ミラー8に
より反射された光により生じる画像(以下、第1の画像
と称する)についての画像データを検出する。より具体
的には、円錐ミラー8の外周円の撮影画像領域の位置お
よび大きさは予め初期値として与えられているので、こ
の領域の範囲でしきい値以上の輝度を有する画像データ
およびその画素位置を検出する。検出した画素位置はR
AM3に格納される(ステップS40)。
The operation of such a system will be described with reference to the flowchart of FIG. When the power is turned on, C
PU1 performs an initialization process in distance calculation (step S10). Next, the CPU 1 captures image data for one screen via the I / O 5 (step S20). The CPU 1 checks the image data on the RAM 3 and first detects image data on an image (hereinafter, referred to as a first image) generated by the light reflected by the conical mirror 8. More specifically, since the position and size of the photographed image area of the outer peripheral circle of the conical mirror 8 are given in advance as initial values, image data having a luminance equal to or higher than a threshold value within this area and its pixel Detect the position. The detected pixel position is R
It is stored in AM3 (step S40).

【0018】次にCPU1は被写体から直接、CCD6
に取り込んだ光の画像(以下、第2の画像と称する)の
位置をRAM3の画像データに基づき検出する。上述し
たように第2の画像は第1の画像と、円錐ミラー8の画
像中心を結ぶ直線上にあり、かつ円錐ミラー8自体の画
像の外の領域にあるという特徴がある。CPU1はRA
M3上の各画素の画像データについて上述の特徴に合致
しているかの判定を行う。これにより上記特徴を満足す
る第1および第2の画像の画像データおよびその画素位
置が検出される。
Next, the CPU 1 directly moves the CCD 6 from the subject.
The position of the light image (hereinafter, referred to as a second image) captured in the RAM 3 is detected based on the image data in the RAM 3. As described above, the second image is characterized by being on a straight line connecting the first image and the image center of the conical mirror 8 and in an area outside the image of the conical mirror 8 itself. CPU1 is RA
It is determined whether or not the image data of each pixel on M3 matches the above characteristics. Thereby, the image data of the first and second images satisfying the above characteristics and the pixel positions thereof are detected.

【0019】この画素位置と円錐ミラー8の画像の中心
位置との間の距離d1,d2(図2参照)をCPU1に
おいて計算する。また、予め定められている距離計算
式、あるいは変換テーブルを使用して、距離d1,d2
に対応する距離を取得する(ステップS50)。計算結
果は表示器4に表示される(ステップS60)。
The CPU 1 calculates distances d1 and d2 (see FIG. 2) between the pixel position and the center position of the image of the conical mirror 8. The distances d1 and d2 are calculated using a predetermined distance calculation formula or a conversion table.
Is obtained (step S50). The calculation result is displayed on the display 4 (step S60).

【0020】以下、ステップS20〜S60の処理手順
が終了の指示があるまで、繰り返される。
Hereinafter, the processing procedures of steps S20 to S60 are repeated until a termination instruction is given.

【0021】以上、説明したように、本実施例では、全
方位視覚センサを使用して距離を測定できるので、ロボ
ットに本実施例を搭載した場合には、単なる、障害物の
検知だけでなく、障害物までの衝突時間等を得ることが
できる。また、従来から知られている、距離測定装置を
全方位視覚センサとは別個に搭載する必要もないので、
ロボットを小型化できる。また、全方位視覚センサはC
CD6を固定設置できるので、ロボットの首振り動作等
が不要であり、ロボット本体の機構を簡素化することも
可能である。
As described above, in this embodiment, the distance can be measured by using the omnidirectional vision sensor. Therefore, when this embodiment is mounted on a robot, not only the detection of an obstacle but also the detection of an obstacle can be performed. And the collision time to an obstacle can be obtained. Also, since it is not necessary to mount a conventionally known distance measuring device separately from the omnidirectional vision sensor,
The robot can be downsized. The omnidirectional vision sensor is C
Since the CD 6 can be fixedly installed, the swinging operation of the robot is not required, and the mechanism of the robot body can be simplified.

【0022】本実施例の他に次の例を実施できる。The following example can be carried out in addition to this embodiment.

【0023】1)全方位視覚センサで使用する反射部材
として本実施例では円錐ミラーを使用しているが、球面
ミラー等他の形状のミラーを使用してもよい。
1) In this embodiment, a conical mirror is used as the reflecting member used in the omnidirectional vision sensor, but a mirror having another shape such as a spherical mirror may be used.

【0024】2)本実施例は、同一の光源について2つ
の光路でCCD6に光を導くようにしている。このため
に、本実施例では魚眼レンズ7を使用している。この例
に限らず、図5に示すような光学系でも本発明を実現で
きる。図5の例は、円錐ミラー8とCCD6の間に曲面
ミラー20を設けている。曲面ミラー20の中心部には
円錐ミラー8の反射光をCCD6に導くための開口部2
1が設けられている。また、光源50からの光は曲面ミ
ラー20の外側面で反射されてCCD6に導かれる。こ
の場合には、点光源50の画像位置は、1つは曲面ミラ
ー20の開口部21の画像領域内に生じ、他の1つは曲
面ミラー21の中の開口部21を除く領域に生じる。こ
れら領域内だけが光源画像の探索領域となるという利点
を有する。
2) In this embodiment, light is guided to the CCD 6 through two optical paths for the same light source. For this purpose, the present embodiment uses the fisheye lens 7. The present invention is not limited to this example, and can be realized by an optical system as shown in FIG. In the example of FIG. 5, a curved mirror 20 is provided between the conical mirror 8 and the CCD 6. An opening 2 for guiding the reflected light of the conical mirror 8 to the CCD 6 is provided at the center of the curved mirror 20.
1 is provided. Light from the light source 50 is reflected by the outer surface of the curved mirror 20 and guided to the CCD 6. In this case, one of the image positions of the point light source 50 occurs in the image area of the opening 21 of the curved mirror 20, and the other occurs in the area of the curved mirror 21 except for the opening 21. There is an advantage that only the inside of these areas is a search area for the light source image.

【0025】3)本実施例では、発明の説明のために、
被写体を点光源で説明したが、被写体は点光源に限るこ
となく、ある形状を持つもの全てに適用できる。この場
合には、2つの光路により生じる2つの画像をパターン
マッチングで検出するとよい。なお、画像の位置の特徴
は上述した点光源の例と同様である。
3) In this embodiment, for explanation of the invention,
Although the subject has been described as a point light source, the subject is not limited to a point light source and can be applied to all objects having a certain shape. In this case, two images generated by two light paths may be detected by pattern matching. The feature of the position of the image is the same as that of the point light source described above.

【0026】[0026]

【発明の効果】以上説明したように、請求項1の発明に
よれば、被写体画像について2つの画像を撮像装置にお
いて取得することにより、全方位視覚センサでも距離測
定が可能となる。
As described above, according to the first aspect of the present invention, by acquiring two images of a subject image in the imaging device, it is possible to measure the distance even with the omnidirectional vision sensor.

【0027】請求項2の発明では、ミラー1つとレンズ
1つで光学系を構成でき、ロボットのような設置場所に
制限を有する装置内に測距型全方位視覚センサを組み込
むことができる。
According to the second aspect of the present invention, the optical system can be constituted by one mirror and one lens, and the distance-measuring omnidirectional vision sensor can be incorporated in a device such as a robot having a limited installation place.

【0028】請求項3の発明では、2つの被写体画像の
位置特徴を利用して、撮像位置を検出することにより、
位置検出精度が高まり、また、検出時間も短くなる。
According to the third aspect of the present invention, the image pickup position is detected by utilizing the position characteristics of the two subject images.
The position detection accuracy is improved, and the detection time is shortened.

【0029】請求項4の発明では、2つのミラーのみで
光学系を構成でき、装置の小型化に寄与することができ
る。
According to the fourth aspect of the present invention, the optical system can be constituted by only two mirrors, which can contribute to downsizing of the apparatus.

【0030】請求項5の発明では、ミラー2つを光軸上
に配置でき、取り付けが容易となる。
According to the fifth aspect of the present invention, the two mirrors can be arranged on the optical axis, which facilitates the mounting.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明実施例の光学系の構成を示す構成図であ
る。
FIG. 1 is a configuration diagram showing a configuration of an optical system according to an embodiment of the present invention.

【図2】撮影画像を示す説明図である。FIG. 2 is an explanatory diagram illustrating a captured image.

【図3】本発明実施例の制御系の構成を示すブロック図
である。
FIG. 3 is a block diagram illustrating a configuration of a control system according to the embodiment of the present invention.

【図4】CPU1の処理内容を示すフローチャートであ
る。
FIG. 4 is a flowchart showing processing contents of a CPU 1;

【図5】本発明実施例の光学系の他の構成を示す構成図
である。
FIG. 5 is a configuration diagram showing another configuration of the optical system according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 CPU 2 ROM 3 RAM 4 表示器 5 I/O 6 CCD 6A A/D 7 魚眼レンズ 8 円錐ミラー 50 光源 Reference Signs List 1 CPU 2 ROM 3 RAM 4 Display 5 I / O 6 CCD 6A A / D 7 Fisheye lens 8 Conical mirror 50 Light source

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西村 拓一 東京都千代田区大手町1丁目9番4号 経 団連会館 社団法人日本鉄鋼連盟内 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Takuichi Nishimura 1-9-4 Otemachi, Chiyoda-ku, Tokyo Keidanren Kaikan The Iron and Steel Federation of Japan

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 撮像装置と、 第1の光路および該第1の光路とは異なる第2の光路で
前記撮像装置に対して被写体画像を導き、該撮像装置に
2つの被写体画像を結像させる光学系と、 前記撮像装置において結像された2つの被写体画像の撮
像位置から予め定めた対応関係に基づき、被写体までの
距離を取得する情報処理手段とを具えたことを特徴とす
る測距型全方位視覚センサ。
An imaging device, a first optical path and a subject image guided to the imaging device via a second optical path different from the first optical path, and the imaging device forms two subject images on the imaging device. A distance measuring type comprising: an optical system; and information processing means for acquiring a distance to a subject based on a predetermined correspondence relationship from imaging positions of two subject images formed by the imaging device. Omnidirectional vision sensor.
【請求項2】 請求項1に記載の測距型全方位視覚セン
サにおいて、前記光学系は前記被写体画像を反射するミ
ラーと、該ミラーにより反射した被写体画像と、被写体
からの直接の被写体画像とを前記撮像装置に導くレンズ
を有することを特徴とする測距型全方位視覚センサ。
2. The distance-measuring omnidirectional vision sensor according to claim 1, wherein the optical system includes a mirror for reflecting the subject image, a subject image reflected by the mirror, and a subject image directly from the subject. A distance-measuring omnidirectional visual sensor, comprising a lens for guiding the lens to the imaging device.
【請求項3】 請求項2に記載の測距型全方位視覚セン
サにおいて、前記ミラーは前記撮像装置の光軸上に配置
され、前記情報処理手段は、該ミラーそのものの撮影画
像領域の中で該ミラーにより反射した被写体画像の撮像
位置を検出し、前記撮像装置の光軸に対応する撮像位置
と前記反射した被写体画像の撮像位置とを結ぶ直線上で
前記直接の被写体画像の撮像位置を検出することを特徴
とする測距型全方位視覚センサ。
3. The distance-measuring omnidirectional vision sensor according to claim 2, wherein the mirror is arranged on an optical axis of the imaging device, and the information processing means is provided in a captured image area of the mirror itself. The imaging position of the subject image reflected by the mirror is detected, and the imaging position of the direct subject image is detected on a straight line connecting the imaging position corresponding to the optical axis of the imaging device and the imaging position of the reflected subject image. A distance-measuring omnidirectional vision sensor characterized in that:
【請求項4】 請求項1に記載の測距型全方位視覚セン
サにおいて、前記光学系は前記被写体画像を反射する第
1のミラーおよび第2のミラーを有し、当該第1のミラ
ーおよび第2のミラーにより前記第1の光路および第2
の光路を形成することを特徴とする測距型全方位視覚セ
ンサ。
4. The distance-measuring omnidirectional vision sensor according to claim 1, wherein the optical system has a first mirror and a second mirror that reflect the subject image, and the first mirror and the second mirror reflect the first and second mirrors. The first optical path and the second
A distance-measuring omnidirectional visual sensor characterized by forming an optical path.
【請求項5】 請求項4に記載の測距型全方位視覚セン
サにおいて、前記撮像装置の光軸上に前記第1のミラー
および第2のミラーは配置され、前記第1のミラーによ
り反射された被写体画像を前記撮像装置に導くための開
口部を前記第2のミラーに設けたことを特徴とする測距
型全方位視覚センサ。
5. The distance-measuring omnidirectional vision sensor according to claim 4, wherein the first mirror and the second mirror are arranged on an optical axis of the imaging device, and are reflected by the first mirror. A distance measuring type omnidirectional vision sensor, wherein an opening for guiding the subject image to the imaging device is provided in the second mirror.
JP15989696A 1996-06-20 1996-06-20 Ranging omnidirectional vision sensor Expired - Lifetime JP3723282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15989696A JP3723282B2 (en) 1996-06-20 1996-06-20 Ranging omnidirectional vision sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15989696A JP3723282B2 (en) 1996-06-20 1996-06-20 Ranging omnidirectional vision sensor

Publications (2)

Publication Number Publication Date
JPH109853A true JPH109853A (en) 1998-01-16
JP3723282B2 JP3723282B2 (en) 2005-12-07

Family

ID=15703551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15989696A Expired - Lifetime JP3723282B2 (en) 1996-06-20 1996-06-20 Ranging omnidirectional vision sensor

Country Status (1)

Country Link
JP (1) JP3723282B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220603A (en) * 2005-02-14 2006-08-24 Tateyama Machine Kk Imaging apparatus
JP2011064566A (en) * 2009-09-17 2011-03-31 Fujitsu Ltd Distance estimation apparatus
WO2011055418A1 (en) * 2009-11-09 2011-05-12 トヨタ自動車株式会社 Distance measuring device and distance measuring method
US9239389B2 (en) 2011-09-28 2016-01-19 Samsung Electronics Co., Ltd. Obstacle sensor and robot cleaner having the same
JP2016045173A (en) * 2014-08-26 2016-04-04 任天堂株式会社 Information processing system, information processing program, information processing method, and imaging apparatus
JP2020046262A (en) * 2018-09-18 2020-03-26 株式会社日立製作所 Stereo camera, onboard lighting unit, and stereo camera system
US10663295B2 (en) 2015-12-04 2020-05-26 Socionext Inc. Distance measurement system, mobile object, and component

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102095413B (en) * 2009-12-11 2012-08-29 中国科学院沈阳自动化研究所 Double-path cursor real-time measurement device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220603A (en) * 2005-02-14 2006-08-24 Tateyama Machine Kk Imaging apparatus
JP2011064566A (en) * 2009-09-17 2011-03-31 Fujitsu Ltd Distance estimation apparatus
WO2011055418A1 (en) * 2009-11-09 2011-05-12 トヨタ自動車株式会社 Distance measuring device and distance measuring method
JP5051405B2 (en) * 2009-11-09 2012-10-17 トヨタ自動車株式会社 Distance measuring device and distance measuring method
US8760632B2 (en) 2009-11-09 2014-06-24 Toyota Jidosha Kabushiki Kaisha Distance measuring apparatus and distance measuring method
US9239389B2 (en) 2011-09-28 2016-01-19 Samsung Electronics Co., Ltd. Obstacle sensor and robot cleaner having the same
JP2016045173A (en) * 2014-08-26 2016-04-04 任天堂株式会社 Information processing system, information processing program, information processing method, and imaging apparatus
US10663295B2 (en) 2015-12-04 2020-05-26 Socionext Inc. Distance measurement system, mobile object, and component
JP2020046262A (en) * 2018-09-18 2020-03-26 株式会社日立製作所 Stereo camera, onboard lighting unit, and stereo camera system
WO2020059182A1 (en) * 2018-09-18 2020-03-26 株式会社日立製作所 Stereo camera, in-vehicle lighting unit, and stereo camera system
CN112219086A (en) * 2018-09-18 2021-01-12 株式会社日立制作所 Stereo camera, vehicle-mounted lamp assembly and stereo camera system
US11290703B2 (en) 2018-09-18 2022-03-29 Hitachi, Ltd. Stereo camera, onboard lighting unit, and stereo camera system

Also Published As

Publication number Publication date
JP3723282B2 (en) 2005-12-07

Similar Documents

Publication Publication Date Title
US5307136A (en) Distance detection system for vehicles
US7684590B2 (en) Method of recognizing and/or tracking objects
US7656508B2 (en) Distance measuring apparatus, distance measuring method, and computer program product
US6480287B2 (en) Three dimensional scanning system
JP4682816B2 (en) Obstacle position detector
JP3494075B2 (en) Self-locating device for moving objects
US20100040279A1 (en) Method and apparatus to build 3-dimensional grid map and method and apparatus to control automatic traveling apparatus using the same
US11977167B2 (en) Efficient algorithm for projecting world points to a rolling shutter image
JP2006322853A (en) Distance measuring device, distance measuring method and distance measuring program
CN113492829B (en) Data processing method and device
JP2006322795A (en) Image processing device, image processing method and image processing program
KR101674298B1 (en) Method for distance calculation using a camera lens focal length information
JP2006318062A (en) Image processor, image processing method and image processing program
JPH109853A (en) Distance-measuring type omnibearing visual sensor
JP2000028332A (en) Three-dimensional measuring device and method therefor
JP3991501B2 (en) 3D input device
JP2004354256A (en) Calibration slippage detector, and stereo camera and stereo camera system equipped with the detector
CN109587304B (en) Electronic equipment and mobile platform
JP6983740B2 (en) Stereo camera system and distance measurement method
WO2011047508A1 (en) Embedded vision tracker and mobile guiding method for tracking sequential double color beacons array with extremely wide-angle lens
JP2021012075A (en) Stereo camera
JP2006318061A (en) Apparatus, method, and program for image processing
US6788807B1 (en) Three dimensional information measurement method and apparatus
JP7207889B2 (en) Range finder and in-vehicle camera system
JPH11223516A (en) Three dimensional image pickup device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050128

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050524

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20050623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050725

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050915

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7