JPH09283606A - Electrostatic chuck - Google Patents

Electrostatic chuck

Info

Publication number
JPH09283606A
JPH09283606A JP8528096A JP8528096A JPH09283606A JP H09283606 A JPH09283606 A JP H09283606A JP 8528096 A JP8528096 A JP 8528096A JP 8528096 A JP8528096 A JP 8528096A JP H09283606 A JPH09283606 A JP H09283606A
Authority
JP
Japan
Prior art keywords
sintered body
electrostatic chuck
composite sintered
silicon carbide
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8528096A
Other languages
Japanese (ja)
Other versions
JP3586034B2 (en
Inventor
Mamoru Kosakai
守 小坂井
Masayuki Ishizuka
雅之 石塚
Hiroyuki Ito
浩之 伊藤
Hiroshi Inazumachi
浩 稲妻地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP8528096A priority Critical patent/JP3586034B2/en
Publication of JPH09283606A publication Critical patent/JPH09283606A/en
Application granted granted Critical
Publication of JP3586034B2 publication Critical patent/JP3586034B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Jigs For Machine Tools (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent excessive lowering of the resistance value on an insulating part even when the temperature rises in an electrostatic chuck, to improve the corrosion resisting property of the electrostatic chuck against the plasmic property of halogen gas, and to improve the mechanical strength and the thermal shock resistance of the electrostatic chuck. SOLUTION: An electrostatic chuck 8 is provided with an electrode 3 and insulating parts 1 and 2 which are formed on both sides of the electrode 3. At least the insulating part 1 on the side of attracting surface 6 consists of a composite sintered body. This composite sintered body consists of silicon carbide and aluminum oxide of 1 to 10wt.%, and the cubical intrinsic resistance value of the composite sintered body in room temperature is between 1×10<8> and 1×10<15> Ω/cm. The desired average grain diameter of the silicon carbide grains in the composite sintered body is 1μm or smaller.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体ウエハー、
金属ウエハー、ガラス板等を静電気力によって吸着し、
保持するための、静電チャックに関するものである。
TECHNICAL FIELD The present invention relates to a semiconductor wafer,
Adheres metal wafers, glass plates, etc. by electrostatic force,
The present invention relates to an electrostatic chuck for holding.

【0002】[0002]

【従来の技術】例えば、半導体や液晶等の製造時におい
ては、半導体ウエハーやガラス板の固定方法として、真
空チャックもしくはクランプによる固定方法が採用され
ている。しかし、真空チャックによる固定方法は、真空
条件下では、圧力差がないため採用できない。また、ク
ランプによる機械的固定方法では、半導体ウエハーやガ
ラス板のうち固定部分がデバイスとして使用することが
できず、また半導体ウエハーやガラス板に部分的な歪み
を生じる他、クランプの昇降によるパーティクル発生の
問題を有している。
2. Description of the Related Art For example, when manufacturing a semiconductor, a liquid crystal, or the like, a vacuum chuck or a clamp is used as a method for fixing a semiconductor wafer or a glass plate. However, the fixing method using a vacuum chuck cannot be adopted because there is no pressure difference under vacuum conditions. In the mechanical fixing method using a clamp, the fixed part of the semiconductor wafer or glass plate cannot be used as a device, and the semiconductor wafer or glass plate is partially distorted. Have a problem.

【0003】こうした従来の技術が有する問題点を解決
するものとして、静電気力を利用したセラミックス静電
チャックが注目され始めている。セラミックス静電チャ
ックの材質としては、酸化チタンをアルミナに含有させ
た複合焼結体(特開昭62−94953号公報、特開平
3−204924号公報)、窒化チタンをアルミナ等の
セラミックスに含有させた複合焼結体(特開平6−80
89号公報)が提案されている。
As a solution to the above problems of the conventional technique, a ceramic electrostatic chuck utilizing electrostatic force has begun to attract attention. As a material of the ceramic electrostatic chuck, a composite sintered body containing titanium oxide in alumina (Japanese Patent Laid-Open No. 62-94953 and Japanese Patent Laid-Open No. 3-204924) and titanium nitride in ceramics such as alumina are used. Composite sintered body (Japanese Patent Laid-Open No. 6-80
No. 89) has been proposed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、酸化チ
タンをアルミナに含有させてなる絶縁部を備えた静電チ
ャックにあっては、この複合焼結体の抵抗値の温度依存
性が大きいため、プラズマ等により静電チャックの温度
が上昇した場合、絶縁部の抵抗値が低下し、ウエハーに
過度の電流が流れ、ウエハーの回路が破壊されるという
問題点を有している。
However, in an electrostatic chuck having an insulating portion made of titanium oxide contained in alumina, the temperature dependence of the resistance value of the composite sintered body is large, so that the plasma When the temperature of the electrostatic chuck rises due to such factors as described above, the resistance value of the insulating portion is lowered, an excessive current flows through the wafer, and the circuit of the wafer is broken.

【0005】また、酸化チタンは、CF4 ,BCl3
のハロゲン系ガスのプラズマに対する耐蝕性が乏しく、
これらのハロゲン系ガスをエッチングもしくはクリーニ
ングガスとして使用するプラズマエッチング装置、CV
D装置等への使用には、制約がある。更に、酸化チタン
を含有するアルミナは、酸化チタンを含有しないアルミ
ナと比較して、強度が低い。また、熱膨張係数が大きい
ことから、耐熱衝撃性が乏しく、高温下の使用時に、熱
応力による破損の危険性が高い。
Titanium oxide has poor corrosion resistance to plasma of halogen gases such as CF 4 and BCl 3 .
Plasma etching device using these halogen-based gases as etching or cleaning gas, CV
There are restrictions on the use of the D device. Furthermore, the alumina containing titanium oxide has lower strength than the alumina containing no titanium oxide. In addition, since the thermal expansion coefficient is large, the thermal shock resistance is poor, and there is a high risk of damage due to thermal stress when used at high temperatures.

【0006】一方、窒化チタンをアルミナ等のセラミッ
クスに含有させてなる絶縁部を備えた静電チャックにあ
っては、酸素を含むエッチングガス雰囲気下では、窒化
チタンの酸化に起因する表面劣化が著しい。また、酸化
チタンを含有させたアルミナと同様に、CF4 ,BCl
3 等のハロゲン系ガスのプラズマに対する耐蝕性が乏し
く、これらのガスをエッチングもしくはクリーニングガ
スとして使用するプラズマエッチング装置、CVD装置
等への使用には、制約がある。
On the other hand, in an electrostatic chuck provided with an insulating portion made by containing titanium nitride in ceramics such as alumina, surface deterioration due to oxidation of titanium nitride is remarkable in an etching gas atmosphere containing oxygen. . Further, as with the alumina containing titanium oxide, CF 4 , BCl
Corrosion resistance of halogen-based gases such as 3 to plasma is poor, and there are restrictions on the use in plasma etching equipment, CVD equipment, etc., which use these gases as etching or cleaning gases.

【0007】本発明は、静電チャックの温度が上昇した
場合に、絶縁部の抵抗値が過度に低下することを防止
し、静電チャックのハロゲン系ガスのプラズマに対する
耐蝕性を向上させ、かつその強度および耐熱衝撃性をも
向上させることである。
The present invention prevents the resistance value of the insulating portion from excessively decreasing when the temperature of the electrostatic chuck rises, improves the corrosion resistance of the electrostatic chuck to the plasma of halogen gas, and It is also to improve its strength and thermal shock resistance.

【0008】[0008]

【課題を解決するための手段】本発明は、電極と、この
電極の両側にそれぞれ設けられている絶縁部とを備えて
いる静電チャックであって、少なくとも吸着面側の絶縁
部が複合焼結体によって形成されており、この複合焼結
体が、実質的に1重量%以上、10重量%以下の炭化珪
素と酸化アルミニウムとからなり、この複合焼結体の室
温における体積固有抵抗値が1×108 Ω・cm以上、
1×101 5 Ω・cm以下であることを特徴とする、静
電チャックに係るものである。
SUMMARY OF THE INVENTION The present invention is an electrostatic chuck comprising an electrode and insulating portions provided on both sides of the electrode, wherein at least the insulating portion on the suction surface side is a composite burner. The composite sintered body is substantially made of 1 wt% or more and 10 wt% or less of silicon carbide and aluminum oxide, and has a volume resistivity value at room temperature of the composite sintered body. 1 × 10 8 Ω · cm or more,
The present invention relates to an electrostatic chuck, which is characterized in that it is 1 × 10 15 Ω · cm or less.

【0009】本発明者は、電気伝導度の温度依存性が少
なく、ハロゲンガスに対する耐食性に優れ、強度、硬度
が大きく、かつ耐熱衝撃性に富む静電チャックを開発す
べく、種々検討した結果、静電チャックの材質として、
酸化アルミニウムと炭化珪素を含む特定の複合焼結体が
適することを見い出した。
The present inventor has conducted various studies as a result of various studies to develop an electrostatic chuck having a low temperature dependence of electric conductivity, excellent corrosion resistance to halogen gas, high strength and hardness, and excellent thermal shock resistance. As the material of the electrostatic chuck,
It has been found that certain composite sinters containing aluminum oxide and silicon carbide are suitable.

【0010】即ち、静電チャックの絶縁部の少なくとも
吸着面側を、実質的に1重量%以上、10重量%以下の
炭化珪素と酸化アルミニウムとからなり、かつ室温にお
ける体積固有抵抗値が1×108 Ω・cm以上、1×1
1 5 Ω・cm以下である複合焼結体により形成するこ
ととした。
That is, at least the adsorption surface side of the insulating portion of the electrostatic chuck is substantially made up of 1% by weight or more and 10% by weight or less of silicon carbide and aluminum oxide, and has a volume resistivity value at room temperature of 1 ×. 10 8 Ω · cm or more, 1 × 1
It was decided to form a composite sintered body having a resistivity of 0 15 Ω · cm or less.

【0011】即ち、この複合焼結体により形成された静
電チャックは、電気伝導度の温度依存性が少なく、ハロ
ゲンガスに対する耐蝕性に優れ、かつアルミナと比較し
て強度、硬度ともに優れるため、パーティクルの発生も
少なく、かつ耐熱性、耐熱衝撃性に富み、高温下の使用
において熱応力による破損の危険性がない。
That is, the electrostatic chuck formed of this composite sintered body has less temperature dependence of electric conductivity, excellent corrosion resistance to halogen gas, and excellent strength and hardness as compared with alumina. There are few particles, and it has excellent heat resistance and thermal shock resistance, and there is no risk of damage due to thermal stress when used at high temperatures.

【0012】そして、複合焼結体中の炭化珪素量を制御
することにより、体積固有抵抗値を1×108 Ω・cm
以上、1×101 5 Ω・cm以下に制御したものであ
る。即ち、焼結体の粒子径等にも依存するが、炭化珪素
の含有量を1重量%以上とすることによって、炭化珪素
の添加による複合焼結体の硬度、強度の増加が顕著にな
り、かつ複合焼結体の体積固有抵抗値が1×101 5 Ω
・cm以下となり、ウエハー等の吸着、脱着時の応答性
が著しく向上する。
The volume resistivity is controlled to 1 × 10 8 Ω · cm by controlling the amount of silicon carbide in the composite sintered body.
As described above, it is controlled to 1 × 10 15 Ω · cm or less. That is, although it depends on the particle size of the sintered body and the like, when the content of silicon carbide is 1% by weight or more, the hardness and strength of the composite sintered body due to the addition of silicon carbide become remarkable, Moreover, the volume resistivity of the composite sintered body is 1 × 10 15 Ω
・ Because it is less than cm, the responsiveness at the time of adsorption and desorption of wafers is significantly improved.

【0013】一方、炭化珪素の含有量を10重量%以下
とすることによって、複合焼結体の体積固有抵抗値が1
×108 Ω・cm以上となるので、静電チャックからウ
エハー等へのリーク電流を抑制でき、リーク電流によっ
てデバイスを破壊する危険性がなくなる。
On the other hand, when the content of silicon carbide is 10% by weight or less, the volume resistivity value of the composite sintered body is 1 or less.
Since it is more than × 10 8 Ω · cm, the leak current from the electrostatic chuck to the wafer or the like can be suppressed, and there is no risk of damaging the device by the leak current.

【0014】なお、前記複合焼結体においては、少量の
不純物は許容される。しかし、半導体の製造工程におけ
る、ライフタイムおよびゲイト電圧の低下は、遷移金属
元素やアルカリ金属に起因する。更に、アルミニウム、
珪素以外の金属不純物が0.1重量%を越えると、半導
体ウエハーを汚染する可能性が高くなるのとともに、静
電チャックの電気抵抗の温度依存性が大きくなるので、
好ましくない。従って、前記絶縁部を構成する複合焼結
体中のアルミニウムおよび珪素以外の金属不純物含有量
は、0.1重量%以下とすることが好ましい。
A small amount of impurities is allowed in the composite sintered body. However, the decrease in lifetime and gate voltage in the semiconductor manufacturing process is due to the transition metal element and the alkali metal. In addition, aluminum,
If the amount of metal impurities other than silicon exceeds 0.1% by weight, the semiconductor wafer is more likely to be contaminated, and the temperature dependence of the electric resistance of the electrostatic chuck increases.
Not preferred. Therefore, the content of metal impurities other than aluminum and silicon in the composite sintered body forming the insulating portion is preferably 0.1% by weight or less.

【0015】本発明の好ましい態様においては、複合焼
結体中の炭化珪素粒子の平均粒子径を1μm以下とす
る。即ち、炭化珪素粒子の平均粒子径が1μmを越える
と、炭化珪素の添加による強度向上の効果が少なく、ま
たプラズマ照射時の電場が炭化珪素粒子の部分に集中し
て、炭化珪素粒子の周辺が大きく損傷を受け易い。した
がって、炭化珪素粒子の平均粒子径を1μm以下とする
ことによって、プラズマに対する耐蝕性が一層向上す
る。この観点から、複合焼結体中の炭化珪素粒子の平均
粒子径を0.2μm以下とすることが一層好ましい。
In a preferred embodiment of the present invention, the average particle size of silicon carbide particles in the composite sintered body is 1 μm or less. That is, if the average particle diameter of the silicon carbide particles exceeds 1 μm, the effect of improving the strength by the addition of silicon carbide is small, and the electric field at the time of plasma irradiation is concentrated on the silicon carbide particles, and the periphery of the silicon carbide particles is It is easily damaged. Therefore, by setting the average particle diameter of the silicon carbide particles to 1 μm or less, the corrosion resistance to plasma is further improved. From this viewpoint, it is more preferable that the average particle diameter of the silicon carbide particles in the composite sintered body be 0.2 μm or less.

【0016】また、前記複合焼結体を製造するにあたっ
ては、炭化珪素の原料粉末としては平均粒子径が0.5
μm以下の原料粉末が好ましく、また焼結する際の雰囲
気としては、非酸化性雰囲気が好ましい。即ち、平均粒
子径が0.5μmを越える炭化珪素粉末を使用してなる
複合焼結体では、焼結体中の炭化珪素の平均粒子径が1
μmを超え、炭化珪素の添加による強度向上の効果が少
ない上、プラズマに曝されたときに、電場が炭化珪素部
分に集中して大きな損傷を受け易い。
In producing the composite sintered body, the raw material powder of silicon carbide has an average particle diameter of 0.5.
A raw material powder having a particle size of μm or less is preferable, and a non-oxidizing atmosphere is preferable as an atmosphere for sintering. That is, in the composite sintered body using the silicon carbide powder having an average particle diameter exceeding 0.5 μm, the average particle diameter of silicon carbide in the sintered body is 1
In addition, the effect of improving strength by adding silicon carbide is small, and when exposed to plasma, the electric field is concentrated on the silicon carbide portion and is easily damaged.

【0017】なお、使用する炭化珪素原料粉末として
は、プラズマCVD法によって得た粉末が好ましい。特
に、非酸化性雰囲気のプラズマ中にシラン化合物または
ハロゲン化珪素と炭化水素の原料ガスを導入し、反応系
の圧力を1気圧未満から0.1Torrの範囲で制御し
つつ気相反応させて得られた、平均粒子径0.1μm以
下の超微粉末が、焼結性に優れており、高純度であり、
粒子形状が球状であるために成形時の分散性が良好であ
る。
The silicon carbide raw material powder used is preferably a powder obtained by a plasma CVD method. In particular, a silane compound or silicon halide and a hydrocarbon source gas are introduced into plasma in a non-oxidizing atmosphere, and a gas phase reaction is performed while controlling the pressure of the reaction system within the range of less than 1 atm to 0.1 Torr. The obtained ultrafine powder having an average particle size of 0.1 μm or less has excellent sinterability and high purity,
Since the particle shape is spherical, the dispersibility during molding is good.

【0018】一方、酸化アルミニウム原料粉末は、特段
限定されず、高純度のものであればよい。また、焼結時
の雰囲気を非酸化性雰囲気とすることによって、焼結時
における炭化珪素の過度の酸化を抑制し得る。なお、前
記複合焼結体の作製時における成形法、焼結法に関して
は、公知の手段を採用することができる。
On the other hand, the aluminum oxide raw material powder is not particularly limited as long as it has a high purity. Further, by setting the atmosphere during sintering to a non-oxidizing atmosphere, excessive oxidation of silicon carbide during sintering can be suppressed. Known means can be adopted for the molding method and the sintering method during the production of the composite sintered body.

【0019】本発明のセラミックス静電チャックの具体
的形態および製造方法は、特に限定されない。好適な静
電チャックの形態および製造方法について、図1および
図2を参照しつつ、説明する。図1(a)は、吸着面側
の円板状絶縁部1を示す平面図であり、図1(b)は、
静電チャックの基体側の円盤状絶縁部2を示す平面図で
ある。図1(a)の円盤状絶縁体1を製造するために
は、まず円盤状焼結体を製造し、この円盤状焼結体に機
械加工によって貫通孔1aを形成する。図1(b)の円
盤状絶縁体2を製造するためには、まず円盤状焼結体を
製造し、この円盤状焼結体に機械加工によって貫通孔2
aおよび電極挿入孔2bを形成する。少なくとも絶縁体
1を本発明の複合焼結体によって形成する。
The specific form and manufacturing method of the ceramic electrostatic chuck of the present invention are not particularly limited. A suitable electrostatic chuck configuration and manufacturing method will be described with reference to FIGS. 1 and 2. FIG. 1A is a plan view showing the disc-shaped insulating portion 1 on the suction surface side, and FIG.
FIG. 6 is a plan view showing a disk-shaped insulating portion 2 on the base side of the electrostatic chuck. In order to manufacture the disk-shaped insulator 1 of FIG. 1A, first, a disk-shaped sintered body is manufactured, and the through-hole 1a is formed in this disk-shaped sintered body by machining. In order to manufacture the disk-shaped insulator 2 of FIG. 1B, first, a disk-shaped sintered body is manufactured, and the disk-shaped sintered body is machined to form the through-holes 2.
a and the electrode insertion hole 2b are formed. At least the insulator 1 is formed of the composite sintered body of the present invention.

【0020】そして、図2(a)に示すように、円盤状
絶縁部2の中心から半径90mmの円内の領域Aには、
導電性材料を塗布して塗布層15を形成し、この円形の
領域Aの外側の外周縁領域Bには、絶縁性材料を塗布し
て塗布層16を形成する。こうした導電性材料として
は、炭化タンタル、窒化チタン等の導電セラミックス粉
末と酸化アルミニウム−二酸化ケイ素系ガラス粉末との
混合粉末を例示できる。こうした絶縁性材料としては、
酸化アルミニウム−二酸化ケイ素系ガラス等の各種ガラ
ス粉末を例示できる。この状態で、円盤状絶縁部1と2
とを重ね合わせ、熱処理することにより、両者を接合
し、図2(b)に示すような静電チャック8を得る。
Then, as shown in FIG. 2 (a), in a region A within a circle having a radius of 90 mm from the center of the disk-shaped insulating portion 2,
A conductive material is applied to form a coating layer 15, and an insulating material is applied to the outer peripheral edge region B outside the circular region A to form a coating layer 16. As such a conductive material, a mixed powder of a conductive ceramic powder such as tantalum carbide or titanium nitride and an aluminum oxide-silicon dioxide glass powder can be exemplified. As such an insulating material,
Various glass powders such as aluminum oxide-silicon dioxide glass can be exemplified. In this state, the disk-shaped insulating parts 1 and 2
And are superposed and heat-treated to bond them to each other to obtain an electrostatic chuck 8 as shown in FIG.

【0021】図2(b)においては、導電性材料が円形
の電極3を形成しており、電極3から見て吸着面6側に
は絶縁部1が設けられている。円盤状絶縁部2の電極挿
入孔2b中に、炭化タンタル、窒化チタン等の導電性セ
ラミックス等からなる取り出し電極14を挿入し、活性
金属、銀ろう等のろう材によって取り出し電極14を電
極3に対して接合する。
In FIG. 2B, a circular electrode 3 made of a conductive material is formed, and an insulating portion 1 is provided on the adsorption surface 6 side when viewed from the electrode 3. A lead-out electrode 14 made of a conductive ceramic such as tantalum carbide or titanium nitride is inserted into the electrode insertion hole 2b of the disk-shaped insulating portion 2, and the lead-out electrode 14 is formed on the electrode 3 by a brazing material such as active metal or silver brazing. Join to each other.

【0022】[0022]

【実施例】【Example】

(実施例1) 〈静電チャックの作製〉図1、図2を参照しつつ説明し
た方法に従って、図2(b)に示す静電チャックを製造
した。ただし、平均粒子径0.05μmの炭化珪素超微
粉末を、プラズマCVD法により気相合成した。この炭
化珪素超微粉末5重量%と、平均粒子径0.5μmの酸
化アルミニウム粉末95重量%とを、超音波分散機を用
いて5時間混合し、この混合粉末を、乾燥、成形し、ア
ルゴン雰囲気、温度1700℃の条件下で3時間焼結す
ることにより、直径195mm、厚み4mmの円板状の
複合焼結体を2枚得た。
Example 1 <Production of Electrostatic Chuck> The electrostatic chuck shown in FIG. 2B was manufactured according to the method described with reference to FIGS. However, ultrafine silicon carbide powder having an average particle diameter of 0.05 μm was vapor-phase synthesized by the plasma CVD method. 5% by weight of this silicon carbide ultrafine powder and 95% by weight of aluminum oxide powder having an average particle diameter of 0.5 μm were mixed for 5 hours using an ultrasonic disperser, and this mixed powder was dried, molded, and subjected to argon. Two disc-shaped composite sintered bodies having a diameter of 195 mm and a thickness of 4 mm were obtained by sintering for 3 hours in an atmosphere at a temperature of 1700 ° C.

【0023】そして、この複合焼結体中の炭化珪素粒子
の平均粒子径、体積固有抵抗値をそれぞれ測定し、その
結果を表1に示した。なお、炭化珪素粒子の平均粒子径
の測定方法はSEM観察法、体積固有抵抗値の測定方法
はJIS C2141に規定された方法に準じて測定し
た。なお、別途作成した上記複合焼結体のビッカース硬
さ、室温4点曲げ強度(JIS R1601に規定され
た方法に準じて測定)を測定した。その結果を表1に示
す。
Then, the average particle diameter and volume resistivity of the silicon carbide particles in this composite sintered body were measured, and the results are shown in Table 1. The average particle diameter of the silicon carbide particles was measured by the SEM observation method, and the volume resistivity value was measured according to JIS C2141. The Vickers hardness and the room temperature 4-point bending strength (measured according to the method specified in JIS R1601) of the above-mentioned composite sintered body prepared separately were measured. Table 1 shows the results.

【0024】次いで、上記円盤状焼結体を機械加工し、
図1(a)および(b)に示す各円盤状絶縁部を製造し
た。ただし、図1(a)においては、絶縁部1の中心部
に直径15mmの貫通孔1aを形成した。図1(b)に
おいては、絶縁部2の中心部に直径15mmの貫通孔2
aを形成し、中心部より25mm離れた場所に、直径1
0mmの電極挿入孔2bを形成した。
Then, the disc-shaped sintered body is machined,
Each disk-shaped insulating portion shown in FIGS. 1A and 1B was manufactured. However, in FIG. 1A, a through hole 1 a having a diameter of 15 mm is formed in the center of the insulating portion 1. In FIG. 1B, a through hole 2 having a diameter of 15 mm is formed at the center of the insulating portion 2.
Form a, and place a diameter of 1 mm at a location 25 mm away from the center.
An electrode insertion hole 2b of 0 mm was formed.

【0025】そして、円盤状絶縁部2の中心から半径9
0mm内の円状領域Aには、炭化タンタル(30vol
%)と酸化アルミニウム−二酸化珪素系ガラス粉末(7
0vol%)との混合粉末を、スクリーン印刷によっ
て、塗布した。外周縁領域B(半径90〜半径97.5
mmの領域)には、酸化アルミニウム−二酸化珪素系ガ
ラス粉末をスクリーン印刷によって塗布した。次いで、
円盤状絶縁部1を1.3mm研削した後、絶縁部2の電
極挿入孔2bに、炭化タンタル製の取り出し電極14を
挿入し、銀ろう剤を用いて接合した。
Then, the radius of 9 mm from the center of the disk-shaped insulating portion 2
In the circular area A within 0 mm, tantalum carbide (30 vol
%) And aluminum oxide-silicon dioxide glass powder (7
The mixed powder with 0 vol%) was applied by screen printing. Outer peripheral region B (radius 90 to radius 97.5
The area (mm) was coated with aluminum oxide-silicon dioxide glass powder by screen printing. Then
After grinding the disk-shaped insulating portion 1 for 1.3 mm, the lead-out electrode 14 made of tantalum carbide was inserted into the electrode insertion hole 2b of the insulating portion 2 and joined using a silver brazing agent.

【0026】〈静電特性の測定〉このようにして作製さ
れた静電チャックの静電吸着力、吸着時間、脱離時間
を、室温および400℃の各温度下で、図3に示す測定
装置を用いて測定した。
<Measurement of Electrostatic Characteristics> The electrostatic chucking force thus manufactured, the electrostatic chucking force, the chucking time, and the desorbing time are measured at room temperature and 400 ° C. at the respective temperatures shown in FIG. Was measured using.

【0027】即ち、台10の上にヒーター9を設置し、
ヒーター9上に静電チャック8を設置した。台10の貫
通孔10a、ヒーター9の貫通孔9aおよび静電チャッ
ク8の貫通孔に、押圧部材11を挿通させた。静電チャ
ック8の吸着面6に8インチのシリコンウエハー18を
載置した。シリコンウエハー18に対して押圧部材11
の上端部を接触させた。シリコンウエハー18と取り出
し電極14との間に、直流300Vの電圧を印加し、シ
リコンウエハー18を静電吸着させて5分経過した後、
リフター12により、静電吸着されたシリコンウエハー
18を持ち上げることにより脱着させた。この際に要す
る脱着力を、ロードセルにより測定し、静電吸着力とし
た。
That is, the heater 9 is installed on the table 10,
The electrostatic chuck 8 was installed on the heater 9. The pressing member 11 was inserted into the through hole 10 a of the table 10, the through hole 9 a of the heater 9, and the through hole of the electrostatic chuck 8. An 8-inch silicon wafer 18 was placed on the attraction surface 6 of the electrostatic chuck 8. Pressing member 11 against silicon wafer 18
The upper ends of the. A voltage of 300 V DC is applied between the silicon wafer 18 and the take-out electrode 14, and the silicon wafer 18 is electrostatically adsorbed for 5 minutes.
The lifter 12 lifted the electrostatically adsorbed silicon wafer 18 to remove it. The desorption force required at this time was measured by a load cell and used as the electrostatic adsorption force.

【0028】また、吸着時間とは、直流300Vの電圧
を印加したときに、静電吸着力が10kgf/cm2
なるまでの時間であり、脱離時間とは、直流300Vの
電圧を5分間印加した後に印加を中止し、その時から静
電吸着力が50gf/cm2となるまでの時間である。
この測定結果を表2に示す。
The adsorption time is the time until the electrostatic adsorption force reaches 10 kgf / cm 2 when a DC voltage of 300 V is applied, and the desorption time is a DC voltage of 300 V for 5 minutes. It is the time from when the application is stopped after the application to when the electrostatic adsorption force reaches 50 gf / cm 2 .
Table 2 shows the measurement results.

【0029】次いで、静電チャックをプラズマCVD装
置内に装着し、1.0TorrのCF4 20vol%、
2 80vol%からなる混合ガス雰囲気下でのプラズ
マに20時間曝した後、上記と同様の静電吸着性試験を
実施した。この結果を表3に示す。
Next, the electrostatic chuck was mounted in a plasma CVD apparatus, and CF 4 20 vol% of 1.0 Torr,
After being exposed to plasma for 20 hours in a mixed gas atmosphere of 80 vol% O 2, the same electrostatic adsorption test as described above was performed. Table 3 shows the results.

【0030】また、静電チャックをプラズマに暴露する
前後の各静電吸着特性試験において、400℃まで80
℃/分の昇温速度で昇温した。この結果、静電チャック
には、熱応力による破損、損傷は生じなかったので、表
2、3の熱応力耐性の項目に「良好」と記載した。
Further, in each electrostatic adsorption characteristic test before and after exposing the electrostatic chuck to plasma, the temperature up to 400 ° C.
The temperature was raised at a temperature rising rate of ° C / min. As a result, the electrostatic chuck was not damaged or damaged by thermal stress. Therefore, the item of thermal stress resistance in Tables 2 and 3 was described as “good”.

【0031】(実施例2)実施例1に準じて複合焼結体
を得た。なお、複合焼結体の組成は炭化珪素超微粉末3
重量%、酸化アルミニウム97重量%であり、焼結条件
は、アルゴン雰囲気、焼結温度1750℃、焼結時間7
時間である。この複合焼結体中の炭化珪素粒子の平均粒
子径、体積固有抵抗値を実施例1に準じて測定した。そ
の結果を表1に示す。また、別途作成した上記複合焼結
体のビッカース硬さ、室温4点曲げ強度を実施例1に準
じて測定した。その結果を表1に示す。
Example 2 A composite sintered body was obtained in the same manner as in Example 1. The composition of the composite sintered body was silicon carbide ultrafine powder 3
% By weight, aluminum oxide 97% by weight, sintering conditions are argon atmosphere, sintering temperature 1750 ° C., sintering time 7
Time. The average particle size and volume specific resistance of the silicon carbide particles in this composite sintered body were measured according to Example 1. Table 1 shows the results. The Vickers hardness and room temperature 4-point bending strength of the separately prepared composite sintered body were measured in accordance with Example 1. Table 1 shows the results.

【0032】次いで、この複合焼結体を用い、実施例1
に準じて静電チャックを作製し、同じく実施例1に準じ
てハロゲンガスのプラズマ暴露前、暴露後にそれぞれ静
電吸着特性を測定した。その結果を表2、表3に示す。
Next, using this composite sintered body, Example 1
An electrostatic chuck was produced in accordance with Example 1, and electrostatic adsorption characteristics were measured in the same manner as in Example 1 before and after exposure to halogen gas plasma. The results are shown in Tables 2 and 3.

【0033】なお、ハロゲンガスのプラズマ暴露前、暴
露後の静電吸着特性試験の際に、いずれも400℃まで
80℃/分の昇温速度で昇温したが、静電チャックに
は、いずれの場合にも熱応力による破損、損傷は生じな
かったので、表2、3の熱応力耐性の項目に「良好」と
記載した。
In the electrostatic adsorption characteristic test before and after the exposure to the halogen gas plasma, the temperature was raised to 400 ° C. at a heating rate of 80 ° C./min. In the case of No. 1, damage or damage due to thermal stress did not occur, and therefore, the item of thermal stress resistance in Tables 2 and 3 was described as “good”.

【0034】(比較例1)実施例1に準じて、複合焼結
体を得た。ただし、複合焼結体の組成を炭化珪素15重
量%、酸化アルミニウム85重量%とし、炭化珪素原料
粉末の平均粒子径を0.8μmとした。
(Comparative Example 1) In accordance with Example 1, a composite sintered body was obtained. However, the composition of the composite sintered body was 15% by weight of silicon carbide and 85% by weight of aluminum oxide, and the average particle diameter of the silicon carbide raw material powder was 0.8 μm.

【0035】この複合焼結体中の炭化珪素粒子の平均粒
子径、体積固有抵抗値を、実施例1に準じて測定した。
その結果を表1に示す。また、別途作成した上記複合焼
結体のビッカース硬さ、室温4点曲げ強度を、実施例1
に準じて測定した。その結果を表1に示す。
The average particle diameter and volume resistivity of the silicon carbide particles in this composite sintered body were measured according to Example 1.
Table 1 shows the results. In addition, the Vickers hardness and room temperature four-point bending strength of the above-mentioned composite sintered body prepared separately were determined according to Example 1
It measured according to. Table 1 shows the results.

【0036】そして、この複合焼結体を用い、実施例1
に準じて静電チャックを作製し、同じく実施例1に準じ
て、ハロゲンガスのプラズマ暴露前、暴露後にそれぞれ
静電吸着特性を測定した。その結果を表2、表3に示
す。
Using this composite sintered body, Example 1
An electrostatic chuck was produced in accordance with Example 1, and electrostatic adsorption characteristics were measured in the same manner as in Example 1 before and after exposure to a halogen gas plasma. The results are shown in Tables 2 and 3.

【0037】なお、ハロゲンガスのプラズマ暴露前、暴
露後の各静電吸着特性試験の際には、いずれも400℃
まで80℃/分の昇温速度で昇温した。この結果、プラ
ズマ暴露前には、熱応力による破損、損傷は生じなかっ
た。しかし、ハロゲンガスのプラズマ暴露後の静電吸着
特性試験の際には、静電チャックの周縁部が一部欠損し
た。
In each of the electrostatic adsorption characteristic tests before and after the halogen gas plasma exposure, 400 ° C.
Up to 80 ° C./min. As a result, damage and damage due to thermal stress did not occur before plasma exposure. However, in the electrostatic adsorption characteristic test after the halogen gas plasma exposure, a part of the peripheral edge of the electrostatic chuck was damaged.

【0038】(比較例2)複合焼結体の組成を、酸化ア
ルミニウム100重量%としたこと以外、実施例1に準
じて複合焼結体を得た。
(Comparative Example 2) A composite sintered body was obtained in the same manner as in Example 1 except that the composition of the composite sintered body was 100% by weight of aluminum oxide.

【0039】この複合焼結体の体積固有抵抗値を、実施
例1に準じて測定した。その結果を表1に示す。また、
別途作成した上記複合焼結体のビッカース硬さ、室温4
点曲げ強度を実施例1に準じて測定した。その結果を表
1に示す。そして、この複合焼結体を用い、実施例1に
準じて静電チャックを作製し、ハロゲンガスのプラズマ
暴露前、暴露後にそれぞれ静電吸着特性を測定した。そ
の結果を表2、表3に示す。
The volume resistivity value of this composite sintered body was measured according to Example 1. Table 1 shows the results. Also,
Vickers hardness of the above composite sintered body prepared separately, room temperature 4
The point bending strength was measured according to Example 1. Table 1 shows the results. Then, using this composite sintered body, an electrostatic chuck was prepared according to Example 1, and electrostatic adsorption characteristics were measured before and after the halogen gas plasma exposure. The results are shown in Tables 2 and 3.

【0040】なお、ハロゲンガスのプラズマ暴露前、暴
露後の各静電吸着特性試験の際には、いずれも400℃
まで80℃/分の昇温速度で昇温したが、いずれの場合
も、静電チャックの周縁部が一部欠損した。
It is to be noted that 400 ° C. was used for each electrostatic adsorption characteristic test before and after the halogen gas plasma exposure.
The temperature was raised up to 80 ° C./min, but in each case, the peripheral edge of the electrostatic chuck was partially damaged.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【表2】 [Table 2]

【0043】[0043]

【表3】 [Table 3]

【0044】実施例1、2においては、プラズマ暴露前
後の双方において、静電吸着力が高く、吸着時間、脱離
時間が短く、熱応力耐性も優れている。特に、実施例1
においては、複合焼結体中の炭化珪素粒子の平均粒子径
も0.2μmであるため、プラズマ暴露後の静電吸着力
が一層高く、吸着時間、脱離時間が一層短い。
In Examples 1 and 2, both before and after plasma exposure, the electrostatic adsorption force is high, the adsorption time and desorption time are short, and the thermal stress resistance is excellent. In particular, Example 1
In the above, since the average particle diameter of the silicon carbide particles in the composite sintered body is also 0.2 μm, the electrostatic adsorption force after plasma exposure is higher, and the adsorption time and desorption time are shorter.

【0045】これに対して、比較例1においては、炭化
珪素が15重量%であり、炭化珪素粒子の平均粒子径が
1.2μmであるため、プラズマ暴露前にはいずれの特
性も優れているが、プラズマ暴露後には静電吸着力が著
しく減少し、吸着時間も長く、400℃までの昇温時に
静電チャックの周縁部が一部欠損した。比較例2におい
ては、アルミナを使用しており、プラズマ暴露前におい
ても、静電吸着力が低く、400℃までの昇温時に静電
チャックの周縁部が一部欠損した。
On the other hand, in Comparative Example 1, the content of silicon carbide was 15% by weight, and the average particle diameter of the silicon carbide particles was 1.2 μm. Therefore, all characteristics were excellent before plasma exposure. However, after the plasma exposure, the electrostatic adsorption force was remarkably reduced, the adsorption time was long, and part of the peripheral edge of the electrostatic chuck was lost when the temperature was raised to 400 ° C. In Comparative Example 2, alumina was used, the electrostatic adsorption force was low even before plasma exposure, and the peripheral portion of the electrostatic chuck was partially chipped when the temperature was raised to 400 ° C.

【0046】[0046]

【発明の効果】以上述べたように、本発明によれば、電
気伝導度の温度依存性が少なく、ハロゲンガスに対する
耐食性に優れ、硬度が大きく、かつ耐熱性に富み、吸脱
着の応答性に優れた静電チャックを提供することができ
る。
As described above, according to the present invention, the electric conductivity has little temperature dependence, the corrosion resistance to halogen gas is excellent, the hardness is large, the heat resistance is excellent, and the adsorption / desorption response is high. An excellent electrostatic chuck can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は、吸着面側の円盤状絶縁部を示す平面
図であり、(b)は、基体側の円盤状絶縁部を示す平面
図である。
FIG. 1A is a plan view showing a disk-shaped insulating portion on a suction surface side, and FIG. 1B is a plan view showing a disk-shaped insulating portion on a substrate side.

【図2】(a)は、円盤状絶縁部2の上に導電性材料お
よび絶縁性材料を塗布した状態を示す平面図であり、
(b)は、静電チャックの断面図である。
FIG. 2A is a plan view showing a state in which a conductive material and an insulating material are applied onto the disk-shaped insulating portion 2,
(B) is a sectional view of the electrostatic chuck.

【図3】静電チャックの吸着力の測定装置を示す概略図
である。
FIG. 3 is a schematic view showing a device for measuring the attraction force of an electrostatic chuck.

【符合の説明】[Description of sign]

1 吸着面側の円盤状絶縁部 1a 貫通孔 2 基体側の円盤状絶縁部 2b 電極挿入孔 3 円形の電極 4 絶縁性の接合層 6 吸着面 8 静電チャック 15 導電性材料の塗布層 16 絶縁性材料の塗布層 18 半導体ウエハー 1 Disc-shaped insulating part on adsorption side 1a Through hole 2 Disc-shaped insulating part on base side 2b Electrode insertion hole 3 Circular electrode 4 Insulating bonding layer 6 Adsorption surface 8 Electrostatic chuck 15 Coating layer of conductive material 16 Insulation Coating layer of conductive material 18 Semiconductor wafer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 稲妻地 浩 千葉県船橋市豊富町585 住友大阪セメン ト株式会社新材料研究部内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Hiroshi Inazuma 585 Tomimachi, Funabashi, Chiba Sumitomo Osaka Cement Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電極と、この電極の両側にそれぞれ設け
られている絶縁部とを備えている静電チャックであっ
て、 少なくとも吸着面側の前記絶縁部が複合焼結体によって
形成されており、この複合焼結体が、実質的に1重量%
以上、10重量%以下の炭化珪素と酸化アルミニウムと
からなり、この複合焼結体の室温における体積固有抵抗
値が1×108Ω・cm以上、1×101 5 Ω・cm以
下であることを特徴とする、静電チャック。
1. An electrostatic chuck comprising an electrode and insulating portions provided on both sides of the electrode, wherein at least the insulating portion on the suction surface side is formed of a composite sintered body. , The composite sintered body is substantially 1% by weight.
The volume resistivity of the composite sintered body at room temperature is not less than 1 × 10 8 Ω · cm and not more than 1 × 10 15 Ω · cm, which is made of 10% by weight or less of silicon carbide and aluminum oxide. Electrostatic chuck.
【請求項2】 前記複合焼結体中の炭化珪素粒子の平均
粒子径が1μm以下であることを特徴とする、請求項1
記載の静電チャック。
2. The average particle size of silicon carbide particles in the composite sintered body is 1 μm or less.
An electrostatic chuck as described.
【請求項3】 前記複合焼結体が、平均粒子径0.5μ
m以下の炭化珪素粉末と、酸化アルミニウム粉末との混
合粉末の非酸化性雰囲気下における焼結体からなること
を特徴とする、請求項1または2記載の静電チャック。
3. The composite sintered body has an average particle diameter of 0.5 μm.
3. The electrostatic chuck according to claim 1, wherein the electrostatic chuck comprises a sintered body of a mixed powder of silicon carbide powder of m or less and aluminum oxide powder in a non-oxidizing atmosphere.
JP8528096A 1996-04-08 1996-04-08 Electrostatic chuck Expired - Lifetime JP3586034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8528096A JP3586034B2 (en) 1996-04-08 1996-04-08 Electrostatic chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8528096A JP3586034B2 (en) 1996-04-08 1996-04-08 Electrostatic chuck

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002071797A Division JP2002324833A (en) 2002-03-15 2002-03-15 Electrostatic chuck

Publications (2)

Publication Number Publication Date
JPH09283606A true JPH09283606A (en) 1997-10-31
JP3586034B2 JP3586034B2 (en) 2004-11-10

Family

ID=13854165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8528096A Expired - Lifetime JP3586034B2 (en) 1996-04-08 1996-04-08 Electrostatic chuck

Country Status (1)

Country Link
JP (1) JP3586034B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1126289A2 (en) 2000-02-04 2001-08-22 Canon Kabushiki Kaisha Image acquisition method and apparatus
US6603651B2 (en) 2000-06-07 2003-08-05 Sumitomo Osaka Cement Co., Ltd. Electrostatic chuck
US6950297B2 (en) 2001-11-14 2005-09-27 Sumitomo Osaka Cement Co., Ltd. Electrostatic chuck and manufacturing method therefor
JP2006344999A (en) * 2006-09-04 2006-12-21 Sumitomo Osaka Cement Co Ltd Susceptor and its manufacturing method
JP2008277545A (en) * 2007-04-27 2008-11-13 Shinko Electric Ind Co Ltd Electrostatic chuck
JP2011077303A (en) * 2009-09-30 2011-04-14 Sumitomo Osaka Cement Co Ltd Electrostatic chuck device
KR20150136483A (en) 2013-03-29 2015-12-07 스미토모 오사카 세멘토 가부시키가이샤 Electrostatic chuck device
US9287156B2 (en) 2013-01-18 2016-03-15 Sumitomo Osaka Cement Co., Ltd. Electrostatic chucking device
WO2017122716A1 (en) * 2016-01-12 2017-07-20 住友大阪セメント株式会社 Electrostatic chuck device and method for manufacturing electrostatic chuck device
WO2017131159A1 (en) * 2016-01-27 2017-08-03 住友大阪セメント株式会社 Ceramic material and electrostatic chuck apparatus
WO2018155374A1 (en) * 2017-02-23 2018-08-30 住友大阪セメント株式会社 Composite sintered body, electrostatic chuck member, and electrostatic chuck device

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1126289A2 (en) 2000-02-04 2001-08-22 Canon Kabushiki Kaisha Image acquisition method and apparatus
US6603651B2 (en) 2000-06-07 2003-08-05 Sumitomo Osaka Cement Co., Ltd. Electrostatic chuck
KR100522976B1 (en) * 2000-06-07 2005-10-19 스미토모 오사카 세멘토 가부시키가이샤 Electrostatic chuck
US6950297B2 (en) 2001-11-14 2005-09-27 Sumitomo Osaka Cement Co., Ltd. Electrostatic chuck and manufacturing method therefor
KR100938690B1 (en) * 2001-11-14 2010-01-25 스미토모 오사카 세멘토 가부시키가이샤 Electrostatic chuck and manufacturing method thereof
JP2006344999A (en) * 2006-09-04 2006-12-21 Sumitomo Osaka Cement Co Ltd Susceptor and its manufacturing method
JP2008277545A (en) * 2007-04-27 2008-11-13 Shinko Electric Ind Co Ltd Electrostatic chuck
JP2011077303A (en) * 2009-09-30 2011-04-14 Sumitomo Osaka Cement Co Ltd Electrostatic chuck device
US9287156B2 (en) 2013-01-18 2016-03-15 Sumitomo Osaka Cement Co., Ltd. Electrostatic chucking device
US10389278B2 (en) 2013-03-29 2019-08-20 Sumitomo Osaka Cement Co., Ltd. Electrostatic chuck device with multiple fine protrusions or multiple fine recesses
KR20150136483A (en) 2013-03-29 2015-12-07 스미토모 오사카 세멘토 가부시키가이샤 Electrostatic chuck device
WO2017122716A1 (en) * 2016-01-12 2017-07-20 住友大阪セメント株式会社 Electrostatic chuck device and method for manufacturing electrostatic chuck device
JPWO2017122716A1 (en) * 2016-01-12 2018-08-16 住友大阪セメント株式会社 Electrostatic chuck device and method of manufacturing electrostatic chuck device
CN108475657A (en) * 2016-01-12 2018-08-31 住友大阪水泥股份有限公司 The manufacturing method of electrostatic chuck apparatus and electrostatic chuck apparatus
US11107719B2 (en) 2016-01-12 2021-08-31 Sumitomo Osaka Cement Co., Ltd. Electrostatic chuck device and method for manufacturing electrostatic chuck device
CN108475657B (en) * 2016-01-12 2023-12-22 住友大阪水泥股份有限公司 Electrostatic chuck device and method for manufacturing electrostatic chuck device
JP2017206436A (en) * 2016-01-27 2017-11-24 住友大阪セメント株式会社 Ceramic material, and electrostatic chuck device
JP6237954B1 (en) * 2016-01-27 2017-11-29 住友大阪セメント株式会社 Ceramic materials, electrostatic chuck device
WO2017131159A1 (en) * 2016-01-27 2017-08-03 住友大阪セメント株式会社 Ceramic material and electrostatic chuck apparatus
US11387132B2 (en) 2016-01-27 2022-07-12 Sumitomo Osaka Cement Co., Ltd. Ceramic material and electrostatic chuck device
WO2018155374A1 (en) * 2017-02-23 2018-08-30 住友大阪セメント株式会社 Composite sintered body, electrostatic chuck member, and electrostatic chuck device
JPWO2018155374A1 (en) * 2017-02-23 2019-02-28 住友大阪セメント株式会社 Composite sintered body, electrostatic chuck member, and electrostatic chuck device

Also Published As

Publication number Publication date
JP3586034B2 (en) 2004-11-10

Similar Documents

Publication Publication Date Title
JP4008230B2 (en) Manufacturing method of electrostatic chuck
EP1801961A2 (en) Electrostatic chuck
JP3975944B2 (en) HOLDER FOR SEMICONDUCTOR OR LIQUID CRYSTAL MANUFACTURING DEVICE AND SEMICONDUCTOR OR LIQUID CRYSTAL MANUFACTURING DEVICE WITH THE SAME
JP3323135B2 (en) Electrostatic chuck
JP4739039B2 (en) Electrostatic chuck device
JP2005210077A (en) Electrostatic chuck and manufacturing method therefor, and alumina sintered member and manufacturing method therefor
JP3699349B2 (en) Wafer adsorption heating device
JP3586034B2 (en) Electrostatic chuck
JP3348140B2 (en) Electrostatic chuck
JP2003282688A (en) Electrostatic chuck
JP3808286B2 (en) Electrostatic chuck
JP2003124299A (en) Electrode contained susceptor and its manufacturing method
JPH0513558A (en) Wafer heating device and its manufacture
JP2004055608A (en) Susceptor with built-in electrode
JP4043219B2 (en) Electrostatic chuck
JP4241571B2 (en) Manufacturing method of bipolar electrostatic chuck
JP3662909B2 (en) Wafer adsorption heating device and wafer adsorption device
JP3370532B2 (en) Electrostatic chuck
JP2002324833A (en) Electrostatic chuck
JP2003188247A (en) Electrostatic chuck and manufacturing method thereof
JPH10189698A (en) Electrostatic chuck
JP4111013B2 (en) Wafer holder for semiconductor manufacturing apparatus and semiconductor manufacturing apparatus equipped with the same
JP2006319344A (en) Wafer holder for semiconductor production system and semiconductor production system mounting same
JP3652862B2 (en) Electrostatic chuck and plasma generator
JP2002324832A (en) Electrostatic chuck

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040805

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140813

Year of fee payment: 10

EXPY Cancellation because of completion of term