JPS6126812A - Detecting device for distance - Google Patents

Detecting device for distance

Info

Publication number
JPS6126812A
JPS6126812A JP14833984A JP14833984A JPS6126812A JP S6126812 A JPS6126812 A JP S6126812A JP 14833984 A JP14833984 A JP 14833984A JP 14833984 A JP14833984 A JP 14833984A JP S6126812 A JPS6126812 A JP S6126812A
Authority
JP
Japan
Prior art keywords
observation lens
reflector
observation
distance
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14833984A
Other languages
Japanese (ja)
Other versions
JPH0521165B2 (en
Inventor
Masanori Idesawa
正徳 出澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP14833984A priority Critical patent/JPS6126812A/en
Publication of JPS6126812A publication Critical patent/JPS6126812A/en
Publication of JPH0521165B2 publication Critical patent/JPH0521165B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE:To improve the detection sensitivity without increasing the size of the device by arranging the 2nd reflector at the other side of an observation lens, and reflecting light passed through the observation lens and forming its image at relatively close distance from the optical axis of the observation lens. CONSTITUTION:Two plane mirrors 8 are arranged at one side of one observation lens 5 in parallel to the optical axis and two plane mirrors 12 are arranged at the other side of the observation lens 5 in parallel to the optical axis. A light beam 13 is projected through the observation lens 5 of a body to be measured as to its shape, motion, and deformation to form a bright point T on the object body 3. Light from this bright point is reflected by the 1st reflector 8, and passed through the observation lens and reflected by the 2nd reflector 12 to form an image on an observation surface 9 eventually. Consequently, the size at right angles to the optical axis is reduced although the distance detection sensitivity is improved by using an enlargement optical system.

Description

【発明の詳細な説明】 童栗上■肌尻分り 本発明は3角測量の原理を使用した小型の距離検知装置
に係るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a compact distance detection device using the principle of triangulation.

物体の形状、運動、変形などの計測においては、距離(
長さ、位置)の計測が基本となっている。
When measuring the shape, motion, deformation, etc. of an object, distance (
The basic method is the measurement of length, position).

本発明はそのような距離の計測に使用する距離検知装置
に係るものである。
The present invention relates to a distance detection device used to measure such distances.

従来の技術 物体の形状、運動、変形などの計測に利用する距離検知
法としては、機械式の触針によるものから、光、音波、
電気、磁気などの種々の物理現象を利用した様々な方式
の計測法が考案され使用されている。しかし、機械工業
における形状計測には依然として機械的な触針法が広く
用いられている。触針法では変形してしまうような対象
物、運動物体の計測、さらには計測速度の向上などの観
点から、機械的な触針法に代る非接触式の距離センサの
出現が切望されている。光学的な手法を用いれば対象物
に接触しないで距離計測が可能である。
Conventional technology Distance detection methods used to measure the shape, motion, deformation, etc. of objects range from those using mechanical probes to those using light, sound waves,
Various measurement methods using various physical phenomena such as electricity and magnetism have been devised and used. However, the mechanical stylus method is still widely used for shape measurement in the mechanical industry. There is a strong desire for a non-contact distance sensor to replace the mechanical stylus method, in order to measure objects that are deformed or in motion using the stylus method, and to improve measurement speed. There is. Using an optical method, it is possible to measure distance without touching the object.

本発明者は3角測量の原理を利用した光学的な距離検知
装置を提案した(特願昭58−161088 )。
The present inventor proposed an optical distance detection device using the principle of triangulation (Japanese Patent Application No. 161088/1988).

これについて第2図と第3図を参照して説明する。This will be explained with reference to FIGS. 2 and 3.

3角測量の原理に基づいた計測方法では、3角形におい
て一辺とその両端における角度が定まると、3角形は一
意的に決定され、その−辺に相対する頂点の位置を求め
ることができる。この原理に基づいた距離計測系の1例
を第2図に示した。2つの観測光学系1.2をある一定
距離りだけ離し光軸が平行となる様に配置する。そして
2つの観測光学系1.2より非測定物体3の注目点Tま
での距離をZ、注目点Tの像が2つの観測光学系1.2
から距離Aだけ離れた観測位置で、それぞれの光軸より
それぞれXa、 Xbの位置で検出されるものとすると
、注目点Tまでの距離Zは次式により求められる。
In a measurement method based on the principle of triangulation, once one side and the angles at both ends of a triangle are determined, the triangle is uniquely determined, and the position of the vertex relative to the -side can be determined. An example of a distance measuring system based on this principle is shown in FIG. Two observation optical systems 1.2 are placed a certain distance apart and their optical axes are parallel. Then, Z is the distance from the two observation optical systems 1.2 to the point of interest T of the non-measurement object 3, and the image of the point of interest T is the distance from the two observation optical systems 1.2.
Assuming that the observation position is a distance A away from T and is detected at positions Xa and Xb from the respective optical axes, the distance Z to the point of interest T is determined by the following equation.

Z−AX L/ (Xa  + Xb )しかし、この
距離計測方法においては、測定精度上どうしても2つの
観測光学系間の距離りを一定距離離して配置する必要が
ある。その結実装置全体として大きくなってしまい、内
視鏡などの様に全体としてできるだけ小さくしたい場合
には、適用できないのが欠点であった。この欠点を解消
するものとして第3図の距離検知装置の構成を提案した
(特願昭58−161088)。第3図において、観測
レンズ5、観測レンズの光軸6に対し観測レンズの節点
0の部分において光軸6より距離dだけ一離れた点を通
り観測レンズの光軸に平行な線に対しφの角度傾いたw
A7上に反射体8を配置する。被測定物体3上の任意の
1点Tからの光は反射体8により反射され観測レンズ5
により観測面9上の11に結像する。一方被測定物体3
上の一点Tからの、反射体で反射されない光は観測レン
ズにより観測面上のToに結像する。
Z-AX L/ (Xa + Xb) However, in this distance measuring method, it is necessary to space the two observation optical systems a certain distance apart from each other in terms of measurement accuracy. The drawback is that the fruiting device as a whole becomes large, and cannot be applied to applications such as endoscopes where the overall size should be made as small as possible. In order to overcome this drawback, we proposed the configuration of the distance detection device shown in FIG. 3 (Japanese Patent Application No. 161088/1988). In Fig. 3, with respect to the observation lens 5 and the optical axis 6 of the observation lens, φ The angle of is tilted lol
A reflector 8 is placed on A7. Light from an arbitrary point T on the object to be measured 3 is reflected by the reflector 8 and passes through the observation lens 5.
An image 11 is formed on the observation surface 9. On the other hand, the object to be measured 3
Light from one point T above that is not reflected by the reflector is imaged by the observation lens onto To on the observation surface.

反射体に対し観測レンズ5と対称な位置に配置された仮
想的なレンズ10により仮想的な観測面11上につくら
れるTの仮想的な像T1νは反射体8により反射され観
測面9上に結像されたTの像T、と互いに線7に対し対
称の関係となる。像T0は観測レンズ5を通じて観測さ
れたものであり、又T、は線7に対し観測レンズ5と鏡
像の関係の位置に配置された仮想的レンズ10を通じて
観測されたTIvと等価である。但し観測面上でT+と
T、vとの検出される座標値の符号は反対である。
A virtual image T1ν of T created on a virtual observation surface 11 by a virtual lens 10 placed at a position symmetrical to the observation lens 5 with respect to the reflector is reflected by the reflector 8 and onto the observation surface 9. The formed image T and the image T are symmetrical to each other with respect to the line 7. The image T0 is observed through the observation lens 5, and T is equivalent to TIv observed through the virtual lens 10 placed in a mirror image relationship with the observation lens 5 with respect to the line 7. However, the signs of the detected coordinate values of T+, T, and v on the observation plane are opposite.

これは観測レンズ5と仮想的なレンズ10とによる従来
の三角測量における構成と等価であり、第3図において
φ−Q、d=L/2とした配置は第2図に示した配置と
基本的には同一となる。したがって、反射体8と観測レ
ンズ5を第3図の様に配置することにより観測レンズと
仮想的なレンズを用いた三角測量の原理による距離計測
検知装置を構成したものと同様な効果を得ることができ
る。しかもその大きさは2つのレンズを使用した第2図
の距離検知装置に比べ約半分程度の大きさになり装置全
体を小型化できる。第3図の配置においては距離を算出
する式は第2図の場合よりやや複雑になる。
This is equivalent to the configuration in conventional triangulation using the observation lens 5 and the virtual lens 10, and the arrangement of φ-Q and d=L/2 in Fig. 3 is basically the arrangement shown in Fig. 2. are essentially the same. Therefore, by arranging the reflector 8 and the observation lens 5 as shown in Fig. 3, it is possible to obtain the same effect as a distance measurement detection device configured using the principle of triangulation using the observation lens and a virtual lens. I can do it. Moreover, its size is about half that of the distance detection device shown in FIG. 2, which uses two lenses, so the entire device can be miniaturized. In the arrangement of FIG. 3, the formula for calculating the distance is slightly more complex than in the case of FIG.

いまTo、T、の観測面上での座標値をそれぞれ、X、
。、Xイ、とすると、注目する1点Tまでの距離および
X座標値は次式で与えられる。
The coordinate values of To and T on the observation plane are now X,
. , Xi, the distance to the point T of interest and the X coordinate value are given by the following equation.

xlllo・Z 第3図の例では反射体を1個使用しているが、2枚の反
射鏡を光軸に平行に、又は観測レンズに向かって末広が
りに配置してもよいし、1個の円筒形もしくは円錐形の
反射体を使用してもよい。
xlllo・Z In the example in Figure 3, one reflector is used, but two reflectors may be arranged parallel to the optical axis or spread out toward the observation lens, or one reflector may be used. Cylindrical or conical reflectors may also be used.

発明が解決しようとする問題点 観測レンズの光軸方向における対象物上の任意の一点の
変位(距離変化△Z)に対する検出感度(対象物上の点
の光軸方向の変位へZに対する観測面上の像の位置変化
△Yの比:△Y/△Z)を高めようとすると、観測レン
ズ5から観測面9までの距離aを観測レンズ5から対象
物上の点までの距離Zに比してはるかに大きくしなけれ
ばならないが(a〉〉Z)、そのような拡大光学系とす
ると観測面上での像形成位置が観測レンズの光軸から大
きく離れ、結局距離検知装置を大きくしてしまうという
問題があった(第1図参照)。
Problems to be Solved by the Invention Detection sensitivity for displacement (distance change △Z) of any one point on the object in the optical axis direction of the observation lens (displacement of a point on the object in the optical axis direction In order to increase the ratio of the position change △Y of the upper image (△Y/△Z), the distance a from the observation lens 5 to the observation surface 9 is compared to the distance Z from the observation lens 5 to a point on the object. However, if such a magnifying optical system is used, the image formation position on the observation surface will be far away from the optical axis of the observation lens, and the distance detection device will eventually have to be made larger. There was a problem in that it would cause problems (see Figure 1).

本発明の目的は距離検知装置の寸法を増大することなく
検出感度を高めた距離検知装置を提供することである。
An object of the present invention is to provide a distance detection device with improved detection sensitivity without increasing the size of the distance detection device.

問題点を解決するための手段 この目的は本発明に従って、1つの観測レンズと、この
観測レンズの一側に配置した少なくとも1つの第1反射
体と、前記の観測レンズの他側に配置した少なくとも1
つの第2反射体とを備え、被測定物体上の任意の一点か
らの光が直接入射し、且つ前記の任意の一点からの光が
前記の第1反射体により反射されて入射する位置に前記
の観測レンズを配置し、そして第1反射体から反射され
観測レンズを通った光を反射する位置に第2反射体を配
置することにより達成される(第1図破線参照)。すな
わち第2反射体12を観測レンズ5の他側に配置するこ
とにより第1反射体8から反射され観測レンズ5を通っ
た光を反射して観測レンズ5の光軸から比較的近い距離
に結像させる(Tl;T+′)。この場合、距離変化に
対する結像位置の変化の比は、反射させずに結像した場
合と変わらず、従って検出感度は高められ、しかも距離
検知装置の寸法を増大せしめてはいない。
Means for solving the problem This object, according to the invention, comprises an observation lens, at least one first reflector arranged on one side of said observation lens, and at least one first reflector arranged on the other side of said observation lens. 1
a second reflector, and the light from an arbitrary point on the object to be measured is directly incident, and the light from the arbitrary point is reflected by the first reflector and is incident on the object. This is achieved by arranging an observation lens, and arranging a second reflector at a position where it reflects the light that is reflected from the first reflector and passes through the observation lens (see broken line in Figure 1). That is, by arranging the second reflector 12 on the other side of the observation lens 5, the light reflected from the first reflector 8 and passed through the observation lens 5 is reflected and focused at a relatively short distance from the optical axis of the observation lens 5. image (Tl; T+'). In this case, the ratio of the change in imaging position to the change in distance is the same as in the case of imaging without reflection, so the detection sensitivity is increased without increasing the size of the distance sensing device.

以下に第4.5図を参照して本発明の実施例についてそ
の構成と作用を説明する。
The structure and operation of an embodiment of the present invention will be explained below with reference to FIG. 4.5.

第4図を参照する。第4図において、1つの観測レンズ
5の一側に平面鏡8を2枚光軸に平行に配置し、そして
観測レンズ5の他側に別の平面鏡12を2枚光軸に平行
に配置する。形状、運動、変形などについて計測しよう
としている被測定物体上へ観測レンズ5を通して光ビー
ム13が投射され、被測定物体3の上に輝点Tをつくる
。この輝点からの光は第1反射体8で反射され観測レン
ズを通って第2反射体12で反射され最終的に観察面9
上に結像する。
Please refer to FIG. In FIG. 4, two plane mirrors 8 are arranged parallel to the optical axis on one side of one observation lens 5, and another two plane mirrors 12 are arranged parallel to the optical axis on the other side of the observation lens 5. A light beam 13 is projected through an observation lens 5 onto an object to be measured whose shape, motion, deformation, etc. are to be measured, and a bright spot T is created on the object 3 to be measured. The light from this bright spot is reflected by the first reflector 8, passes through the observation lens, is reflected by the second reflector 12, and finally reaches the observation surface 9.
image on top.

第5図は反射体として円筒状のものを使用した場合で、
ビームを観測レンズ5の光軸に沿って投射すると観察面
上で被測定物体上の輝点Tの像は環状となって観察面に
現れ、被測定物体上の任意の点までの距離はこの環の半
径の直接の関数として計測することができる。
Figure 5 shows the case where a cylindrical object is used as the reflector.
When the beam is projected along the optical axis of the observation lens 5, an annular image of a bright spot T on the object to be measured appears on the observation surface, and the distance to any point on the object to be measured is It can be measured as a direct function of the radius of the ring.

実施例はいずれもたパ1つの第2反射体を使用している
が、拡大率(a/z)が大きい場合には観測レンズの他
側で複数回反射させることも必要となり、その場合はそ
れに応じた個数の第2反射体を使用する。又、第2反射
体を■■置■■■■■■光軸に対して末広がりに配置さ
せることにより平行に配置した場合よりも更に光軸に直
交する方向の寸法を減少させることもできる。
All of the examples use a single second reflector, but if the magnification (a/z) is large, it may be necessary to reflect multiple times on the other side of the observation lens. A corresponding number of second reflectors are used. Furthermore, by arranging the second reflector so as to diverge toward the optical axis, the dimension in the direction perpendicular to the optical axis can be further reduced than when the second reflector is arranged parallel to the optical axis.

効果 軟土から明らかなように、本発明により距離検知装置は
拡大光学系を使用して距離検出感度を高めているにもか
・わらずその光軸に直交する方向の寸法は大きくされる
ことはない。又、第2反射体として円筒または円錐鏡を
使用した場合には観測面上に得られる像のS/N比は高
められる。
Effect As is clear from the soft soil, although the distance detection device according to the present invention uses a magnifying optical system to increase the distance detection sensitivity, the dimension in the direction perpendicular to the optical axis is increased. There isn't. Furthermore, when a cylindrical or conical mirror is used as the second reflector, the S/N ratio of the image obtained on the observation surface is increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は第3図の距離検知装置に拡大光学系を採用した
場合の構成と、本発明の構成とを対比して示す説明図で
ある。 第2図は従来の距離計測法の説明図である。 第3図は既に本発明者が提案した距離検知装置の一側を
示す説明図である。 第4図は本発明の距離検知装置の一実施例を示す斜視図
である。 第5図は本発明の別の実施例を示す斜視図である。 図中; 3・・・被測定物体、5・・・観測レンズ、8・・・第
1反射体、12・・・第2反射体。
FIG. 1 is an explanatory diagram showing a comparison between a configuration in which a magnifying optical system is employed in the distance detection device shown in FIG. 3 and a configuration of the present invention. FIG. 2 is an explanatory diagram of the conventional distance measurement method. FIG. 3 is an explanatory diagram showing one side of the distance detection device already proposed by the present inventor. FIG. 4 is a perspective view showing an embodiment of the distance detection device of the present invention. FIG. 5 is a perspective view showing another embodiment of the invention. In the figure; 3... object to be measured, 5... observation lens, 8... first reflector, 12... second reflector.

Claims (1)

【特許請求の範囲】[Claims] 1つの観測レンズと、この観測レンズの一側に配置した
少なくとも1つの第1反射体と、前記の観測レンズの他
側に配置した少なくとも1つの第2反射体とを備え、被
測定物体上の任意の一点からの光が直接入射し、且つ前
記の任意の一点からの光が前記の第1反射体により反射
されて入射する位置に前記の観測レンズを配置し、そし
て第1の反射体から反射され観測レンズを通った光を反
射する位置に第2反射体を配置したことを特徴とする距
離検知装置。
comprising one observation lens, at least one first reflector disposed on one side of the observation lens, and at least one second reflector disposed on the other side of the observation lens; The observation lens is arranged at a position where light from an arbitrary point is directly incident, and the light from the arbitrary point is reflected by the first reflector and then enters, and from the first reflector. A distance detection device characterized in that a second reflector is arranged at a position to reflect light that has been reflected and passed through an observation lens.
JP14833984A 1984-07-17 1984-07-17 Detecting device for distance Granted JPS6126812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14833984A JPS6126812A (en) 1984-07-17 1984-07-17 Detecting device for distance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14833984A JPS6126812A (en) 1984-07-17 1984-07-17 Detecting device for distance

Publications (2)

Publication Number Publication Date
JPS6126812A true JPS6126812A (en) 1986-02-06
JPH0521165B2 JPH0521165B2 (en) 1993-03-23

Family

ID=15450556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14833984A Granted JPS6126812A (en) 1984-07-17 1984-07-17 Detecting device for distance

Country Status (1)

Country Link
JP (1) JPS6126812A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62185743A (en) * 1986-02-12 1987-08-14 Teijin Chem Ltd Resin composition
JPS63298113A (en) * 1987-05-29 1988-12-05 Rikagaku Kenkyusho Structure of image forming optical system of optical range detector

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5633719B2 (en) * 2009-09-18 2014-12-03 学校法人福岡工業大学 3D information measuring apparatus and 3D information measuring method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56168104A (en) * 1980-05-28 1981-12-24 Rikagaku Kenkyusho Detector for mark position
JPS59154314A (en) * 1983-02-24 1984-09-03 Dainippon Screen Mfg Co Ltd Apparatus for measuring distance and slanting angle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56168104A (en) * 1980-05-28 1981-12-24 Rikagaku Kenkyusho Detector for mark position
JPS59154314A (en) * 1983-02-24 1984-09-03 Dainippon Screen Mfg Co Ltd Apparatus for measuring distance and slanting angle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62185743A (en) * 1986-02-12 1987-08-14 Teijin Chem Ltd Resin composition
JPS63298113A (en) * 1987-05-29 1988-12-05 Rikagaku Kenkyusho Structure of image forming optical system of optical range detector

Also Published As

Publication number Publication date
JPH0521165B2 (en) 1993-03-23

Similar Documents

Publication Publication Date Title
JP3975892B2 (en) Position measurement system
US4708483A (en) Optical measuring apparatus and method
US4897536A (en) Optical axis displacement sensor with cylindrical lens means
JPS6299823A (en) Object position information generator
JPH03282203A (en) Target and three-dimensional position and attitude measuring system using same
Kanade et al. An optical proximity sensor for measuring surface position and orientation for robot manipulation
US4637715A (en) Optical distance measuring apparatus
JPS62197711A (en) Optically image forming type non-contacting position measuring apparatus
EP2793042A1 (en) Positioning device comprising a light beam
JPH08114421A (en) Non-contact type measuring device for measuring thickness ofmaterial body comprising transparent material
CN106840030B (en) A kind of two dimension long-range profile detection device and detection method
JPS6126812A (en) Detecting device for distance
Stevenson Use of laser triangulation probes in coordinate measuring machines for part tolerance inspection and reverse engineering
JPH04523B2 (en)
JPS63142210A (en) Method and apparatus for measuring distance
JPH07332954A (en) Method and apparatus for measuring displacement and inclination
JPS63292015A (en) Construction of image-sensing optical system of optical distance detecting apparatus
JPH03128409A (en) Three-dimensional shape sensor
JP2584630B2 (en) Configuration of optical stylus for side profile measurement
JPH07122566B2 (en) Optical displacement measuring device
KR20160137819A (en) Displacement Sensor Using Astigmatism and Sensing Method thereof
JPH03144862A (en) Relative position measuring device
JPS63263411A (en) Optical distance detector
JPS63298113A (en) Structure of image forming optical system of optical range detector
RU2154256C2 (en) Interference method for measurements of relative movements of diffusely reflecting objects