JPH05211228A - Electrostatic chuck - Google Patents

Electrostatic chuck

Info

Publication number
JPH05211228A
JPH05211228A JP35012991A JP35012991A JPH05211228A JP H05211228 A JPH05211228 A JP H05211228A JP 35012991 A JP35012991 A JP 35012991A JP 35012991 A JP35012991 A JP 35012991A JP H05211228 A JPH05211228 A JP H05211228A
Authority
JP
Japan
Prior art keywords
electrostatic chuck
solid solution
insulating layer
metal oxide
transition metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35012991A
Other languages
Japanese (ja)
Other versions
JP3084869B2 (en
Inventor
Tetsuo Kitabayashi
徹夫 北林
Toshiya Watabe
俊也 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP35012991A priority Critical patent/JP3084869B2/en
Publication of JPH05211228A publication Critical patent/JPH05211228A/en
Application granted granted Critical
Publication of JP3084869B2 publication Critical patent/JP3084869B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an electrostatic chuck displaying stable electro-static characteristics in conformity with a working temperature. CONSTITUTION:The insulating layer of an electrostatic chuck is composed of the solid solution particles of alumina and a transition metal oxide and glass existing on the grain boundaries of the solid solution particles. For the substance producing a solid solution between itself and alumina, concretely chromia (Cr2O3) having the crystal structure of corundum structure, crystal structure of which is similar to alumina, is cited as the transition metal oxide at that time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体ウエハ等の被吸着
物を静電力で吸着固定する静電チャックに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrostatic chuck for attracting and fixing an object to be attracted such as a semiconductor wafer by electrostatic force.

【0002】[0002]

【従来の技術】減圧雰囲気において半導体ウエハにプラ
ズマエッチング、CVD、イオンプレーティング等の処
理を行なう際のウエハの固定治具として基板と絶縁層
(誘電層)との間に内部電極を設けた静電チャックが用
いられている。
2. Description of the Related Art As a jig for fixing a wafer when a semiconductor wafer is subjected to processes such as plasma etching, CVD, and ion plating in a reduced pressure atmosphere, an internal electrode is provided between the substrate and an insulating layer (dielectric layer). An electric chuck is used.

【0003】この静電チャックに要求される特性は、電
圧を印加している間は大きな吸着力を発生して被吸着物
の落下等を防止し、電圧印加を解除したならば直ちに吸
着力を小さくして被吸着物を容易に取外すことができる
ようにすることである。
The characteristics required for this electrostatic chuck are that a large attracting force is generated while a voltage is applied to prevent the object to be attracted from falling and the like, and when the voltage application is released, the attracting force is immediately increased. The object is to make it small so that the object to be adsorbed can be easily removed.

【0004】吸着力を高める手段としては絶縁層の比誘
電率を大きくする(特公昭60−59104号、特公昭
62−19060号)、絶縁層の厚さを制御する(特開
昭57−64950号)、絶縁層の体積固有抵抗を所定
の範囲にする(特公昭61−14660号、特開平2−
22166号)等の手段があり、被吸着物の取外しを容
易にする手段としてはチャック表面と被吸着物との間に
ヘリウムガスを吹込む(実開平2−120831号)、
吸着時の電圧とは逆極性の電圧を印加する(特公平2−
63304号)等の手段がある。
As means for increasing the adsorption force, the relative dielectric constant of the insulating layer is increased (Japanese Patent Publication No. 60-59104 and Japanese Patent Publication No. 62-19060), and the thickness of the insulating layer is controlled (Japanese Patent Laid-Open No. 57-64950). The volume resistivity of the insulating layer is within a predetermined range (Japanese Patent Publication No. 61-14660, JP-A-2-
No. 22166) and the like, and as a means for facilitating the removal of the adsorbed material, helium gas is blown between the chuck surface and the adsorbed material (Actual No. 2-120831).
A voltage with the opposite polarity to the voltage at the time of adsorption is applied.
63304) and the like.

【0005】上述した従来法のうち吸着力を高める手段
は絶縁層のみに着目しており、吸着力が高くなっても残
留吸着力も大きくなる傾向がある。また、残留吸着力が
減衰し、被吸着物が容易に取り外せるまでには60秒以
上もかかり、被吸着物を加工処理後、直ちに取り外した
い場合に対応できず、このため被吸着物の取外しを容易
にするには別装置や通常の操作の他にに新たな操作を付
加しなければならないという不利があり、特に低温下で
の使用に問題がある。
Of the above-mentioned conventional methods, the means for increasing the suction force focuses only on the insulating layer, and the residual suction force tends to increase even if the suction force increases. Further, the residual adsorption force is attenuated, and it takes more than 60 seconds before the adsorbent can be easily removed, and it is not possible to deal with the case where the adsorbent is to be immediately removed after processing. Therefore, the adsorbent must be removed. There is a disadvantage that a new operation must be added in addition to another device or a normal operation for facilitating the operation, and there is a problem particularly in use at a low temperature.

【0006】そこで本発明者は図1に示すように、基板
1上に絶縁層2を形成し、これら基板1と絶縁層2の間
に電極3を形成し、この電極3をリード線4を介して直
流電源5に接続し、半導体ウエハWはアースと直接接続
されているか、またはプラズマによる電気的接続をして
いる静電チャックを想定し、この静電チャックの等価回
路に着目し、この等価回路から減衰時間ts(残留静電
力が飽和静電力に対し98%減衰するのに要する時間)
と、静電チャックの使用温度における前記絶縁層の体積
固有抵抗ρ(Ωm)、静電チャックの使用温度における
前記絶縁層の比誘電率εr、内部電極と絶縁層表面との
間隔d(m)及び被吸着物と絶縁層表面とのギャップδ
(m)との関係を明らかにした。この関係を以下の(数
1)に示す。
Therefore, as shown in FIG. 1, the present inventor forms an insulating layer 2 on a substrate 1, forms an electrode 3 between the substrate 1 and the insulating layer 2, and connects the electrode 3 to a lead wire 4. Assuming an electrostatic chuck which is connected to the DC power source 5 via the semiconductor wafer W and is directly connected to the ground or is electrically connected by plasma, focusing on the equivalent circuit of this electrostatic chuck, Decay time ts from equivalent circuit (time required for residual electrostatic force to decay 98% with respect to saturated electrostatic force)
And the volume specific resistance ρ (Ωm) of the insulating layer at the operating temperature of the electrostatic chuck, the relative dielectric constant εr of the insulating layer at the operating temperature of the electrostatic chuck, and the distance d (m) between the internal electrode and the surface of the insulating layer. And the gap δ between the object to be adsorbed and the surface of the insulating layer
The relationship with (m) was clarified. This relationship is shown in (Equation 1) below.

【0007】[0007]

【数1】[Equation 1]

【0008】[0008]

【発明が解決しようとする課題】上記の(数1)から静
電チャックの使用温度における被吸着物の着脱性は、絶
縁層の体積固有抵抗に大きく依存していることが分る。
即ち、使用温度に拘らず安定した静電特性を発揮するに
は、静電チャックを製作する時に絶縁層の体積固有抵抗
を任意に幅広く調整し得ることが必要である。
From the above (Formula 1), it can be seen that the detachability of the object to be adsorbed at the operating temperature of the electrostatic chuck largely depends on the volume resistivity of the insulating layer.
That is, in order to exhibit stable electrostatic characteristics regardless of the operating temperature, it is necessary to adjust the volume resistivity of the insulating layer to a wide range at the time of manufacturing the electrostatic chuck.

【0009】しかしながら、従来の静電チャックの絶縁
層(誘電体層)を構成する材料はその体積固有抵抗を任
意に幅広く調整し得ることができない。例えば、アルミ
ナに遷移金属酸化物としてチタニアを添加することが提
案されているが、チタニアの添加量が多くなると、アル
ミナ粒子間に析出する複合酸化物粒子が増加し、電気伝
導特性の電界強度依存性が顕著になる。つまりある電界
強度を境にして体積固有抵抗が急激に減少し、所定の静
電特性が維持できなくなる。
However, the material constituting the insulating layer (dielectric layer) of the conventional electrostatic chuck cannot adjust its volume resistivity to a wide range. For example, it has been proposed to add titania as a transition metal oxide to alumina, but as the amount of titania added increases, the number of complex oxide particles precipitated between alumina particles increases, and the electric conductivity depends on the electric field strength. Sex becomes remarkable. That is, the volume specific resistance sharply decreases at a certain electric field strength, and a predetermined electrostatic characteristic cannot be maintained.

【0010】[0010]

【課題を解決するための手段】上記課題を解決すべく本
発明に係る静電チャックは、静電チャックの絶縁層を、
固溶体粒子及び固溶体粒子の粒界に存在するガラス、若
しくは固溶体粒子、固溶体粒子の粒界に存在するガラス
及び固溶体粒子の粒界に析出する2重量%以下の遷移金
属酸化物から構成し、更に前記固溶体粒子をアルミナと
コランダム構造の遷移金属酸化物とからなるものとし
た。
In order to solve the above-mentioned problems, an electrostatic chuck according to the present invention comprises an insulating layer of an electrostatic chuck,
The solid solution particles and the glass existing at the grain boundaries of the solid solution particles, or the solid solution particles, the glass existing at the grain boundaries of the solid solution particles and 2% by weight or less of the transition metal oxide precipitated at the grain boundaries of the solid solution particles, further comprising: The solid solution particles were composed of alumina and a transition metal oxide having a corundum structure.

【0011】[0011]

【作用】遷移金属酸化物をコランダム構造のものとする
と、このコランダム構造はアルミナの結晶構造と類似し
ているため、アルミナと容易に固溶体を作る。
When the transition metal oxide has a corundum structure, the corundum structure is similar to the crystal structure of alumina, so that it easily forms a solid solution with alumina.

【0012】[0012]

【実施例】以下に本発明の実施例を添付図面に基づいて
説明する。本発明に係る静電チャックは図1にも示した
ように、基板1上に絶縁層2を形成し、これら基板1と
絶縁層2の間に電極3を形成し、この電極3をリード線
4を介して直流電源5に接続し、半導体ウエハWはアー
スと直接接続されているか、またはプラズマによる電気
的接続をしている。
Embodiments of the present invention will be described below with reference to the accompanying drawings. As shown in FIG. 1, the electrostatic chuck according to the present invention forms an insulating layer 2 on a substrate 1, forms an electrode 3 between the substrate 1 and the insulating layer 2, and connects the electrode 3 to a lead wire. The semiconductor wafer W is directly connected to ground or electrically connected to plasma by connecting to the DC power source 5 via 4.

【0013】そして、絶縁層2は図2の拡大模式図から
も明らかなように、アルミナと遷移金属酸化物との固溶
体粒子21及び固溶体粒子の粒界に存在するガラス22
からなる。ここで、遷移金属酸化物としてはアルミナと
の間で固溶体を作るもの、具体的にはアルミナと結晶構
造が類似するコランダム構造の結晶構造となるクロミア
(Cr23)が好ましい。尚、図3はアルミナ(Al
23)とクロミア(Cr23)の状態図であり、この図
からも明らかなように完全固溶することが分る。
As is apparent from the enlarged schematic view of FIG. 2, the insulating layer 2 has a solid solution particle 21 of alumina and a transition metal oxide and a glass 22 existing at the grain boundary of the solid solution particle.
Consists of. Here, the transition metal oxide is preferably one that forms a solid solution with alumina, specifically, chromia (Cr 2 O 3 ) having a crystal structure of a corundum structure similar to that of alumina. In addition, FIG. 3 shows alumina (Al
It is a phase diagram of 2 O 3 ) and chromia (Cr 2 O 3 ), and it is clear from this figure that complete solid solution is achieved.

【0014】ところで、アルミナの体積固有抵抗は10
14Ωcm以上で、クロミアの体積固有抵抗は106Ωc
mと推定され、更に前記したようにアルミナとクロミア
は完全固溶するので、クロミアの添加割合を変化させる
ことで絶縁層2の体積固有抵抗を調整できる。図4はク
ロミアの添加割合と体積固有抵抗との関係を表すグラフ
であり、このグラフからも絶縁層2の体積固有抵抗を所
定範囲で任意に調整できることが分る。
By the way, the volume resistivity of alumina is 10
Above 14 Ωcm, the volume resistivity of chromia is 10 6 Ωc
It is estimated that m, and as described above, alumina and chromia are completely dissolved, so that the volume resistivity of the insulating layer 2 can be adjusted by changing the addition ratio of chromia. FIG. 4 is a graph showing the relationship between the addition ratio of chromia and the volume resistivity. From this graph as well, it can be seen that the volume resistivity of the insulating layer 2 can be arbitrarily adjusted within a predetermined range.

【0015】また、図2の拡大模式図に示すような構造
の絶縁層は、固溶体粒子21の方が粒界のガラス22よ
り抵抗が低くなるため、電荷は固溶体粒子21内を通っ
て伝導することとなる。この場合図5に示すように電界
強度が大きくなっても電流はオームの法則に準じる。よ
って急激な電流増加による絶縁破壊が起ることがなく、
シリコンウェハへの損傷を防ぐことができる。
Further, in the insulating layer having the structure shown in the enlarged schematic view of FIG. 2, the solid solution particles 21 have a lower resistance than the glass 22 at the grain boundaries, so that charges are conducted through the solid solution particles 21. It will be. In this case, as shown in FIG. 5, even if the electric field strength increases, the current follows Ohm's law. Therefore, there is no dielectric breakdown due to a sudden increase in current,
It is possible to prevent damage to the silicon wafer.

【0016】図6は別実施例に係る絶縁層2の拡大模式
図であり、この実施例にあってはアルミナとクロミア
(コランダム構造の遷移金属酸化物)との固溶体粒子2
1、固溶体粒子の粒界に存在するガラス22及びチタニ
ア(コランダム構造でない遷移金属酸化物)の析出物2
3から絶縁層2を構成している。
FIG. 6 is an enlarged schematic view of an insulating layer 2 according to another embodiment. In this embodiment, solid solution particles 2 of alumina and chromia (transition metal oxide of corundum structure) are formed.
1. Precipitate 2 of glass 22 and titania (transition metal oxide not having a corundum structure) existing at grain boundaries of solid solution particles
Insulating layer 2 is formed from 3.

【0017】図7はチタニア(TiO2)濃度と体積固有
抵抗との関係を示すグラフ、図8はチタニア(TiO2
濃度と絶縁体の体積固有抵抗及び電界強度との関係を示
すグラフであり、これらグラフからチタニアを添加する
場合には2重量%以下としないと、体積固有抵抗を10
8Ωcm〜1012Ωcmの範囲に制御するのが困難で、
体積固有抵抗の電界依存性が大きくなって急激な電流増
加による絶縁破壊が起りやすくなることが分る。
FIG. 7 is a graph showing the relationship between titania (TiO 2 ) concentration and volume resistivity, and FIG. 8 is titania (TiO 2 ).
It is a graph showing the relationship between the concentration and the volume resistivity of the insulator and the electric field strength. From these graphs, when titania is added, the volume resistivity is 10% unless the content is 2% by weight or less.
It is difficult to control in the range of 8 Ωcm to 10 12 Ωcm,
It can be seen that the electric field dependence of the volume resistivity becomes large and dielectric breakdown is likely to occur due to a rapid increase in current.

【0018】次に本発明に係る静電チャックの製造方法
を述べる。先ず、原料としてアルミナ粉末及びコランダ
ム構造の遷移金属酸化物(クロミア)更にはチタニア及
び焼結助剤を用意し、これらを秤量してボールミルで混
合粉砕したものをバインダー及びトルエン、酢酸ブチル
等を加えた後、脱泡、熟成を経てグリーンシートを成形
し、このグリーンシートを電極層を印刷した未焼成の支
持基板上に積層し、還元雰囲気で1500〜1650℃
(通常1600℃)で1〜7時間焼成(通常2時間)し
て静電チャックを得る。
Next, a method of manufacturing the electrostatic chuck according to the present invention will be described. First, prepare alumina powder and corundum-structured transition metal oxide (chromia) as raw materials, titania and a sintering aid, add them to a binder, toluene, butyl acetate, etc. after weighing and mixing them with a ball mill. Then, after defoaming and aging, a green sheet is formed, and the green sheet is laminated on an unfired supporting substrate on which an electrode layer is printed, and the temperature is 1500 to 1650 ° C. in a reducing atmosphere.
By firing (usually 1600 ° C.) for 1 to 7 hours (usually 2 hours), an electrostatic chuck is obtained.

【0019】ここで、コランダム構造の遷移金属酸化物
の添加割合は1〜50重量%とする。これは1重量%未
満では添加の効果が表れず、50重量%を越えると十分
な焼成が行なえなくなるからである。また、焼結助剤の
種類としては珪砂、粘土、ガラスフリット、アルカリ土
類金属の炭酸塩や硝酸塩等を用い、その添加割合は6〜
12重量%とする。これは6重量%未満ではセラミック
スの収縮が低下し耐電圧の低下の原因となり、12重量
%を越えると低温で液層が生じて十分な焼成が行なえな
くなるからである。
Here, the addition ratio of the transition metal oxide having a corundum structure is 1 to 50% by weight. This is because if it is less than 1% by weight, the effect of addition is not exhibited, and if it exceeds 50% by weight, sufficient firing cannot be performed. Further, as the type of the sintering aid, silica sand, clay, glass frit, alkaline earth metal carbonate or nitrate, etc. are used, and the addition ratio is 6 to
12% by weight. This is because if it is less than 6% by weight, the shrinkage of ceramics is lowered and the withstand voltage is lowered, and if it exceeds 12% by weight, a liquid layer is formed at a low temperature and sufficient firing cannot be performed.

【0020】[0020]

【発明の効果】(表1)は本発明に係る静電チャックと
従来の静電チャックの絶縁層の体積固有抵抗、着脱時
間、洩れ電流(6インチウェハを吸着した時)を電界強
度を1.67×106V/mとして測定した値である。
尚、測定に用いた静電チャックは、表1の重量%のアル
ミナ、クロミア、チタニアと9重量%の焼結助剤をボー
ルミルで混合粉砕したものをバインダー及びトルエン、
酢酸ブチル等を加えた後、脱泡、熟成を経てグリーンシ
ートを成形し、このグリーンシートを、同様にグリーン
シート化され且つ上面にタングステン、モリブデン等の
電極層を印刷した支持基板上に積層し、雰囲気ガスを水
素と窒素の混合ガスとして1600℃で焼成して得た。
EFFECTS OF THE INVENTION (Table 1) shows the volume resistivity of the insulating layer of the electrostatic chuck according to the present invention and the conventional electrostatic chuck, the attachment / detachment time, the leakage current (when a 6-inch wafer is adsorbed), and the electric field strength. It is a value measured as 0.67 × 10 6 V / m.
The electrostatic chuck used for the measurement was a mixture of alumina, chromia, titania of Table 1 and sintering aid of 9% by weight in a ball mill, which was crushed and mixed with a binder and toluene.
After adding butyl acetate, etc., it is defoamed and aged to form a green sheet, and this green sheet is laminated on a support substrate which is also made into a green sheet and has an electrode layer such as tungsten or molybdenum printed on its upper surface. It was obtained by firing at 1600 ° C. using an atmosphere gas as a mixed gas of hydrogen and nitrogen.

【0021】[0021]

【表1】[Table 1]

【0022】(表1)からも明らかなように、本発明に
よれば静電チャックの絶縁層を、アルミナとコランダム
構造の遷移金属酸化コランダム構造の遷移金属酸化物物
との固溶体粒子及び固溶体粒子の粒界に存在するガラス
で構成するか、或いはアルミナとコランダム構造の遷移
金属酸化物との固溶体粒子、固溶体粒子の粒界に存在す
るガラス及び固溶体粒子の粒界に析出する2重量%以下
の遷移金属酸化物から構成したので、製作時に絶縁層の
体積固有抵抗を任意に幅広く調整できるので、使用温度
に合せて安定した静電特性を発揮する静電チャックが得
られる。
As is clear from Table 1, solid particles and solid solution particles of alumina and a transition metal oxide having a corundum structure and a transition metal oxide having a corundum structure are used as the insulating layer of the electrostatic chuck according to the present invention. Or a solid solution particle of alumina and a transition metal oxide having a corundum structure, glass existing in the grain boundary of the solid solution particle and 2% by weight or less precipitated in the grain boundary of the solid solution particle. Since it is made of a transition metal oxide, the volume resistivity of the insulating layer can be adjusted to a wide range at the time of manufacturing, so that an electrostatic chuck that exhibits stable electrostatic characteristics according to the operating temperature can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】静電チャックの等価回路を示す図FIG. 1 is a diagram showing an equivalent circuit of an electrostatic chuck.

【図2】絶縁層の拡大模式図FIG. 2 is an enlarged schematic diagram of an insulating layer.

【図3】アルミナ(Al23)とクロミア(Cr23)の
状態図
[Fig. 3] Phase diagram of alumina (Al 2 O 3 ) and chromia (Cr 2 O 3 ).

【図4】クロミアの添加割合と体積固有抵抗との関係を
表すグラフ
FIG. 4 is a graph showing the relationship between the addition ratio of chromia and the volume resistivity.

【図5】体積固有抵抗と電界強度との関係を示すグラフFIG. 5 is a graph showing the relationship between volume resistivity and electric field strength.

【図6】別実施例に係る絶縁層の拡大模式図FIG. 6 is an enlarged schematic view of an insulating layer according to another embodiment.

【図7】チタニア(TiO2)濃度と体積固有抵抗との関
係を示すグラフ
FIG. 7 is a graph showing the relationship between titania (TiO 2 ) concentration and volume resistivity.

【図8】チタニア(TiO2)濃度と絶縁体の体積固有抵
抗及び電界強度との関係を示すグラフ
FIG. 8 is a graph showing the relationship between the titania (TiO 2 ) concentration and the volume resistivity of the insulator and the electric field strength.

【符号の説明】[Explanation of symbols]

1…基板、2…絶縁層、3…電極、21…固溶体粒子、
22…ガラス、23…析出物。
1 ... Substrate, 2 ... Insulating layer, 3 ... Electrode, 21 ... Solid solution particles,
22 ... Glass, 23 ... Precipitate.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 絶縁層内に内部電極を設けた静電チャッ
クにおいて、前記絶縁層はアルミナとコランダム構造の
遷移金属酸化コランダム構造の遷移金属酸化物物との固
溶体粒子及び固溶体粒子の粒界に存在するガラスからな
ることを特徴とする静電チャック。
1. An electrostatic chuck in which an internal electrode is provided in an insulating layer, wherein the insulating layer is formed on a solid solution particle of alumina and a transition metal oxide of a corundum structure and a transition metal oxide of a corundum structure, and a grain boundary of the solid solution particle. An electrostatic chuck characterized by being made of existing glass.
【請求項2】 絶縁層内に内部電極を設けた静電チャッ
クにおいて、前記絶縁層はアルミナとコランダム構造の
遷移金属酸化物との固溶体粒子、固溶体粒子の粒界に存
在するガラス及び固溶体粒子の粒界に析出する2重量以
下の遷移金属酸化物からなることを特徴とする静電チャ
ック。
2. An electrostatic chuck in which an internal electrode is provided in an insulating layer, wherein the insulating layer comprises solid solution particles of alumina and a transition metal oxide having a corundum structure, and glass and solid solution particles existing at a grain boundary of the solid solution particles. An electrostatic chuck comprising 2 weight or less of a transition metal oxide deposited on a grain boundary.
【請求項3】 前記固溶体粒子を構成する遷移金属酸化
物はクロミア(Cr23)であることを特徴とする請求
項1に記載の静電チャック。
3. The electrostatic chuck according to claim 1, wherein the transition metal oxide forming the solid solution particles is chromia (Cr 2 O 3 ).
【請求項4】 前記固溶体粒子を構成する遷移金属酸化
物はクロミア(Cr23)であり、固溶体粒子の粒界に
析出する遷移金属酸化物はチタニア(TiO2)であるこ
とを特徴とする請求項2に記載の静電チャック。
4. The transition metal oxide constituting the solid solution particles is chromia (Cr 2 O 3 ), and the transition metal oxide precipitated at the grain boundaries of the solid solution particles is titania (TiO 2 ). The electrostatic chuck according to claim 2.
【請求項5】 前記絶縁層の体積固有抵抗値は1013Ω
cm以下であることを特徴とする請求項1〜4に記載の
静電チャック。
5. The volume resistivity of the insulating layer is 10 13 Ω.
The electrostatic chuck according to any one of claims 1 to 4, wherein the electrostatic chuck has a size of cm or less.
JP35012991A 1991-12-10 1991-12-10 Electrostatic chuck Expired - Lifetime JP3084869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35012991A JP3084869B2 (en) 1991-12-10 1991-12-10 Electrostatic chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35012991A JP3084869B2 (en) 1991-12-10 1991-12-10 Electrostatic chuck

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2000058856A Division JP2000286333A (en) 2000-01-01 2000-03-03 Electrostatic chuck

Publications (2)

Publication Number Publication Date
JPH05211228A true JPH05211228A (en) 1993-08-20
JP3084869B2 JP3084869B2 (en) 2000-09-04

Family

ID=18408427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35012991A Expired - Lifetime JP3084869B2 (en) 1991-12-10 1991-12-10 Electrostatic chuck

Country Status (1)

Country Link
JP (1) JP3084869B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10107133A (en) * 1996-09-30 1998-04-24 Kyocera Corp Electrostatic chuck
WO2000072376A1 (en) * 1999-05-25 2000-11-30 Toto Ltd. Electrostatic chuck and treating device
JP2006253703A (en) * 2006-04-07 2006-09-21 Toto Ltd Electrostatic chuck and insulating substrate electrostatic attraction treatment method
US7450365B2 (en) 2005-11-15 2008-11-11 Toto Ltd. Electrostatic chuck
US7907383B2 (en) 2005-11-15 2011-03-15 Toto Ltd. Electrostatic chuck

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10107133A (en) * 1996-09-30 1998-04-24 Kyocera Corp Electrostatic chuck
WO2000072376A1 (en) * 1999-05-25 2000-11-30 Toto Ltd. Electrostatic chuck and treating device
EP1852907A1 (en) * 1999-05-25 2007-11-07 Toto Ltd. Electrostatic chuck and processing apparatus
US7450365B2 (en) 2005-11-15 2008-11-11 Toto Ltd. Electrostatic chuck
US7907383B2 (en) 2005-11-15 2011-03-15 Toto Ltd. Electrostatic chuck
JP2006253703A (en) * 2006-04-07 2006-09-21 Toto Ltd Electrostatic chuck and insulating substrate electrostatic attraction treatment method

Also Published As

Publication number Publication date
JP3084869B2 (en) 2000-09-04

Similar Documents

Publication Publication Date Title
JP2938679B2 (en) Ceramic electrostatic chuck
JP2865472B2 (en) Electrostatic chuck
EP0615280B1 (en) Electrostatic chuck
US6641939B1 (en) Transition metal oxide doped alumina and methods of making and using
JP7063326B2 (en) Manufacturing method of composite sintered body, electrostatic chuck member, electrostatic chuck device and composite sintered body
JPH11111828A (en) Electrostatic sucking device
JPH11176920A (en) Electrostatic chuck device
KR100522976B1 (en) Electrostatic chuck
JPH05211228A (en) Electrostatic chuck
JP2975205B2 (en) Electrostatic chuck and method of manufacturing the same
EP0506537A1 (en) Electrostatic chuck
JPH09283607A (en) Electrostatic chuck
US5834106A (en) Ceramic substrate and producing process thereof, and a suction carrier for wafers using a ceramic wafer-chucking substrate
JP2000286333A (en) Electrostatic chuck
JP7402070B2 (en) Electrostatic chuck, substrate fixing device
KR100279149B1 (en) Blackout chuck
JP4241571B2 (en) Manufacturing method of bipolar electrostatic chuck
JP3275901B2 (en) Design method of electrostatic chuck
KR102453117B1 (en) Electrostatic chuck and substrate fixing device
JP2003188247A (en) Electrostatic chuck and manufacturing method thereof
JPH09293774A (en) Electrostatic chuck
JP4342002B2 (en) Electrostatic chuck and manufacturing method thereof
JPH11121599A (en) Electrostatic chuck base and its manufacturing method
JP3667077B2 (en) Electrostatic chuck
KR100432639B1 (en) Process for Providing a Glass-Ceramic Dielectric Layer on a Ceramic Substrate and Electrostatic Chuck Made by the Process

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000606

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 12