JP2000286333A - Electrostatic chuck - Google Patents

Electrostatic chuck

Info

Publication number
JP2000286333A
JP2000286333A JP2000058856A JP2000058856A JP2000286333A JP 2000286333 A JP2000286333 A JP 2000286333A JP 2000058856 A JP2000058856 A JP 2000058856A JP 2000058856 A JP2000058856 A JP 2000058856A JP 2000286333 A JP2000286333 A JP 2000286333A
Authority
JP
Japan
Prior art keywords
electrostatic chuck
insulating layer
solid solution
alumina
transition metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000058856A
Other languages
Japanese (ja)
Inventor
Tetsuo Kitabayashi
徹夫 北林
Toshiya Watabe
俊也 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2000058856A priority Critical patent/JP2000286333A/en
Publication of JP2000286333A publication Critical patent/JP2000286333A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To display a stabilized electrostatic characteristic matching the temperature used. SOLUTION: The insulating layer of an electrostatic chuck consists of the solid solution particles 21 of alumina and a transition metal oxide and the glass 22, wherein the solid solution particles are present. As the transition metal oxide, whose substance forms a solid solution with alumina such as a chromium structure similar to alumina crystal structure, can be enumerated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は半導体ウエハ等の被吸着
物を静電力で吸着固定する静電チャックに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrostatic chuck for attracting and fixing an object such as a semiconductor wafer by electrostatic force.

【0002】[0002]

【従来の技術】減圧雰囲気において半導体ウエハにプラ
ズマエッチング、CVD、イオンプレーティング等の処
理を行なう際のウエハの固定治具として基板と絶縁層
(誘電層)との間に内部電極を設けた静電チャックが用
いられている。
2. Description of the Related Art An internal electrode is provided between a substrate and an insulating layer (dielectric layer) as a jig for fixing a semiconductor wafer to a process such as plasma etching, CVD, or ion plating in a reduced pressure atmosphere. An electric chuck is used.

【0003】この静電チャックに要求される特性は、電
圧を印加している間は大きな吸着力を発生して被吸着物
の落下等を防止し、電圧印加を解除したならば直ちに吸
着力を小さくして被吸着物を容易に取外すことができる
ようにすることである。
[0003] The characteristics required of this electrostatic chuck are that, while a voltage is applied, a large suction force is generated to prevent the object to be sucked from dropping, etc., and immediately after the voltage application is released, the suction force is reduced. The object is to reduce the size so that the object can be easily removed.

【0004】吸着力を高める手段としては絶縁層の比誘
電率を大きくする(特公昭60−59104号、特公昭
62−19060号)、絶縁層の厚さを制御する(特開
昭57−64950号)、絶縁層の体積固有抵抗を所定
の範囲にする(特公昭61−14660号、特開平2−
22166号)等の手段があり、被吸着物の取外しを容
易にする手段としてはチャック表面と被吸着物との間に
ヘリウムガスを吹込む(実開平2−120831号)、
吸着時の電圧とは逆極性の電圧を印加する(特公平2−
63304号)等の手段がある。
As means for increasing the attraction force, the relative dielectric constant of the insulating layer is increased (Japanese Patent Publication No. 60-59104, Japanese Patent Publication No. 62-19060), and the thickness of the insulating layer is controlled (Japanese Patent Laid-Open No. 57-64950). ), The volume resistivity of the insulating layer is set in a predetermined range (Japanese Patent Publication No. 61-14660,
22166) and the like, and as a means for easily removing the object to be adsorbed, helium gas is blown between the chuck surface and the object to be adsorbed (Japanese Utility Model Laid-Open No. 2-120831).
A voltage having a polarity opposite to that of the voltage at the time of adsorption is applied.
No. 63304).

【0005】上述した従来法のうち吸着力を高める手段
は絶縁層のみに着目しており、吸着力が高くなっても残
留吸着力も大きくなる傾向がある。また、残留吸着力が
減衰し、被吸着物が容易に取り外せるまでには60秒以
上もかかり、被吸着物を加工処理後、直ちに取り外した
い場合に対応できず、このため被吸着物の取外しを容易
にするには別装置や通常の操作の他に新たな操作を付加
しなければならないという不利があり、特に低温下での
使用に問題がある。
Among the conventional methods described above, the means for increasing the attraction force focuses only on the insulating layer, and there is a tendency that even if the attraction force increases, the residual attraction force also increases. Also, it takes more than 60 seconds before the residual adsorbing force is reduced and the object to be adsorbed can be easily removed, and it is not possible to cope with a case where the object to be adsorbed is to be immediately removed after processing, and therefore, it is necessary to remove the object to be adsorbed. To make it easier, there is a disadvantage that a new operation must be added in addition to another device or a normal operation, and there is a problem particularly in use at a low temperature.

【0006】そこで本発明者は図1に示すように、基板
1上に絶縁層2を形成し、これら基板1と絶縁層2の間
に電極3を形成し、この電極3をリード線4を介して直
流電源5に接続し、半導体ウエハWはアースと直接接続
されているか、またはプラズマによる電気的接続をして
いる静電チャックを想定し、この静電チャックの等価回
路に着目し、この等価回路から減衰時間ts(残留静電
力が飽和静電力に対し98%減衰するのに要する時間)
と、静電チャックの使用温度における前記絶縁層の体積
固有抵抗ρ(Ωm)、静電チャックの使用温度における
前記絶縁層の比誘電率εr、内部電極と絶縁層表面との
間隔d(m)及び被吸着物と絶縁層表面とのギャップδ
(m)との関係を明らかにした。この関係を以下の(数
1)に示す。
Therefore, as shown in FIG. 1, the present inventors formed an insulating layer 2 on a substrate 1, formed an electrode 3 between the substrate 1 and the insulating layer 2, and connected the electrode 3 to a lead wire 4. It is assumed that the semiconductor wafer W is connected to the DC power supply 5 via a direct connection, and the semiconductor wafer W is directly connected to the ground or electrically connected by plasma. From the equivalent circuit, the decay time t s (the time required for the residual electrostatic force to attenuate 98% of the saturated electrostatic force)
And the volume resistivity ρ (Ωm) of the insulating layer at the operating temperature of the electrostatic chuck, the relative permittivity ε r of the insulating layer at the operating temperature of the electrostatic chuck, and the distance d (m) between the internal electrode and the surface of the insulating layer. ) And the gap δ between the substance to be adsorbed and the surface of the insulating layer
(M) was clarified. This relationship is shown in the following (Equation 1).

【0007】[0007]

【数1】 (Equation 1)

【0008】[0008]

【発明が解決しようとする課題】上記の(数1)から静
電チャックの使用温度における被吸着物の着脱性は、絶
縁層の体積固有抵抗に大きく依存していることが分る。
即ち、使用温度に拘らず安定した静電特性を発揮するに
は、静電チャックを製作する時に絶縁層の体積固有抵抗
を任意に幅広く調整し得ることが必要である。
From the above (Equation 1), it can be seen that the detachability of the object at the operating temperature of the electrostatic chuck largely depends on the volume resistivity of the insulating layer.
That is, in order to exhibit stable electrostatic characteristics irrespective of the use temperature, it is necessary that the volume resistivity of the insulating layer can be arbitrarily and widely adjusted when manufacturing the electrostatic chuck.

【0009】しかしながら、従来の静電チャックの絶縁
層(誘電体層)を構成する材料はその体積固有抵抗を任
意に幅広く調整し得ることができない。例えば、アルミ
ナに遷移金属酸化物としてチタニアを添加することが提
案されているが、チタニアの添加量が多くなると、アル
ミナ粒子間に析出する複合酸化物粒子が増加し、電気伝
導特性の電界強度依存性が顕著になる。つまりある電界
強度を境にして体積固有抵抗が急激に減少し、所定の静
電特性が維持できなくなる。
However, the material constituting the insulating layer (dielectric layer) of the conventional electrostatic chuck cannot adjust its volume resistivity arbitrarily and widely. For example, it has been proposed to add titania as a transition metal oxide to alumina.However, when the added amount of titania increases, the amount of composite oxide particles precipitated between alumina particles increases, and the electric conduction characteristics depend on the electric field strength. The nature becomes remarkable. That is, the volume specific resistance sharply decreases at a certain electric field intensity, and the predetermined electrostatic characteristics cannot be maintained.

【0010】[0010]

【課題を解決するための手段】上記課題を解決すべく本
発明は、絶縁層内に内部電極を設けた静電チャックにお
いて、前記絶縁層はアルミナとコランダム構造のクロミ
ア(Cr23)との固溶体粒子及び固溶体粒子の粒界に
析出する遷移金属酸化物からなる構成とした。上記構成
とすることで、静電チャックの体積抵抗率を108〜1
12Ωcmにすることができる。また、固溶体粒子の粒
界に析出する遷移金属酸化物としては、チタニア(Ti
2)が挙げられ、その割合は2重量%以下が適当であ
る。
According to the present invention, there is provided an electrostatic chuck provided with an internal electrode in an insulating layer, wherein the insulating layer comprises alumina and chromia (Cr 2 O 3 ) having a corundum structure. And a transition metal oxide precipitated at the grain boundaries of the solid solution particles. With the above configuration, the volume resistivity of the electrostatic chuck is set to 10 8 to 1
It can be set to 0 12 Ωcm. Further, as transition metal oxides precipitated at the grain boundaries of solid solution particles, titania (Ti
O 2 ), and the ratio is suitably 2% by weight or less.

【0011】[0011]

【作用】遷移金属酸化物をコランダム構造のものとする
と、このコランダム構造はアルミナの結晶構造と類似し
ているため、アルミナと容易に固溶体を作る。
When the transition metal oxide has a corundum structure, since the corundum structure is similar to the crystal structure of alumina, a solid solution easily forms with alumina.

【0012】[0012]

【実施例】以下に本発明の実施例を添付図面に基づいて
説明する。ここで、図1は本発明に係る静電チャックの
等価回路を示す図、図2は本発明の静電チャックの絶縁
層の拡大模式図である。
Embodiments of the present invention will be described below with reference to the accompanying drawings. Here, FIG. 1 is a diagram showing an equivalent circuit of the electrostatic chuck according to the present invention, and FIG. 2 is an enlarged schematic diagram of an insulating layer of the electrostatic chuck according to the present invention.

【0013】本発明に係る静電チャックは図1にも示し
たように、基板1上に絶縁層2を形成し、これら基板1
と絶縁層2の間に電極3を形成し、この電極3をリード
線4を介して直流電源5に接続し、半導体ウエハWはア
ースと直接接続されているか、またはプラズマによる電
気的接続をしている。
In the electrostatic chuck according to the present invention, as shown in FIG. 1, an insulating layer 2 is formed on a substrate 1.
An electrode 3 is formed between the semiconductor wafer W and the insulating layer 2, and the electrode 3 is connected to a DC power supply 5 via a lead wire 4, and the semiconductor wafer W is directly connected to the ground or electrically connected by plasma. ing.

【0014】そして、絶縁層2は図2の拡大模式図から
も明らかなように、本発明に係る静電チャックの絶縁層
2は、アルミナと遷移金属酸化物との固溶体粒子21及
び固溶体粒子の粒界に存在するガラス22、及びチタニ
ア(コランダム構造でない遷移金属酸化物)の析出物2
3からなる。尚、ガラス22はバインダとして機能する
ものであり、静電チャックの特性に影響を及ぼすもので
はなく、ガラスなしでも焼結可能な場合には省いてもよ
い。
As is apparent from the enlarged schematic diagram of FIG. 2, the insulating layer 2 of the electrostatic chuck according to the present invention is made of solid solution particles 21 of alumina and transition metal oxide and solid solution particles of solid metal particles. Glass 22 present at grain boundaries and precipitate 2 of titania (transition metal oxide not having a corundum structure)
Consists of three. The glass 22 functions as a binder, does not affect the characteristics of the electrostatic chuck, and may be omitted if sintering can be performed without glass.

【0015】ここで、遷移金属酸化物としてはアルミナ
との間で固溶体を作るもの、具体的にはアルミナと結晶
構造が類似するコランダム構造の結晶構造となるクロミ
ア(Cr23)が好ましい。尚、図3はアルミナ(Al2
3)とクロミア(Cr23)の状態図であり、この図か
らも明らかなように完全固溶することが分る。
Here, as the transition metal oxide, one that forms a solid solution with alumina, specifically, chromia (Cr 2 O 3 ) having a corundum crystal structure similar to alumina is preferable. FIG. 3 shows alumina (Al 2
FIG. 3 is a phase diagram of O 3 ) and chromia (Cr 2 O 3 ), and it can be seen from FIG.

【0016】ところで、アルミナの体積固有抵抗は10
14Ωcm以上で、クロミアの体積固有抵抗は106Ωc
mと推定され、更に前記したようにアルミナとクロミア
は完全固溶するので、クロミアの添加割合を変化させる
ことで絶縁層2の体積固有抵抗を調整できる。図4はク
ロミアの添加割合と体積固有抵抗との関係を表すグラフ
であり、このグラフからも絶縁層2の体積固有抵抗を所
定範囲で任意に調整できることが分る。
The volume resistivity of alumina is 10
Above 14 Ωcm, chromia volume resistivity is 10 6 Ωc
m, and alumina and chromia are completely dissolved as described above, so that the volume resistivity of the insulating layer 2 can be adjusted by changing the proportion of chromia added. FIG. 4 is a graph showing the relationship between the addition ratio of chromia and the volume resistivity. It can be seen from this graph that the volume resistivity of the insulating layer 2 can be arbitrarily adjusted within a predetermined range.

【0017】また、図2の拡大模式図に示すような構造
の絶縁層は、固溶体粒子21の方が粒界のガラス22よ
り抵抗が低くなるため、電荷は固溶体粒子21内を通っ
て伝導することとなる。この場合図5に示すように電界
強度が大きくなっても電流はオームの法則に準じる。よ
って急激な電流増加による絶縁破壊が起ることがなく、
シリコンウェハへの損傷を防ぐことができる。
In the insulating layer having a structure as shown in the enlarged schematic diagram of FIG. 2, since the solid solution particles 21 have lower resistance than the glass 22 at the grain boundary, electric charges are conducted through the solid solution particles 21. It will be. In this case, as shown in FIG. 5, even when the electric field strength increases, the current follows Ohm's law. Therefore, there is no dielectric breakdown due to a sudden increase in current,
Damage to the silicon wafer can be prevented.

【0018】図6はチタニア(TiO2)濃度と体積固有
抵抗との関係を示すグラフ、図はチタニア(TiO2
濃度と絶縁体の体積固有抵抗及び電界強度との関係を示
すグラフであり、これらグラフからチタニアを添加する
場合には2重量%以下としないと、体積固有抵抗を10
8Ωcm〜1012Ωcmの範囲に制御するのが困難で、
体積固有抵抗の電界依存性が大きくなって急激な電流増
加による絶縁破壊が起りやすくなることが分る。
FIG. 6 is a graph showing the relationship between titania (TiO 2 ) concentration and volume resistivity, and FIG. 7 is a graph showing titania (TiO 2 ).
It is a graph which shows the relationship between a density | concentration, the volume resistivity of an insulator, and an electric field strength. When titania is added, unless it is 2 weight% or less, a volume resistivity will be 10%.
It is difficult to control in the range of 8 Ωcm to 10 12 Ωcm,
It can be seen that the electric field dependence of the volume resistivity increases, and dielectric breakdown due to a sudden increase in current is likely to occur.

【0019】次に本発明に係る静電チャックの製造方法
を述べる。先ず、原料としてアルミナ粉末及びコランダ
ム構造の遷移金属酸化物(クロミア)更にはチタニア及
び焼結助剤を用意し、これらを秤量してボールミルで混
合粉砕したものをバインダー及びトルエン、酢酸ブチル
等を加えた後、脱泡、熟成を経てグリーンシートを成形
し、このグリーンシートを電極層を印刷した未焼成の支
持基板上に積層し、還元雰囲気で1500〜1650℃
(通常1600℃)で1〜7時間焼成(通常2時間)し
て静電チャックを得る。
Next, a method for manufacturing the electrostatic chuck according to the present invention will be described. First, alumina powder, a transition metal oxide having a corundum structure (chromia), titania, and a sintering aid are prepared as raw materials, weighed, mixed and pulverized with a ball mill, and a binder, toluene, butyl acetate, etc. are added thereto. After that, a green sheet is formed through defoaming and aging, and the green sheet is laminated on an unsintered supporting substrate on which an electrode layer is printed, and is heated to 1500 to 1650 ° C. in a reducing atmosphere.
(Normally 1600 ° C.) for 1 to 7 hours (normally 2 hours) to obtain an electrostatic chuck.

【0020】ここで、コランダム構造の遷移金属酸化物
の添加割合は1〜50重量%とする。これは1重量%未
満では添加の効果が表れず、50重量%を越えると十分
な焼成が行なえなくなるからである。また、焼結助剤の
種類としては珪砂、粘土、ガラスフリット、アルカリ土
類金属の炭酸塩や硝酸塩等を用い、その添加割合は6〜
12重量%とする。これは6重量%未満ではセラミック
スの収縮が低下し耐電圧の低下の原因となり、12重量
%を越えると低温で液層が生じて十分な焼成が行なえな
くなるからである。
Here, the addition ratio of the transition metal oxide having a corundum structure is 1 to 50% by weight. This is because if it is less than 1% by weight, the effect of the addition is not exhibited, and if it exceeds 50% by weight, sufficient firing cannot be performed. In addition, as a kind of the sintering aid, silica sand, clay, glass frit, carbonate or nitrate of alkaline earth metal is used, and the addition ratio is 6 to
12% by weight. This is because if the amount is less than 6% by weight, the shrinkage of the ceramic decreases, causing a decrease in the withstand voltage.

【0021】[0021]

【発明の効果】(表1)は本発明に係る静電チャックと
従来の静電チャックの絶縁層の体積固有抵抗、着脱時
間、洩れ電流(6インチウェハを吸着した時)を電界強
度を1.67×106V/mとして測定した値である。
尚、測定に用いた静電チャックは、表1の重量%のアル
ミナ、クロミア、チタニアと9重量%の焼結助剤をボー
ルミルで混合粉砕したものをバインダー及びトルエン、
酢酸ブチル等を加えた後、脱泡、熟成を経てグリーンシ
ートを成形し、このグリーンシートを、同様にグリーン
シート化され且つ上面にタングステン、モリブデン等の
電極層を印刷した支持基板上に積層し、雰囲気ガスを水
素と窒素の混合ガスとして1600℃で焼成して得た。
[Effects of the invention] (Table 1) shows the volume resistivity of the insulating layer of the electrostatic chuck according to the present invention and the conventional electrostatic chuck, the attaching / detaching time, the leakage current (when a 6-inch wafer is sucked) and the electric field strength of 1 It is a value measured as .67 × 10 6 V / m.
The electrostatic chuck used in the measurement was prepared by mixing and pulverizing alumina, chromia, titania and 9% by weight of a sintering aid in Table 1 by a ball mill with a binder and toluene.
After adding butyl acetate, etc., a green sheet is formed through defoaming and aging, and this green sheet is laminated on a supporting substrate which is similarly formed into a green sheet and has an electrode layer of tungsten, molybdenum, etc. printed on the upper surface. The mixture was obtained by baking at 1600 ° C. as a mixed gas of hydrogen and nitrogen as an atmosphere gas.

【0022】[0022]

【表1】 [Table 1]

【0023】(表1)からも明らかなように、本発明に
よれば静電チャックの絶縁層を、アルミナとコランダム
構造のクロミア(Cr23)との固溶体粒子及び固溶体
粒子の粒界に析出する遷移金属酸化物からなる構成とし
たので、製作時に絶縁層の体積固有抵抗を任意に幅広く
調整でき、また、使用温度に合せて安定した静電特性を
発揮する静電チャックが得られる。
As is clear from Table 1, according to the present invention, the insulating layer of the electrostatic chuck is formed on the solid solution particles of alumina and chromia (Cr 2 O 3 ) having a corundum structure and the grain boundaries of the solid solution particles. Since the structure is made of the deposited transition metal oxide, the volume resistivity of the insulating layer can be arbitrarily and broadly adjusted at the time of manufacture, and an electrostatic chuck exhibiting stable electrostatic characteristics according to the use temperature can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】静電チャックの等価回路を示す図FIG. 1 is a diagram showing an equivalent circuit of an electrostatic chuck.

【図2】本発明の静電チャックの絶縁層の拡大模式図FIG. 2 is an enlarged schematic view of an insulating layer of the electrostatic chuck according to the present invention.

【図3】アルミナ(Al23)とクロミア(Cr23)の
状態図
FIG. 3 Phase diagram of alumina (Al 2 O 3 ) and chromia (Cr 2 O 3 )

【図4】クロミアの添加割合と体積固有抵抗との関係を
表すグラフ
FIG. 4 is a graph showing the relationship between the chromia addition ratio and the volume resistivity.

【図5】体積固有抵抗と電界強度との関係を示すグラフFIG. 5 is a graph showing a relationship between volume resistivity and electric field strength.

【図6】チタニア(TiO2)濃度と体積固有抵抗との関
係を示すグラフ
FIG. 6 is a graph showing the relationship between titania (TiO 2 ) concentration and volume resistivity.

【図7】チタニア(TiO2)濃度と絶縁体の体積固有抵
抗及び電界強度との関係を示すグラフ
FIG. 7 is a graph showing a relationship between titania (TiO 2 ) concentration, volume resistivity of an insulator, and electric field strength.

【符号の説明】[Explanation of symbols]

1…基板、2…絶縁層、3…電極、21…固溶体粒子、
22…ガラス、23…析出物。
DESCRIPTION OF SYMBOLS 1 ... Substrate, 2 ... Insulating layer, 3 ... Electrode, 21 ... Solid solution particle,
22: glass, 23: precipitate.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 絶縁層内に内部電極を設けた静電チャッ
クにおいて、前記絶縁層はアルミナとコランダム構造の
クロミア(Cr23)との固溶体粒子及び固溶体粒子の
粒界に析出する遷移金属酸化物からなることを特徴とす
る静電チャック。
In an electrostatic chuck having an internal electrode provided in an insulating layer, the insulating layer is formed of a solid solution particle of alumina and chromia (Cr 2 O 3 ) having a corundum structure and a transition metal deposited on a grain boundary of the solid solution particle. An electrostatic chuck comprising an oxide.
【請求項2】 請求項1に記載の静電チャックにおい
て、この静電チャックの体積抵抗率は108〜1012Ω
cmであることを特徴とする静電チャック。
2. The electrostatic chuck according to claim 1, wherein said electrostatic chuck has a volume resistivity of 10 8 to 10 12 Ω.
cm.
【請求項3】 請求項1に記載の静電チャックにおい
て、前記固溶体粒子の粒界に析出する遷移金属酸化物の
割合は2重量%以下であることを特徴とする静電チャッ
ク。
3. The electrostatic chuck according to claim 1, wherein a ratio of a transition metal oxide precipitated at a grain boundary of the solid solution particles is 2% by weight or less.
【請求項4】 請求項1乃至請求項3のいずれかに記載
の静電チャックにおいて、前記固溶体粒子の粒界に析出
する遷移金属酸化物はチタニア(TiO2)であることを
特徴とする静電チャック。
4. The electrostatic chuck according to claim 1, wherein the transition metal oxide deposited on the grain boundaries of the solid solution particles is titania (TiO 2 ). Electric chuck.
JP2000058856A 2000-01-01 2000-03-03 Electrostatic chuck Pending JP2000286333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000058856A JP2000286333A (en) 2000-01-01 2000-03-03 Electrostatic chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000058856A JP2000286333A (en) 2000-01-01 2000-03-03 Electrostatic chuck

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP35012991A Division JP3084869B2 (en) 1991-12-10 1991-12-10 Electrostatic chuck

Publications (1)

Publication Number Publication Date
JP2000286333A true JP2000286333A (en) 2000-10-13

Family

ID=18579389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000058856A Pending JP2000286333A (en) 2000-01-01 2000-03-03 Electrostatic chuck

Country Status (1)

Country Link
JP (1) JP2000286333A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002299426A (en) * 2001-03-29 2002-10-11 Toto Ltd Electrostatic chuck unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002299426A (en) * 2001-03-29 2002-10-11 Toto Ltd Electrostatic chuck unit

Similar Documents

Publication Publication Date Title
JP2938679B2 (en) Ceramic electrostatic chuck
JP7063326B2 (en) Manufacturing method of composite sintered body, electrostatic chuck member, electrostatic chuck device and composite sintered body
US6641939B1 (en) Transition metal oxide doped alumina and methods of making and using
JP5872998B2 (en) Alumina sintered body, member comprising the same, and semiconductor manufacturing apparatus
EP0615280B1 (en) Electrostatic chuck
JPH05235152A (en) Electrostatic chuck
CN110683856B (en) Conductive porous ceramic substrate and method for producing same
JPH11111828A (en) Electrostatic sucking device
JPH11176920A (en) Electrostatic chuck device
JP6860117B2 (en) Manufacturing method of composite sintered body, electrostatic chuck member, electrostatic chuck device and composite sintered body
JP2002509347A (en) Electric field generator with bulk resistive spacer
JP3808286B2 (en) Electrostatic chuck
JP3084869B2 (en) Electrostatic chuck
US20210335644A1 (en) Ceramics substrate , method of manufacturing the same, electrostatic chuck, substrate fixing device, and semiconductor device package
WO2012176714A1 (en) Ceramic powder, semiconductor ceramic capacitor and method for manufacturing same
JP2000286333A (en) Electrostatic chuck
JPH09283606A (en) Electrostatic chuck
JPH09283607A (en) Electrostatic chuck
JP2013243281A (en) Method for manufacturing multilayer semiconductor ceramic capacitor and multilayer semiconductor ceramic capacitor
JP2005294648A (en) Electrostatic chuck and method for manufacturing the same
JP4241571B2 (en) Manufacturing method of bipolar electrostatic chuck
JP7402070B2 (en) Electrostatic chuck, substrate fixing device
JP2003188247A (en) Electrostatic chuck and manufacturing method thereof
KR100279149B1 (en) Blackout chuck
JPH11121599A (en) Electrostatic chuck base and its manufacturing method