JPH11121599A - Electrostatic chuck base and its manufacturing method - Google Patents

Electrostatic chuck base and its manufacturing method

Info

Publication number
JPH11121599A
JPH11121599A JP9286365A JP28636597A JPH11121599A JP H11121599 A JPH11121599 A JP H11121599A JP 9286365 A JP9286365 A JP 9286365A JP 28636597 A JP28636597 A JP 28636597A JP H11121599 A JPH11121599 A JP H11121599A
Authority
JP
Japan
Prior art keywords
electrostatic chuck
dielectric
dielectric layer
tio
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9286365A
Other languages
Japanese (ja)
Inventor
Shinya Naruki
紳也 成木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9286365A priority Critical patent/JPH11121599A/en
Publication of JPH11121599A publication Critical patent/JPH11121599A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an electrostatic chuck base of extremely high suction force in vacuum and in atmosphere. SOLUTION: In an electrostatic chuck substrate, consisting of an insulator substrate 3, a conductive layer 2, and a dielectric layer 1, the dielectric layer is the electrostatic chuck substrate having a composition of Ti1-x MxO2 . Here, M is a pentavalent metal element (x=1×10<-5> -2×10<-4> ) of Ta, Nb, or Sb or a hoxavalent metal element (x=1×10<-5> -1×10<-4> ) of W or Mo. By substituting M, the volumetric specific resistivity of the dielectric can be controlled, while being set to a value of 108-1,012 Ω.cm, and attractive force is manifested. After the dielectric mixes and forms TiO2 and M2 O5 or MO3 , it is calcined at 1,200-1,600 deg.C in the atmosphere for manufacturing.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体製造装置等
においてウェーハ等を静電的に吸着保持したり、搬送す
るための静電チャック基盤に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrostatic chuck base for electrostatically holding and transporting a wafer or the like in a semiconductor manufacturing apparatus or the like.

【0002】[0002]

【従来の技術】従来より、半導体製造用装置において、
Siウェーハ等を成膜やエッチングするためにはウェー
ハの平坦度を保ちながら保持する必要があり、このよう
な手段としては機械方式、真空吸着方式、静電吸着方式
が提案されている。これらの内、静電吸着方式は静電チ
ャックによりウェーハを保持する方法であり、ウェーハ
加工面の平坦度に優れ、真空中での使用も可能であるた
め多用されつつある。
2. Description of the Related Art Conventionally, in semiconductor manufacturing equipment,
In order to form or etch a Si wafer or the like, it is necessary to hold the wafer while maintaining its flatness. As such means, a mechanical system, a vacuum suction system, and an electrostatic suction system have been proposed. Among them, the electrostatic chucking method is a method of holding a wafer by an electrostatic chuck, and has been used widely because it has excellent flatness of a processed surface of a wafer and can be used in a vacuum.

【0003】従来の静電チャックは吸着力としてクーロ
ン力を利用したものと、ジョンセン・ラーベック力を利
用したものがある。クーロン力を利用した静電チャック
としては、誘電体としてCaTiO3 、PbTiO3
La2 3 系などを用いたものがある(例えば特公平8
−31517号公報など)。
Conventional electrostatic chucks include those utilizing Coulomb force as an attraction force and those utilizing Johnsen-Rahbek force. For an electrostatic chuck utilizing Coulomb force, CaTiO 3 , PbTiO 3
There is one using La 2 O 3 system or the like (for example,
No. 31517).

【0004】また、ジョンセン・ラーベック力は、誘電
体とウェーハとの界面の小さなギャップに微少電流が流
れ、帯電分極して誘起させことによって生じる力であ
り、誘電体の体積固有抵抗率が約1012Ω・cm以下に
なると発生する。ジョンセン・ラーベック力を利用した
静電チャックには、誘電体としてAl2 3 −TiO2
系、AlN系などを用いたものが知られている(例え
ば、特公平6−97675号公報、特開平8−5589
9号公報など)。
[0004] The Johnsen-Rahbek force is a force generated when a minute current flows through a small gap at the interface between a dielectric and a wafer and is induced by polarization and polarization. The dielectric material has a volume resistivity of about 1012 Ω. -Occurs when the size is less than cm. Al 2 O 3 —TiO 2 is used as a dielectric for an electrostatic chuck utilizing the Johnsen-Rahbek force.
A system using an AlN system or the like is known (for example, Japanese Patent Publication No. 6-97675, Japanese Patent Application Laid-Open No. H8-5589).
No. 9, etc.).

【0005】[0005]

【発明が解決しようとする課題】従来、吸着力としてク
ーロン力を利用した静電チャックは吸着力が低く、吸着
力を高めるために誘電率の高い強誘電体を用いると、残
留吸着力が強いためにウェーハが脱離しないという問題
点が有った。
Conventionally, an electrostatic chuck utilizing Coulomb force as an attraction force has a low attraction force, and if a ferroelectric material having a high dielectric constant is used to increase the attraction force, the residual attraction force is strong. Therefore, there is a problem that the wafer does not detach.

【0006】また、ジョンセン・ラーベック力を利用し
た静電チャックについては、真空中で使用した場合には
吸着力は強いものの、大気中で使用した場合には、誘電
体表面の水分の吸着により電流がリークし、吸着力が急
激に低下するという問題があった。
Further, an electrostatic chuck using the Johnsen-Rahbek force has a strong attraction force when used in a vacuum, but has a high electric current due to the adsorption of moisture on the dielectric surface when used in the air. However, there is a problem that the gas leaks and the adsorbing force is rapidly reduced.

【0007】[0007]

【課題を解決するための手段】本発明者らはTiO2
微量の5価または6価の金属イオンを固溶させたセラミ
ックスを誘電体として用いることにより、吸着力の高い
静電チャックを得られることを見い出し、本発明を完成
させるに至った。即ち、本発明の要旨は、以下の通りで
ある。
Means for Solving the Problems The present inventors have obtained an electrostatic chuck having a high attraction force by using, as a dielectric, a ceramic in which a trace amount of a pentavalent or hexavalent metal ion is dissolved in TiO 2. And found that the present invention was completed. That is, the gist of the present invention is as follows.

【0008】(1)誘電体層と、誘電体層の一主面に設
けられた導体層と、該導体層を被覆する絶縁体基盤とを
備えた静電チャックにおいて、前記誘電体層がTi1-x
x 2 (ここで、MはTa、Nb、Sbから選ばれる
少なくとも1つの元素)の組成を有する相対密度90%
以上のセラミックスであり、xが1×10-5〜2×10
-4の範囲であることを特徴とする静電チャック基盤。 (2)TiO2 とM2 5 (ここで、MはTa、Nb、
Sbから選ばれる少なくとも1つの元素)の粉末をTi
2 :M2 5 =1−x:x/2(x=1×10-5〜2
×10-4)のモル比で混合し、成形後、1200〜16
00℃の温度で大気中で焼成したセラミックスを誘電体
とする第(1)項記載の静電チャック基盤の製造方法。 (3)誘電体層と、誘電体層の一主面に設けられた導体
層と、該導体層を被覆する絶縁体基盤とを備えた静電チ
ャックにおいて、前記誘電体層がTi1-x x 2 (こ
こで、MはW、Moから選ばれる少なくとも1つの元
素)の組成を有する相対密度90%以上のセラミックス
であり、xが5×10-6〜1×10-4の範囲であること
を特徴とする静電チャック基盤。 (4)TiO2 とMO3 (ここで、MはW、Moから選
ばれる少なくとも1つの元素)の粉末をTiO2 :MO
3 =1−x:x(x=5×10-6〜1×10-4)のモル
比で混合し、成形後、1200〜1600℃の温度で大
気中で焼成したセラミックスを誘電体とする第(3)項
記載の静電チャック基盤の製造方法。 (5)誘電体層の一主面に設けられた導体層と、絶縁体
基盤とが接合剤により接合されていることを特徴とする
第(1)項あるいは第(3)項記載の静電チャック基
盤。
(1) An electrostatic chuck comprising a dielectric layer, a conductor layer provided on one main surface of the dielectric layer, and an insulator base covering the conductor layer, wherein the dielectric layer is made of Ti 1-x
90% relative density having a composition of M x O 2 (where M is at least one element selected from Ta, Nb and Sb)
X is 1 × 10 −5 to 2 × 10
An electrostatic chuck base characterized in the range of -4 . (2) TiO 2 and M 2 O 5 (where M is Ta, Nb,
Powder of at least one element selected from Sb)
O 2 : M 2 O 5 = 1−x: x / 2 (x = 1 × 10 −5 to 2
× 10 -4 ), and after molding, from 1200 to 16
The method for producing an electrostatic chuck substrate according to (1), wherein ceramics fired in the air at a temperature of 00 ° C. is used as a dielectric. (3) An electrostatic chuck including a dielectric layer, a conductor layer provided on one main surface of the dielectric layer, and an insulator base covering the conductor layer, wherein the dielectric layer is Ti 1-x A ceramic having a composition of M x O 2 (where M is at least one element selected from W and Mo) and having a relative density of 90% or more, and x is in the range of 5 × 10 -6 to 1 × 10 -4 . An electrostatic chuck base characterized by the following. (4) (where, M is W, at least one element selected from Mo) TiO 2 and MO 3 TiO powder 2: MO
3 = 1-x: x (x = 5 × 10 −6 to 1 × 10 −4 ), mixed at a molar ratio, molded, and fired in the air at a temperature of 1200 to 1600 ° C. as a dielectric. (3) The method for manufacturing an electrostatic chuck substrate according to (3). (5) The electrostatic element according to the above (1) or (3), wherein the conductor layer provided on one main surface of the dielectric layer and the insulator base are joined by a joining agent. Chuck base.

【0009】[0009]

【発明の実施の形態】以上の発明によれば、TiO2
所定量の5価または6価の金属イオンを固溶させること
により、体積固有抵抗率を108〜1012Ω・cmに制
御した誘電体が得られるため、ジョンセン・ラーベック
力による吸着力が発現する。加えて、誘電体の誘電率が
100程度と比較的高いため、クーロン力による吸着力
も発現し、大気中でも比較的高い吸着力を有する静電チ
ャックが得られる。
According to the above-mentioned invention, a predetermined amount of a pentavalent or hexavalent metal ion is dissolved in TiO 2 to form a dielectric material having a volume specific resistivity of 108 to 1012 Ω · cm. , A suction force due to the Johnsen-Rahbek force is developed. In addition, since the dielectric constant of the dielectric is relatively high, such as about 100, an attractive force due to Coulomb force is also exhibited, and an electrostatic chuck having a relatively high attractive force even in the atmosphere can be obtained.

【0010】純粋なTiO2 は絶縁体であり、体積固有
抵抗率が1013Ω・cm以上であるため、これを静電チ
ャックの誘電体として用いてもジョンセン・ラーベック
力による吸着力は小さい。しかし、Ti4+のサイトに5
価または6価の金属イオンを置換固溶させると、電荷補
償によりTi4+の一部が3価となり、Ti4+とTi3+
間のホッピング伝導が促進され抵抗が低下する。本発明
はこれを利用したものである。
Since pure TiO 2 is an insulator and has a specific volume resistivity of 1013 Ω · cm or more, even if it is used as a dielectric for an electrostatic chuck, the adsorption force due to the Johnsen-Rahbek force is small. However, 5 on the Ti 4+ site
When a monovalent or hexavalent metal ion is substituted and solid-dissolved, a part of Ti 4+ becomes trivalent by charge compensation, hopping conduction between Ti 4+ and Ti 3+ is promoted, and resistance is reduced. The present invention utilizes this.

【0011】本発明において誘電体の組成は、Ti1-x
x 2 において、5価金属イオン固溶の場合にはxを
1×10-5〜2×10-4の範囲に、6価金属イオン固溶
の場合にはxが5×10-6〜1×10-4の範囲にする必
要がある。xがこれらの範囲よりも小さい場合には、体
積固有抵抗率が1012Ω・cmよりも大きくなり、ジョ
ンセン・ラーベック力による吸着力が発現しないため、
吸着力が小さくなる。一方、xがこれらの範囲よりも大
きい場合には、体積固有抵抗が小さくなりすぎ、ウェー
ハにリーク電流が流れるため、実用上好ましくない。ま
た、誘電体の焼結密度は相対密度で90%以上である必
要がある。これよりも密度が低いと、耐電圧が低下した
り、大気中で使用した場合に水分が吸着しやすいため
に、吸着力が著しく低下する。
In the present invention, the composition of the dielectric is Ti 1-x
In M x O 2 , x is in the range of 1 × 10 −5 to 2 × 10 −4 in the case of solid solution of pentavalent metal ions, and x is 5 × 10 −6 in case of solid solution of hexavalent metal ions. It needs to be in the range of 〜1 × 10 -4 . When x is smaller than these ranges, the volume resistivity becomes larger than 1012 Ω · cm, and the adsorption force due to the Johnsen-Rahbek force does not appear.
Adsorption force decreases. On the other hand, when x is larger than these ranges, the volume resistivity is too small, and a leak current flows to the wafer, which is not practically preferable. Further, the sintered density of the dielectric must be 90% or more in relative density. If the density is lower than this, the withstand voltage decreases, and moisture is easily adsorbed when used in the atmosphere, so that the adsorbing power is significantly reduced.

【0012】本発明における誘電体は、TiO2 粉末と
5価または6価の金属酸化物粉末を所定量混合後、プレ
ス成形、CIP成形、ドクターブレード成形等により所
定形状に成形し、1200〜1600℃の温度で焼成し
て得られる。この際、焼成雰囲気は大気中とする必要が
ある。還元雰囲気で焼成した場合にはTi4+イオンがT
3+イオンに還元されるため、抵抗値が急激に下がり使
用できない。焼成温度は1200〜1600℃、好まし
くは1250〜1400℃で行うのが良い。焼成温度が
1200℃よりも低い場合には、TiO2 中に金属イオ
ンが固溶せず、所定の抵抗率を有するセラミックスが得
られない。また、1600℃よりも高い温度で焼成した
場合には、焼結密度が低下する。
The dielectric material of the present invention is prepared by mixing a predetermined amount of TiO 2 powder and a pentavalent or hexavalent metal oxide powder, and then molding into a predetermined shape by press molding, CIP molding, doctor blade molding or the like. It is obtained by firing at a temperature of ° C. At this time, the firing atmosphere must be in the air. When fired in a reducing atmosphere, Ti 4+
Since it is reduced to i 3+ ions, the resistance value drops rapidly and cannot be used. The firing temperature is 1200 to 1600 ° C, preferably 1250 to 1400 ° C. If the firing temperature is lower than 1200 ° C., metal ions do not form a solid solution in TiO 2 , and a ceramic having a predetermined resistivity cannot be obtained. In addition, when firing at a temperature higher than 1600 ° C., the sintered density decreases.

【0013】本発明の静電チャック基盤は、例えば誘電
体の成形体表面に電極用としてPtやPd−Pt、Ag
−Pd等の金属ペーストをスクリーン印刷した後、絶縁
体の成形体を重ね合わせて大気中で一体焼成する方法、
あるいは、請求項5記載の様に誘電体を焼成後、スクリ
ーン印刷やメッキ等で電極を付与した後、絶縁体基盤を
接合剤で接合する方法により得られる。接合剤としては
エポキシ樹脂等の有機系接着剤、ガラスや酸化物系の無
機系接合剤が使用される。以下、実施例に基づき本発明
を詳細に説明する。
The electrostatic chuck substrate of the present invention is, for example, provided with Pt, Pd-Pt, Ag for electrodes on the surface of a dielectric molded body.
A method of screen-printing a metal paste such as Pd or the like, then superimposing the molded body of the insulator and integrally firing in air;
Alternatively, it can be obtained by a method in which, after firing the dielectric, applying electrodes by screen printing, plating, or the like, and bonding the insulating substrate with a bonding agent. As a bonding agent, an organic bonding agent such as an epoxy resin, or a glass or oxide-based inorganic bonding agent is used. Hereinafter, the present invention will be described in detail based on examples.

【0014】[0014]

【実施例】【Example】

(実施例1〜7、比較例1〜5)純度99.9%のTi
2 とM2 5 (M:Ta、NbまたはSb)の粉体を
1−x:x/2のモル比になるよう秤量し、蒸留水、バ
インダー、分散剤を加えてボールミル混合した。スラリ
ーをスプレードライヤーで造粒し、粒径約70μmの造
粒粉とした。これを円盤状にCIP成形した後、所定温
度で焼成し、焼結体を得た。得られた焼結体を例えば直
径90mm、厚さ2mmの円盤状に加工し、誘電体とした。
(Examples 1 to 7, Comparative Examples 1 to 5) Ti having a purity of 99.9%
O 2 and M 2 O 5 (M: Ta , Nb or Sb) powder 1-x of: weighed so that the molar ratio of x / 2, distilled water, a binder, were mixed in a ball mill with addition of dispersants. The slurry was granulated with a spray drier to obtain granulated powder having a particle size of about 70 μm. This was CIP-molded into a disk shape, and then fired at a predetermined temperature to obtain a sintered body. The obtained sintered body was processed into a disk shape having a diameter of 90 mm and a thickness of 2 mm, for example, to obtain a dielectric.

【0015】誘電体1表面に銅をメッキにより付与し、
電極2とした。これに絶縁体基板3(アルミナ)をエポ
キシ樹脂により接着した。この際、絶縁体基板の中心に
はリード電極用として、あらかじめ穴を開けておいた。
最後に誘電体を300μmの厚さまで研削、ラップ加工
し、図1に示すような静電チャックを作製した。
Copper is applied to the surface of the dielectric 1 by plating,
Electrode 2 was used. The insulating substrate 3 (alumina) was bonded to this with an epoxy resin. At this time, a hole was previously formed in the center of the insulator substrate for a lead electrode.
Finally, the dielectric was ground and lapped to a thickness of 300 μm to produce an electrostatic chuck as shown in FIG.

【0016】この静電チャックに真空中(一部大気中)
で500Vの直流電圧を20秒間印加し、シリコンウェ
ーハを吸着したときの吸着力を測定した。その結果を表
1に示す。
A vacuum is applied to the electrostatic chuck (partially in the air).
, A DC voltage of 500 V was applied for 20 seconds, and the suction force when the silicon wafer was suctioned was measured. Table 1 shows the results.

【0017】[0017]

【表1】 [Table 1]

【0018】(実施例8〜13、比較例6〜9)純度9
9.9%のTiO2 とMO3 (M:WまたはMo)粉体
を1−x:xのモル比になるよう秤量し、実施例1〜7
の場合と同様に焼結体、静電チャックを作製し、吸着力
を測定した。その結果を表2に示す。
(Examples 8 to 13, Comparative Examples 6 to 9) Purity 9
9.9% of TiO 2 and MO 3 (M: W or Mo) powder 1-x: were weighed so that the molar ratio of x, Examples 1-7
A sintered body and an electrostatic chuck were prepared in the same manner as in the above case, and the attraction force was measured. Table 2 shows the results.

【0019】表1、表2より、本発明の静電チャックは
真空中だけではなく、大気中でも吸着力が非常に高いこ
とが分かる。なお、表1の比較例2、表2の比較例6は
比較的大きな吸着力を示したが、誘電体の抵抗値が低
く、ウェーハに流れるリーク電流が大きくなるため、実
用上好ましくない。
From Tables 1 and 2, it can be seen that the electrostatic chuck of the present invention has a very high attraction force not only in vacuum but also in air. Although Comparative Example 2 in Table 1 and Comparative Example 6 in Table 2 exhibited relatively large attraction, they are not practically preferable because the dielectric material has a low resistance value and the leakage current flowing through the wafer increases.

【0020】[0020]

【表2】 [Table 2]

【0021】[0021]

【発明の効果】以上説明した通り、本発明の静電チャッ
クを用いると、真空中、大気中で高い吸着力が得られ、
半導体製造装置等の部品として好適であり、産業上極め
て有益である。
As described above, when the electrostatic chuck of the present invention is used, a high suction force can be obtained in a vacuum and in the atmosphere.
It is suitable as a component of a semiconductor manufacturing device or the like, and is extremely useful in industry.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の静電チャック断面の概略を示す図であ
る。
FIG. 1 is a view schematically showing a cross section of an electrostatic chuck according to the present invention.

【符号の説明】[Explanation of symbols]

1 誘導体 2 電極 3 絶縁体 4 シリコンウェーハ DESCRIPTION OF SYMBOLS 1 Derivative 2 Electrode 3 Insulator 4 Silicon wafer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 誘電体層と、該誘電体層の一主面に設け
られた導体層と、該導体層を被覆する絶縁体基盤とを備
えた静電チャックにおいて、前記誘電体層がTi1-x
x 2 (ここで、MはTa、Nb、Sbから選ばれる少
なくとも1つの元素)の組成を有する相対密度90%以
上のセラミックスであり、xが1×10-5〜2×10-4
の範囲であることを特徴とする静電チャック基盤。
1. An electrostatic chuck comprising a dielectric layer, a conductor layer provided on one principal surface of the dielectric layer, and an insulator base covering the conductor layer, wherein the dielectric layer is made of Ti. 1-x M
x is a ceramic having a relative density of 90% or more having a composition of O 2 (where M is at least one element selected from Ta, Nb and Sb), and x is 1 × 10 −5 to 2 × 10 −4.
An electrostatic chuck base characterized in that:
【請求項2】 TiO2 とM2 5 (ここで、MはT
a、Nb、Sbから選ばれる少なくとも1つの元素)の
粉末をTiO2 :M2 5 =1−x:x/2(x=1×
10-5〜2×10-4)のモル比で混合し、成形後、12
00〜1600℃の温度で大気中で焼成したセラミック
スを誘電体とする請求項1記載の静電チャック基盤の製
造方法。
2. TiO 2 and M 2 O 5 (where M is T
a, Nb, and Sb) and TiO 2 : M 2 O 5 = 1−x: x / 2 (x = 1 ×
After mixing at a molar ratio of 10 −5 to 2 × 10 −4 ) and molding,
2. The method of manufacturing an electrostatic chuck base according to claim 1, wherein the ceramics fired in the air at a temperature of 00 to 1600 [deg.] C. is used as a dielectric.
【請求項3】 誘電体層と、誘電体層の一主面に設けら
れた導体層と、該導体層を被覆する絶縁体基盤とを備え
た静電チャックにおいて、前記誘電体層がTi1-x x
2 (ここで、MはW、Moから選ばれる少なくとも1
つの元素)の組成を有する相対密度90%以上のセラミ
ックスであり、xが5×10-6〜1×10-4の範囲であ
ることを特徴とする静電チャック基盤。
3. An electrostatic chuck comprising a dielectric layer, a conductor layer provided on one main surface of the dielectric layer, and an insulator base covering the conductor layer, wherein the dielectric layer is Ti 1 -x M x
O 2 (where M is at least one selected from W and Mo)
A ceramic having a relative density of not less than 90% and a composition of x is in the range of 5 × 10 −6 to 1 × 10 −4 .
【請求項4】 TiO2 とMO3 (ここで、MはW、M
oから選ばれる少なくとも1つの元素)の粉末をTiO
2 :MO3 =1−x:x(x=5×10-6〜1×1
-4)のモル比で混合し、成形後、1200〜1600
℃の温度で大気中で焼成したセラミックスを誘電体とす
る請求項3記載の静電チャック基盤の製造方法。
4. TiO 2 and MO 3 (where M is W, M
at least one element selected from the group consisting of TiO.
2 : MO 3 = 1−x: x (x = 5 × 10 −6 to 1 × 1)
It was mixed at 0 -4) molar ratio, after molding, 1200-1600
4. The method of manufacturing an electrostatic chuck base according to claim 3, wherein the ceramic fired in the air at a temperature of ° C. is a dielectric.
【請求項5】 誘電体層の一主面に設けられた導体層
と、絶縁体基盤とが接合剤により接合されていることを
特徴とする請求項1あるいは請求項3記載の静電チャッ
ク基盤。
5. The electrostatic chuck base according to claim 1, wherein the conductor layer provided on one main surface of the dielectric layer and the insulator base are joined by a bonding agent. .
JP9286365A 1997-10-20 1997-10-20 Electrostatic chuck base and its manufacturing method Withdrawn JPH11121599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9286365A JPH11121599A (en) 1997-10-20 1997-10-20 Electrostatic chuck base and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9286365A JPH11121599A (en) 1997-10-20 1997-10-20 Electrostatic chuck base and its manufacturing method

Publications (1)

Publication Number Publication Date
JPH11121599A true JPH11121599A (en) 1999-04-30

Family

ID=17703447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9286365A Withdrawn JPH11121599A (en) 1997-10-20 1997-10-20 Electrostatic chuck base and its manufacturing method

Country Status (1)

Country Link
JP (1) JPH11121599A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001284442A (en) * 2000-03-31 2001-10-12 Lam Res Corp Electrostatic chuck and its manufacturing method
KR20030020072A (en) * 2001-09-01 2003-03-08 주성엔지니어링(주) Unipolar electro-static chuck
JP2005191581A (en) * 2000-01-20 2005-07-14 Sumitomo Electric Ind Ltd Wafer holder for semiconductor-manufacturing apparatus, its manufacturing method, and semiconductor-manufacturing apparatus
WO2011040300A1 (en) * 2009-09-29 2011-04-07 東京エレクトロン株式会社 Transfer apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005191581A (en) * 2000-01-20 2005-07-14 Sumitomo Electric Ind Ltd Wafer holder for semiconductor-manufacturing apparatus, its manufacturing method, and semiconductor-manufacturing apparatus
JP4529690B2 (en) * 2000-01-20 2010-08-25 住友電気工業株式会社 Wafer holder for semiconductor manufacturing apparatus, manufacturing method thereof, and semiconductor manufacturing apparatus
JP2001284442A (en) * 2000-03-31 2001-10-12 Lam Res Corp Electrostatic chuck and its manufacturing method
KR20030020072A (en) * 2001-09-01 2003-03-08 주성엔지니어링(주) Unipolar electro-static chuck
WO2011040300A1 (en) * 2009-09-29 2011-04-07 東京エレクトロン株式会社 Transfer apparatus

Similar Documents

Publication Publication Date Title
JP2938679B2 (en) Ceramic electrostatic chuck
JP2865472B2 (en) Electrostatic chuck
TW392277B (en) Electrostatic holding apparatus
JP5872998B2 (en) Alumina sintered body, member comprising the same, and semiconductor manufacturing apparatus
JPH11168134A (en) Electrostatic attracting device and manufacture thereof
US6122159A (en) Electrostatic holding apparatus
JP3847198B2 (en) Electrostatic chuck
EP0506537A1 (en) Electrostatic chuck
JP4023944B2 (en) Manufacturing method of aluminum nitride sintered body and plate heater or electrostatic chuck
JPH11121599A (en) Electrostatic chuck base and its manufacturing method
JP2000143349A (en) Aluminum nitride-based sintered compact and electrostatic chuck using the same
JP4043219B2 (en) Electrostatic chuck
JP2003188247A (en) Electrostatic chuck and manufacturing method thereof
JP4342002B2 (en) Electrostatic chuck and manufacturing method thereof
JP3899379B2 (en) Electrostatic chuck and manufacturing method thereof
JPH09293774A (en) Electrostatic chuck
JP3486833B2 (en) Electrostatic chuck and method for manufacturing the same
JP2003168726A (en) Electrostatic chuck for semiconductor manufacturing device and its manufacturing method
JP2000012666A (en) Electrostatic chuck
JPH1187479A (en) Electrostatic chuck
JP3623102B2 (en) Electrostatic chuck
JP2960566B2 (en) Electrostatic chuck substrate and electrostatic chuck
JP2006120847A (en) Bipolar electrostatic chuck and its manufacturing method
JP3370532B2 (en) Electrostatic chuck
JPH10189698A (en) Electrostatic chuck

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050104