JP3275901B2 - Design method of electrostatic chuck - Google Patents

Design method of electrostatic chuck

Info

Publication number
JP3275901B2
JP3275901B2 JP2000004808A JP2000004808A JP3275901B2 JP 3275901 B2 JP3275901 B2 JP 3275901B2 JP 2000004808 A JP2000004808 A JP 2000004808A JP 2000004808 A JP2000004808 A JP 2000004808A JP 3275901 B2 JP3275901 B2 JP 3275901B2
Authority
JP
Japan
Prior art keywords
insulating layer
equation
electrostatic chuck
volume resistivity
internal electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000004808A
Other languages
Japanese (ja)
Other versions
JP2000188322A (en
Inventor
俊也 渡部
徹夫 北林
Original Assignee
東陶機器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18533547&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3275901(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 東陶機器株式会社 filed Critical 東陶機器株式会社
Priority to JP2000004808A priority Critical patent/JP3275901B2/en
Publication of JP2000188322A publication Critical patent/JP2000188322A/en
Application granted granted Critical
Publication of JP3275901B2 publication Critical patent/JP3275901B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Jigs For Machine Tools (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は半導体ウエハ等の被吸着
物を静電力で吸着固定する静電チャックの設計方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for designing an electrostatic chuck for adsorbing and fixing an object to be adsorbed such as a semiconductor wafer by electrostatic force.

【0002】[0002]

【従来の技術】減圧雰囲気において半導体ウエハにプラ
ズマエッチング、CVD、イオンプレーティング等の処
理を行なう際のウエハの固定治具として基板と絶縁層
(誘電層)との間に内部電極を設けた静電チャックが用
いられている。
2. Description of the Related Art An internal electrode is provided between a substrate and an insulating layer (dielectric layer) as a jig for fixing a semiconductor wafer to a process such as plasma etching, CVD, or ion plating in a reduced pressure atmosphere. An electric chuck is used.

【0003】この静電チャックに要求される特性は、電
圧を印加している間は大きな吸着力を発生して被吸着物
の落下等を防止し、電圧印加を解除したならば直ちに吸
着力を小さくして被吸着物を容易に取外すことができる
ようにすることである。
[0003] The characteristics required of this electrostatic chuck are that, while a voltage is applied, a large suction force is generated to prevent the object to be sucked from dropping, etc., and immediately after the voltage application is released, the suction force is reduced. The object is to reduce the size so that the object can be easily removed.

【0004】吸着力を高める手段としては絶縁層の比誘
電率を大きくする(特公昭60−59104号、特公昭
62−19060号)、絶縁層の厚さを制御する(特開
昭57−64950号)、絶縁層の体積固有抵抗を所定
の範囲にする(特公昭61−14660号)等の手段が
あり、被吸着物の取外しを容易にする手段としてはチャ
ック表面と被吸着物との間にヘリウムガスを吹込む(実
開平2−120831号)、吸着時の電圧とは逆極性の
電圧を印加する(特公平2−63304号)等の手段が
ある。
As means for increasing the attraction force, the relative dielectric constant of the insulating layer is increased (Japanese Patent Publication No. 60-59104, Japanese Patent Publication No. 62-19060), and the thickness of the insulating layer is controlled (Japanese Patent Laid-Open No. 57-64950). No. 1) and means for setting the volume resistivity of the insulating layer within a predetermined range (Japanese Patent Publication No. 61-14660). Helium gas is injected (Japanese Utility Model Laid-Open No. 2-120831), and a voltage having a polarity opposite to the voltage at the time of adsorption is applied (Japanese Patent Publication No. 2-63304).

【0005】[0005]

【発明が解決しようとする課題】上述した従来法のうち
吸着力を高める手段は絶縁層のみに着目しており、吸着
力が高くなっても残留吸着力も大きくなる傾向がある。
また、残留吸着力が減衰(98%以上)し、被吸着物が
容易に取り外せるまでには60秒以上もかかり、被吸着
物を加工処理後、直ちに取り外したい場合に対応でき
ず、このため被吸着物の取外しを容易にするには別装置
や通常の操作の他にに新たな操作を付加しなければなら
ないという不利があり、特に低温下での使用に問題があ
る。
Among the conventional methods described above, the means for increasing the attraction force focuses only on the insulating layer, and the residual attraction force tends to increase even if the attraction force increases.
In addition, it takes more than 60 seconds until the residual adsorbing force is attenuated (98% or more) and the object to be removed can be easily removed. In order to facilitate removal of the adsorbate, there is a disadvantage that a new operation must be added in addition to a separate device or a normal operation, and there is a problem particularly in use at a low temperature.

【0006】[0006]

【課題を解決するための手段】本発明者は低温下におい
ても静電チャック自体の特性として残留静電力が短時間
で減衰するものを得るべく、静電チャックの等価回路に
着目し本発明をなしたものである。即ち、従来にあって
は、被吸着物と絶縁層表面とのギャップδ(m)は等価
回路の構成要素として考慮されていなかったが、ギャッ
プδ(m)を考慮して等価回路を想定したことで、静電
吸着力を高めつつ残留静電力が短時間で減衰する静電チ
ャックの設計を可能とすることを目的とし、以下の内容
を要旨とする。
The present inventor has focused on the equivalent circuit of the electrostatic chuck in order to obtain a characteristic of the electrostatic chuck itself in which the residual electrostatic force attenuates in a short time even at a low temperature. What was done. That is, in the related art, the gap δ (m) between the object to be adsorbed and the surface of the insulating layer has not been considered as a component of the equivalent circuit, but the equivalent circuit is assumed in consideration of the gap δ (m). Accordingly, an object of the present invention is to make it possible to design an electrostatic chuck in which the residual electrostatic force is attenuated in a short time while increasing the electrostatic attraction force.

【0007】静電チャックの使用温度における前記絶縁
層の体積固有抵抗をρ(Ωm)、静電チャックの使用温
度における絶縁層の比誘電率をεr、内部電極と絶縁層
表面との間隔(厚さ)をd(m)、被吸着物と絶縁層表
面とのギャップをδ(m)とした場合、これらは以下の
(数5)に示す関係になるように設計する。
The volume resistivity of the insulating layer at the operating temperature of the electrostatic chuck is ρ (Ωm), the relative permittivity of the insulating layer at the operating temperature of the electrostatic chuck is ε r , and the distance between the internal electrode and the surface of the insulating layer ( When the thickness is d (m) and the gap between the object to be adsorbed and the surface of the insulating layer is δ (m), they are designed to have the relationship shown in the following (Equation 5).

【0008】[0008]

【数5】 (Equation 5)

【0009】絶縁層の25℃における体積固有抵抗を
ρ’(Ωm)、絶縁層の25℃における比誘電率を
εr’、内部電極と絶縁層表面との間隔(厚さ)をd
(m)、被吸着物と絶縁層表面とのギャップをδ(m)
とした場合、これらは以下の(数6)に示す関係になる
ように設計する。
The volume resistivity of the insulating layer at 25 ° C. is ρ ′ (Ωm), the relative permittivity of the insulating layer at 25 ° C. is ε r ′, and the distance (thickness) between the internal electrode and the surface of the insulating layer is d.
(M), the gap between the object to be adsorbed and the surface of the insulating layer is δ (m)
In this case, they are designed so as to satisfy the relationship shown in the following (Equation 6).

【0010】[0010]

【数6】 (Equation 6)

【0011】静電チャックの使用温度における絶縁層の
体積固有抵抗をρ(Ωm)、静電チャックの使用温度に
おける絶縁層の比誘電率をεr、内部電極と絶縁層表面
との間隔(厚さ)をd(m)、被吸着物と絶縁層表面と
のギャップをδ(m)、静電チャックの使用温度におけ
るチャック表面に形成した保護膜の比誘電率をεrt、保
護膜の体積固有抵抗をρt(Ωm)、保護膜の厚さをdt
(m)とした場合、これらは以下の(数7)に示す関係
になるように設計する。
The volume resistivity of the insulating layer at the operating temperature of the electrostatic chuck is ρ (Ωm), the relative permittivity of the insulating layer at the operating temperature of the electrostatic chuck is ε r , and the distance between the internal electrode and the insulating layer surface (thickness). Is d (m), the gap between the object to be adsorbed and the insulating layer surface is δ (m), the relative permittivity of the protective film formed on the chuck surface at the operating temperature of the electrostatic chuck is ε rt , and the volume of the protective film. The specific resistance is ρ t (Ωm), and the thickness of the protective film is dt
In the case of (m), these are designed to have the relationship shown in the following (Equation 7).

【0012】[0012]

【数7】 (Equation 7)

【0013】静電チャックの使用温度における絶縁層の
体積固有抵抗をρ(Ωm)、静電チャックの使用温度に
おける絶縁層の比誘電率をεr、内部電極と絶縁層表面
との間隔(厚さ)をd(m)、絶縁層の表面粗さ(最大
高さ)を(Rmax)esc(m)、被吸着物の表面粗さ(最
大高さ)を(Rmax)plate(m)とした場合、これらは
以下の(数8)に示す関係になるように設計する。
The volume resistivity of the insulating layer at the operating temperature of the electrostatic chuck is ρ (Ωm), the relative permittivity of the insulating layer at the operating temperature of the electrostatic chuck is ε r , the distance between the internal electrode and the insulating layer surface (thickness). Is d (m), the surface roughness (maximum height) of the insulating layer is (Rmax) esc (m), and the surface roughness (maximum height) of the object is (Rmax) plate (m). In this case, they are designed so as to satisfy the relationship shown in the following (Equation 8).

【0014】[0014]

【数8】 (Equation 8)

【0015】[0015]

【作用】静電チャックの等価回路から静電力残留時間と
体積固有抵抗、比誘電率、絶縁層または保護膜の厚さ等
を結び付けることにより、低温域でも静電力が短時間で
減衰する静電チャックが得られる。
[Effect] By associating the electrostatic force remaining time with the volume resistivity, the relative dielectric constant, the thickness of the insulating layer or the protective film, etc. from the equivalent circuit of the electrostatic chuck, the electrostatic force in which the electrostatic force attenuates in a short time even in a low temperature range. A chuck is obtained.

【0016】[0016]

【実施例】以下に本発明の実施例を添付図面に基づいて
説明する。図1は静電チャックの等価回路を示す図であ
り、この静電チャックは基板1上に絶縁層2を形成し、
これら基板1と絶縁層2の間に電極3を形成し、この電
極3をリード線4を介して直流電源5に接続し、半導体
ウエハWはアースと直接接続されているか、またはプラ
ズマによる電気的接続をしている。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a diagram showing an equivalent circuit of the electrostatic chuck. This electrostatic chuck forms an insulating layer 2 on a substrate 1,
An electrode 3 is formed between the substrate 1 and the insulating layer 2, and the electrode 3 is connected to a DC power supply 5 via a lead wire 4, and the semiconductor wafer W is directly connected to the ground or electrically connected to a plasma. Connecting.

【0017】ここで、基板1はAl23、Si34、Al
N或いはSiC等を材料とし、絶縁層2は耐浸食性、機
械強度及び電気特性を考慮すると、Al23を主成分と
し、これにTiO2或いはCr23等の遷移金属酸化物を
絶縁抵抗値の調整用として添加したものを材料とする。
また絶縁層2の材料としては上記の他にSi34、Si
C、AlN、ZrO2、SiO2・Al23またはBNから
なるセラミックス焼結体或いはクロロプレンゴム若しく
はアクリルゴム等の有機物を材料としてもよい。
The substrate 1 is made of Al 2 O 3 , Si 3 N 4 , Al
In consideration of erosion resistance, mechanical strength and electrical characteristics, the insulating layer 2 is mainly composed of Al 2 O 3 , and a transition metal oxide such as TiO 2 or Cr 2 O 3 is added thereto. The material added for adjusting the insulation resistance is used as the material.
The material of the insulating layer 2 may be Si 3 N 4 , Si
A ceramic sintered body made of C, AlN, ZrO 2 , SiO 2 · Al 2 O 3 or BN, or an organic substance such as chloroprene rubber or acrylic rubber may be used as the material.

【0018】そして、基板1及び絶縁層2を作製するに
は上記の材料を溶剤とともに混練し、これをシート状に
成形した後、基板となるシートの上面または絶縁層2と
なるシートの下面のいずれかにタングステン(W)等の
ペースト状電極材料を塗布し、これらシートを重ねて焼
成することで得る。
In order to produce the substrate 1 and the insulating layer 2, the above-mentioned materials are kneaded with a solvent and formed into a sheet, and then the upper surface of the sheet serving as the substrate or the lower surface of the sheet serving as the insulating layer 2 is formed. A paste-like electrode material such as tungsten (W) is applied to one of them, and these sheets are stacked and fired.

【0019】ところで、静電チャックの等価回路の要素
であるキャパシタンスC1、C2及びコンダクタンス
1、G2は、絶縁層の体積固有抵抗をρ(Ωm)、絶縁
層の比誘電率をεr、内部電極と絶縁層表面との間隔
(厚さ)をd(m)、ウエハの面積S(m2)、被吸着
物と絶縁層表面との間の接触抵抗をR(Ω)、被吸着物
と絶縁層表面とのギャップをδ(m)とすると以下の
(数9)によって表わされる。
By the way, capacitances C 1 and C 2 and conductances G 1 and G 2 , which are elements of an equivalent circuit of the electrostatic chuck, have a volume resistivity of the insulating layer ρ (Ωm) and a relative permittivity of the insulating layer ε. r , the distance (thickness) between the internal electrode and the insulating layer surface is d (m), the area S (m 2 ) of the wafer, the contact resistance between the object to be adsorbed and the insulating layer surface is R (Ω), Assuming that the gap between the adsorbate and the surface of the insulating layer is δ (m), it is represented by the following (Equation 9).

【0020】[0020]

【数9】 (Equation 9)

【0021】そして、上記の静電チャックに対する電圧
の印加を解除した場合の残留静電力Fは、電圧をV、時
間をt、真空での比誘電率をε0とした場合以下の(数
10)によって表わされる。
The residual electrostatic force F when the application of the voltage to the electrostatic chuck is released is the following (Equation 10) when the voltage is V, the time is t, and the relative permittivity in vacuum is ε 0. ).

【0022】[0022]

【数10】 (Equation 10)

【0023】上記の(数10)の導出を以下に行う。静
電吸着力はギャップに蓄えられる電荷Q1(t)より以下の
(数11)で表される。
The following equation (10) is derived. The electrostatic attraction force is represented by the following (Equation 11) from the charge Q 1 (t) stored in the gap.

【0024】[0024]

【数11】 [Equation 11]

【0025】よってQ1の電圧印加および除去に対する
過渡特性を計算すれば静電吸着力の応答特性が分る。図
1の等価回路の電源に単一矩形波(時間0からTまで印
加電圧がV、T以降は0)が入力されたときに以下の
(数12)が成立する。
[0025] Thus it is clear response characteristics of the electrostatic attraction force by calculating the transient characteristics for the voltage application and removal of Q 1. When a single rectangular wave (the applied voltage is V from time 0 to T, and 0 after T) is input to the power supply of the equivalent circuit in FIG.

【0026】[0026]

【数12】 (Equation 12)

【0027】これを解くと、ギャップの静電容量に蓄積
される電荷Q1は、0≦t≦T(電圧印加時間)のとき
以下の(数13)、t>T(電圧印加時間)のとき以下
の(数14)となる。
Solving this, the electric charge Q 1 accumulated in the capacitance of the gap is expressed by the following (Equation 13) when 0 ≦ t ≦ T (voltage application time) and t> T (voltage application time). Then, the following (Equation 14) is obtained.

【0028】[0028]

【数13】 (Equation 13)

【数14】 [Equation 14]

【0029】(数13)を(数11)に代入する場合
は、電圧印加時の静電力変化が計算される。静電チャッ
クの表面粗さが小さい場合には、C1>>C2となるの
で、(数14)を(数11)に代入してt−Tを電圧の
印加を解除した時刻をあらためて時間の原点とすると前
記(数10)が導出される。
When the equation (13) is substituted into the equation (11), a change in electrostatic force when a voltage is applied is calculated. When the surface roughness of the electrostatic chuck is small, C 1 >> C 2. Therefore, (Equation 14) is substituted into (Equation 11), and t−T is the time when the application of the voltage is released again. (Equation 10) is derived when the origin is set to.

【0030】上記の(数10)において残留静電力の減
衰の早さを決めるのは2(G1+G2)/(C1+C2)の
値であり、ここで残留静電力が飽和静電力に対し98%
減衰するのに要する時間をtsとすると、tsは以下の
(数15)で表わされる。
In the above (Equation 10), it is the value of 2 (G 1 + G 2 ) / (C 1 + C 2 ) that determines the decay speed of the residual electrostatic force, where the residual electrostatic force is the saturated electrostatic force. 98%
Assuming that the time required for attenuation is t s , t s is represented by the following (Equation 15).

【0031】[0031]

【数15】 (Equation 15)

【0032】ところで、被吸着物がシリコンウエハ等の
場合には接触抵抗Rが十分に大きいのでtsを以下の
(数16)でもって表わすことができる。
When the object to be adsorbed is a silicon wafer or the like, the contact resistance R is sufficiently large, so that t s can be expressed by the following (Equation 16).

【0033】[0033]

【数16】 (Equation 16)

【0034】そして、前記同様従来の静電チャックより
も残留時間が短い静電チャックとするには以下の(数1
7)を満足するように絶縁層の体積固有抵抗ρ等を設定
すればよい。
As described above, to obtain an electrostatic chuck having a shorter residual time than the conventional electrostatic chuck, the following (Equation 1) is used.
The volume resistivity ρ and the like of the insulating layer may be set so as to satisfy the condition (7).

【0035】[0035]

【数17】 [Equation 17]

【0036】尚、上記(数17)における絶縁層の体積
固有抵抗ρ及び比誘電率をεrは静電チャックの使用温
度におけるものであり、これを25℃に換算した値を用
いる時には以下の(数18)で表わされる。
In the above (Equation 17), the volume resistivity ρ and the relative permittivity ε r of the insulating layer are values at the operating temperature of the electrostatic chuck. It is represented by (Equation 18).

【0037】[0037]

【数18】 (Equation 18)

【0038】ここで、Aは体積固有抵抗値の常用対数の
絶対温度の逆数に対する傾きを表し(logρ=A・1/
T+B A及びBは定数)、物質に固有な値である。例
えばAl23−Cr23−TiO2系セラミックの体積固
有抵抗の温度変化を示すと図4のようになる。このグラ
フにおいて、Aは低温域では約800、高温域では約2
500の値を示す。これらの値を前記(数18)に当て
はめたものが以下の(数19)、(数20)及び(数2
1)である。
Here, A represents the slope of the common logarithm of the volume resistivity to the reciprocal of the absolute temperature (logρ = A · 1 /
T + B A and B are constants) and are values specific to the substance. For example, FIG. 4 shows the temperature change of the volume resistivity of the Al 2 O 3 —Cr 2 O 3 —TiO 2 ceramic. In this graph, A is about 800 in the low temperature range and about 2 in the high temperature range.
A value of 500 is shown. When these values are applied to the above (Equation 18), the following (Equation 19), (Equation 20) and (Equation 2)
1).

【0039】[0039]

【数19】 [Equation 19]

【数20】 (Equation 20)

【数21】 (Equation 21)

【0040】また、ギャップについては表面粗さ(最大
高さ)でもって表わすこともできる。即ち、絶縁層の表
面粗さ(最大高さ)を(Rmax)esc、被吸着物の表面粗
さ(最大高さ)を(Rmax)plateとした場合、(数1
7)は以下の(数22)で表わされる。ここで、表面粗
さの測定はJIS(B0601)に基づいて行なう。ま
たギャップは表面粗さを最大表面うねりで代用できる。
ここで表面うねりの測定はJIS(B0610)に基づ
いて行えばよい。
The gap can also be represented by surface roughness (maximum height). That is, when the surface roughness (maximum height) of the insulating layer is (Rmax) esc and the surface roughness (maximum height) of the object to be adsorbed is (Rmax) plate,
7) is represented by the following (Equation 22). Here, the measurement of the surface roughness is performed based on JIS (B0601). The gap can substitute the surface roughness with the maximum surface undulation.
Here, the measurement of the surface waviness may be performed based on JIS (B0610).

【0041】[0041]

【数22】 (Equation 22)

【0042】図2は別実施例に係る静電チャックの断面
図であり、この実施例にあっては吸着面となる前記絶縁
層2の表面に絶縁層2からウエハWへ不純物が拡散また
は混入するのを防止する保護膜6を形成している。この
保護膜6は例えばSi34、SiC、SiO2等のSiを含
有するセラミック材料、またはAlN、C(ダイヤモン
ド)等の熱伝導率の高い材料からなる。
FIG. 2 is a sectional view of an electrostatic chuck according to another embodiment. In this embodiment, impurities are diffused or mixed from the insulating layer 2 to the wafer W on the surface of the insulating layer 2 serving as a suction surface. A protective film 6 is formed to prevent the occurrence of the above. The protective film 6 is made of a ceramic material containing Si, such as Si 3 N 4 , SiC, or SiO 2 , or a material having a high thermal conductivity, such as AlN or C (diamond).

【0043】そして、保護膜6を設けた時の残留時間t
sを60秒以下にするには以下の(数23)を満足する
ように絶縁層の体積固有抵抗ρ等を設定すればよい。
The remaining time t when the protective film 6 is provided
In order to reduce s to 60 seconds or less, the volume resistivity ρ and the like of the insulating layer may be set so as to satisfy the following (Equation 23).

【0044】[0044]

【数23】 (Equation 23)

【0045】(表1)〜(表4)はそれぞれ絶縁層の体
積固有抵抗ρ、内部電極と絶縁層表面との間隔(厚さ)
d、被吸着物と絶縁層表面とのギャップをδ(δ=
{(Rmax)esc+(Rmax)plate}/2とする)及び絶
縁層の材質を変えた場合の、前記各式によって算出した
残留時間の計算値と実測値を示すものである。これらの
(表)から計算値と実測値とは良く一致することが分
る。したがって前記(数1)〜(数4)に合致する絶縁
層の体積固有抵抗、比誘電率、内部電極と吸着面との間
隔、絶縁層の表面粗さと被吸着物の表面粗さから算出さ
れるギャップを設定すれば所望の残留時間の静電チャッ
クが得られる。また(表5)は保護膜としてSi34
SiC、SiO2を用いた場合の残留値の計算値と実測値
を示したものである。
Tables 1 to 4 show the volume resistivity ρ of the insulating layer and the distance (thickness) between the internal electrode and the surface of the insulating layer, respectively.
d, the gap between the object to be adsorbed and the surface of the insulating layer is δ (δ =
{(Rmax) esc + (Rmax) plate} / 2) and the values of the residual time calculated by the above equations and the measured values when the material of the insulating layer is changed are shown. From these (tables), it can be seen that the calculated values and the measured values agree well. Therefore, it is calculated from the volume resistivity of the insulating layer, the relative dielectric constant, the distance between the internal electrode and the adsorption surface, the surface roughness of the insulating layer, and the surface roughness of the object to be adsorbed, which satisfy the above (Equation 1) to (Equation 4). By setting an appropriate gap, an electrostatic chuck having a desired remaining time can be obtained. Table 5 shows that Si 3 N 4 was used as a protective film,
It shows the calculated value and the measured value of the residual value when using SiC and SiO 2 .

【0046】[0046]

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 [Table 3]

【表4】 [Table 4]

【表5】 [Table 5]

【0047】尚、実施例にあっては静電チャックの電極
の形態として単極タイプのものを示したが、図3(a)
に示すような双極タイプのものでもよい。この場合の等
価回路は図3(b)に示すようになる。ここで、C3
4はキャパシタンス、G3、G4はコンダクタンスを示
す。
In the embodiment, a single-electrode type is shown as the form of the electrode of the electrostatic chuck.
The bipolar type shown in FIG. The equivalent circuit in this case is as shown in FIG. Where C 3 ,
C 4 indicates capacitance, and G 3 and G 4 indicate conductance.

【0048】[0048]

【発明の効果】以上に説明した如く本発明によれば、静
電チャックを構成する絶縁層の体積固有抵抗、比誘電
率、内部電極と吸着面との間隔、更には吸着面に保護膜
を形成した場合にはこの保護膜の比誘電率、保護膜の厚
さ等を一定の関係にあるようにしたので、通常の使用温
度では勿論のこと低温域でも静電力が短時間で減衰する
静電チャックが得られる。
As described above, according to the present invention, according to the present invention, a protective film is formed on the insulating layer constituting the electrostatic chuck, the volume resistivity, the relative permittivity, the distance between the internal electrode and the attraction surface, and furthermore, the attraction surface. When formed, the relative permittivity of the protective film, the thickness of the protective film, and the like are set to have a fixed relationship, so that the electrostatic force attenuates in a short time not only at a normal operating temperature but also in a low temperature region. An electric chuck is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】静電チャックの等価回路を示す図FIG. 1 is a diagram showing an equivalent circuit of an electrostatic chuck.

【図2】別実施例に係る静電チャックの断面図FIG. 2 is a cross-sectional view of an electrostatic chuck according to another embodiment.

【図3】別実施例に係る静電チャックの等価回路を示す
FIG. 3 is a diagram showing an equivalent circuit of an electrostatic chuck according to another embodiment.

【図4】Al23−Cr23−TiO2系セラミックの体
積固有抵抗の温度変化を示すグラフ
FIG. 4 is a graph showing a temperature change of a volume resistivity of an Al 2 O 3 —Cr 2 O 3 —TiO 2 ceramic.

【符号の説明】[Explanation of symbols]

1…基板、2…絶縁層、3,3a,3b…電極、6…保
護膜。
DESCRIPTION OF SYMBOLS 1 ... board | substrate, 2 ... insulating layer, 3, 3a, 3b ... electrode, 6 ... protective film.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−22166(JP,A) 特開 昭62−286248(JP,A) 特開 平3−188645(JP,A) 特開 昭62−2632(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/68 B23Q 3/15 H02N 13/00 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-2-22166 (JP, A) JP-A-62-286248 (JP, A) JP-A-3-188645 (JP, A) JP-A 62-286 2632 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 21/68 B23Q 3/15 H02N 13/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 絶縁層内に内部電極を設けた静電チャッ
クの設計方法において、静電チャックの使用温度におけ
る前記絶縁層の体積固有抵抗をρ(Ωm)、静電チャッ
クの使用温度における前記絶縁層の比誘電率をεr、内
部電極と絶縁層表面との間隔(厚さ)をd(m)、被吸
着物と絶縁層表面とのギャップをδ(m)とした場合、
これらは以下の(数1)に示す関係にあることを特徴と
する静電チャックの設計方法。 【数1】
1. A method for designing an electrostatic chuck provided with internal electrodes in an insulating layer, wherein the volume resistivity of the insulating layer at the operating temperature of the electrostatic chuck is ρ (Ωm), and the volume resistivity at the operating temperature of the electrostatic chuck is ρ (Ωm). When the relative permittivity of the insulating layer is ε r , the distance (thickness) between the internal electrode and the surface of the insulating layer is d (m), and the gap between the object to be adsorbed and the surface of the insulating layer is δ (m),
These are in a relationship shown in the following (Equation 1). (Equation 1)
【請求項2】 絶縁層内に内部電極を設けた静電チャッ
クの設計方法において、前記絶縁層の25℃における体
積固有抵抗をρ’(Ωm)、前記絶縁層の25℃におけ
る比誘電率をεr'、内部電極と絶縁層表面との間隔(厚
さ)をd(m)、被吸着物と絶縁層表面とのギャップを
δ(m)とした場合、これらは以下の(数2)に示す関
係にあることを特徴とする静電チャックの設計方法。 【数2】
2. A method for designing an electrostatic chuck having an internal electrode provided in an insulating layer, wherein the volume resistivity of the insulating layer at 25 ° C. is ρ ′ (Ωm), and the relative permittivity of the insulating layer at 25 ° C. Assuming that εr ′, the distance (thickness) between the internal electrode and the insulating layer surface is d (m), and the gap between the object to be adsorbed and the insulating layer surface is δ (m), these are expressed by the following (Equation 2). A method for designing an electrostatic chuck, characterized by the following relationship: (Equation 2)
【請求項3】 絶縁層内に内部電極を設けるとともに被
吸着物が接触する表面に保護膜を形成した静電チャック
の設計方法において、静電チャックの使用温度における
前記絶縁層の体積固有抵抗をρ(Ωm)、静電チャック
の使用温度における前記絶縁層の比誘電率をεr、内部
電極と絶縁層表面との間隔(厚さ)をd(m)、被吸着
物と絶縁層表面とのギャップをδ(m)、静電チャック
の使用温度における前記保護膜の体積固有抵抗をρt
(Ωm)、前記保護膜の比誘電率をεrt、保護膜の厚さ
をdt(m)とした場合、これらは以下の(数3)に示
す関係にあることを特徴とする静電チャックの設計方
法。 【数3】
3. A method for designing an electrostatic chuck in which an internal electrode is provided in an insulating layer and a protective film is formed on a surface in contact with an object to be adsorbed, wherein the volume resistivity of the insulating layer at the operating temperature of the electrostatic chuck is determined. ρ (Ωm), the relative dielectric constant of the insulating layer at the operating temperature of the electrostatic chuck is εr, the distance (thickness) between the internal electrode and the insulating layer surface is d (m), and the distance between the object to be adsorbed and the insulating layer surface is The gap is δ (m), and the volume resistivity of the protective film at the operating temperature of the electrostatic chuck is ρt.
(Ωm), when the relative dielectric constant of the protective film is εrt, and the thickness of the protective film is dt (m), these have the relationship shown in the following (Formula 3). Design method. (Equation 3)
【請求項4】 絶縁層内に内部電極を設けた静電チャッ
クの設計方法において、静電チャックの使用温度におけ
る前記絶縁層の体積固有抵抗をρ(Ωm)、静電チャッ
クの使用温度における前記絶縁層の比誘電率をεr、内
部電極と絶縁層表面との間隔(厚さ)をd(m)、絶縁
層の表面粗さ(最大高さ)を(Rmax)esc(m)、被吸
着物の表面粗さ(最大高さ)を(Rmax)plate(m)と
した場合、これらは以下の(数4)に示す関係にあるこ
とを特徴とする静電チャックの設計方法。 【数4】
4. A method for designing an electrostatic chuck provided with an internal electrode in an insulating layer, wherein the volume resistivity of the insulating layer at the operating temperature of the electrostatic chuck is ρ (Ωm), The relative dielectric constant of the insulating layer is εr, the distance (thickness) between the internal electrode and the insulating layer surface is d (m), the surface roughness (maximum height) of the insulating layer is (Rmax) esc (m), When the surface roughness (maximum height) of the object is represented by (Rmax) plate (m), these have the relationship shown in the following (Equation 4). (Equation 4)
JP2000004808A 1991-08-30 2000-01-13 Design method of electrostatic chuck Expired - Fee Related JP3275901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000004808A JP3275901B2 (en) 1991-08-30 2000-01-13 Design method of electrostatic chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000004808A JP3275901B2 (en) 1991-08-30 2000-01-13 Design method of electrostatic chuck

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP24696591A Division JPH0563062A (en) 1991-08-30 1991-08-30 Electrostatic chuck

Publications (2)

Publication Number Publication Date
JP2000188322A JP2000188322A (en) 2000-07-04
JP3275901B2 true JP3275901B2 (en) 2002-04-22

Family

ID=18533547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000004808A Expired - Fee Related JP3275901B2 (en) 1991-08-30 2000-01-13 Design method of electrostatic chuck

Country Status (1)

Country Link
JP (1) JP3275901B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006049357A (en) * 2004-07-30 2006-02-16 Toto Ltd Electrostatic chuck and equipment mounting it
JP4948337B2 (en) * 2007-09-13 2012-06-06 株式会社巴川製紙所 Adhesive sheet for electrostatic chuck device and electrostatic chuck device
JP7150510B2 (en) * 2018-07-30 2022-10-11 日本特殊陶業株式会社 electrostatic chuck
CN112635381B (en) * 2019-10-08 2022-03-22 长鑫存储技术有限公司 Control method, control system and semiconductor manufacturing equipment
CN117901432A (en) * 2024-03-19 2024-04-19 成都骏创科技有限公司 Electrostatic chuck system capable of monitoring laminating pressure and flatness in real time

Also Published As

Publication number Publication date
JP2000188322A (en) 2000-07-04

Similar Documents

Publication Publication Date Title
JP2938679B2 (en) Ceramic electrostatic chuck
JP2865472B2 (en) Electrostatic chuck
TW442888B (en) Electrostatic holding apparatus and method of producing the same
US6641939B1 (en) Transition metal oxide doped alumina and methods of making and using
JPH07297265A (en) Electrostatic chuck
JPH11111828A (en) Electrostatic sucking device
JPH11176920A (en) Electrostatic chuck device
EP0615280B1 (en) Electrostatic chuck
JP3275901B2 (en) Design method of electrostatic chuck
JPS6395644A (en) Electrostatic chuck
JP3064653B2 (en) Electrostatic chuck
JPH0563062A (en) Electrostatic chuck
JP3447305B2 (en) Electrostatic chuck
JP2798570B2 (en) Electrostatic chuck
JP4043219B2 (en) Electrostatic chuck
JP3152847B2 (en) Electrostatic chuck
JP3426845B2 (en) Electrostatic chuck
JPS6114660B2 (en)
JP3324268B2 (en) Electrostatic adsorption method
JP4241571B2 (en) Manufacturing method of bipolar electrostatic chuck
JPH1187479A (en) Electrostatic chuck
JP3370532B2 (en) Electrostatic chuck
JPH05211228A (en) Electrostatic chuck
JP3152857B2 (en) Electrostatic chuck
JPH0855899A (en) Electrostatic chuck

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090208

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090208

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100208

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100208

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees