JPH07297265A - Electrostatic chuck - Google Patents

Electrostatic chuck

Info

Publication number
JPH07297265A
JPH07297265A JP8839094A JP8839094A JPH07297265A JP H07297265 A JPH07297265 A JP H07297265A JP 8839094 A JP8839094 A JP 8839094A JP 8839094 A JP8839094 A JP 8839094A JP H07297265 A JPH07297265 A JP H07297265A
Authority
JP
Japan
Prior art keywords
electrostatic chuck
dielectric layer
electrode
oxide
flatness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8839094A
Other languages
Japanese (ja)
Inventor
Hiroshi Mogi
弘 茂木
Kenichi Arai
健一 新井
Shinji Kojima
伸次 小嶋
Yoshihiro Kubota
芳宏 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP8839094A priority Critical patent/JPH07297265A/en
Priority to TW083110217A priority patent/TW287314B/zh
Priority to KR1019950001027A priority patent/KR950034652A/en
Publication of JPH07297265A publication Critical patent/JPH07297265A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Jigs For Machine Tools (AREA)

Abstract

PURPOSE:To obtain an electrostatic chuck having a quick response characteristic, enabling an increase of the number of sheets handled for a unit time and having an excellent performance by a method wherein the surface roughness Ra on the attracting surface side of an insulative dielectric layer covering an electrode is made a specified value or below and also the degree of flatness is made a specified value or below. CONSTITUTION:This electrostatic chuck has a structure formed by covering the opposite sides of an electrode 1 with an insulative dielectric layer 2 constituted of a sintered and/or thermally sprayed ceramic. In this electrostatic chuck, the surface roughness Ra on the attracting surface side of the insulative dielectric layer 2 is made 0.25mum or below and also the degree of flatness 20mum or below. The constituent of the insulative dielectric layer 2 is an aluminum oxide, an aluminum nitride, a silicon nitride, a silicon oxide, a zirconium oxide, a titanium oxide, SIALON, a boron nitride, a silicon carbide or a mixture of them. The insulative dielectric layer 2 is polished by using abrasive grains of diamond, the silicon carbide, a cerium oxide, the aluminum oxide or the like.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は静電チャック、特には導
電性、半導電性または絶縁性の対象物を強く静電的に吸
着保持し、容易に脱着することができることから、半導
体や液晶の製造プロセスなどに有用とされる静電チャッ
クに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrostatic chuck, and in particular, to a semiconductor, a liquid crystal, or the like, which is capable of strongly adsorbing and holding an electrically conductive, semiconductive or insulating target object electrostatically and easily detaching it. The present invention relates to an electrostatic chuck that is useful in the manufacturing process of the above.

【0002】[0002]

【従来の技術】半導体や液晶製造プロセス、半導体装置
のドライエッチング、イオン注入、蒸着などの工程につ
いては近年その自動化、ドライ化が進んでおり、したが
って真空条件下で用いられる製造も増加してきている。
また基板としてのシリコンウエハーやガラスなどはその
大口径化が進み、回路の高集積化、微細化に伴ってパタ
ーンニング時の位置精度も益々重要視されてきている。
そのため、基板の搬送や吸着固定には真空チャックが使
用されているが、このものは真空条件下では圧力差がな
いために使用できず、これはまた非真空下で基板を吸着
できたとしても吸着部分が局部的に吸引されるために、
基板に部分的な歪みが生じ、高精度な位置合わせができ
ないという不利があり、したがってこの真空チャックは
最近の半導体、液晶の製造プロセスには不適なものとさ
れている。
2. Description of the Related Art In recent years, semiconductor and liquid crystal manufacturing processes, processes such as dry etching of semiconductor devices, ion implantation, vapor deposition, and the like have been automated and dried in recent years. Therefore, the number of processes used under vacuum conditions is increasing. .
In addition, the diameter of silicon wafers and glasses as substrates has been increasing, and the positional accuracy at the time of patterning has become more and more important as the circuit becomes highly integrated and miniaturized.
Therefore, a vacuum chuck is used for transporting and fixing the substrate, but this can not be used because there is no pressure difference under vacuum conditions, even if it can suck the substrate under non-vacuum. Because the suction part is locally sucked,
There is a disadvantage that the substrate is partially distorted and high-precision alignment cannot be performed. Therefore, this vacuum chuck is unsuitable for recent semiconductor and liquid crystal manufacturing processes.

【0003】この欠点を改善したものとして静電気力を
利用して、基板を搬送したり、これを吸着固定する静電
チャックが注目され、使用され始めているが、最近の半
導体や液晶の製造プロセスでは微細化に伴って基板であ
るウエハーやガラス板の平坦度が重要になってきている
ことから、その矯正に静電チャックを利用することも検
討されてきている。この静電チャックは一般に電極の両
側を焼結体などのセラミックスで被覆してつくられてお
り、静電チャックに静電力を発揮させるにはこの内部の
電極に電圧を印加する手段が必要であるが、これは被覆
するセラミックスの一部に外部から電極まで通じる電極
給電部を設け、この電極給電部へ外部の電源からリード
線等を配設することにより実現している。
As an improvement of this defect, an electrostatic chuck for transporting a substrate by using electrostatic force or for adsorbing and fixing the substrate has attracted attention and has begun to be used, but in recent semiconductor and liquid crystal manufacturing processes. Since the flatness of wafers or glass plates, which are substrates, has become important with the miniaturization, it has been considered to use an electrostatic chuck for the correction. This electrostatic chuck is generally made by coating both sides of an electrode with a ceramic such as a sintered body, and in order to exert an electrostatic force on the electrostatic chuck, a means for applying a voltage to the internal electrode is required. However, this is realized by providing an electrode power feeding part that communicates from the outside to the electrode in a part of the ceramic to be coated, and arranging a lead wire or the like from an external power source to the electrode power feeding part.

【0004】そして、この電極給電部は、電極として、
銅、白金、ニッケルメッキや金メッキを施したタングス
テンなどのように半田付けが可能な材料を使用した場合
には、セラミックスに電極まで開孔した孔部を通して静
電チャック使用温度以上の融点をもつ半田により電極に
リード線を半田付けし、この電極がグラファイト、タン
グステン、窒化チタンなどのように半田付けできないも
のであるときには、セラミックスの熱膨張率にあった合
金などでネジ部をもつピンを孔部を通じて電極に銀ロウ
付けする構造がとられている。
The electrode power feeding section serves as an electrode.
When a solderable material such as copper, platinum, nickel-plated or gold-plated tungsten is used, the solder has a melting point above the electrostatic chuck operating temperature through the holes that are opened to the electrodes in the ceramic. Solder the lead wire to the electrode by using, and if this electrode cannot be soldered like graphite, tungsten, titanium nitride, etc., make a pin with a screw part with a hole such as an alloy with a coefficient of thermal expansion of ceramics. The structure is such that silver brazing is applied to the electrodes through.

【0005】[0005]

【発明が解決しようとする課題】しかし、この静電チャ
ックを半導体のドライプロセスなどに使用するときには
電圧を印加してから、静電吸着力が発生し、最大力にな
るまでの時間(静電吸着力飽和時間)および電圧を切っ
てから、静電吸着力が消滅するまでの時間(残留吸着力
消滅時間)が必要であり、この2つの時間は総称して応
答特性と呼ばれており、この応答特性は短いければ短い
ほど処理枚数を多くすることができるので短いことが望
ましいのであるが、現実にはこの応答特性が非常に長
く、単位時間当りの処理枚数も少なくなり、非常に効率
が悪いという問題点がある。
However, when this electrostatic chuck is used in a semiconductor dry process or the like, the time from when a voltage is applied until the electrostatic attraction force is generated to reach the maximum force (electrostatic force). Adsorption force saturation time) and the time from when the voltage is turned off until the electrostatic adsorption force disappears (residual adsorption force disappearance time) are required. These two times are collectively called response characteristics, The shorter this response characteristic is, the more sheets can be processed, so it is desirable to be short, but in reality, this response characteristic is very long and the number of sheets processed per unit time is small, resulting in a very high efficiency. There is a problem that is bad.

【0006】[0006]

【課題を解決するための手段】本発明はこのような不
利、問題点を解決した静電チャックに関するものであ
り、これは電極の両側を焼結体および/または溶射セラ
ミックスよりなる絶縁性誘電体層で被覆した構造を有す
る静電チャックにおいて、この絶縁性誘電体層の吸着面
側の表面粗さRaを0.25μm以下とすると共に、平面度
を20μm以下としてなることを特徴とするものである。
SUMMARY OF THE INVENTION The present invention relates to an electrostatic chuck which solves the above disadvantages and problems, and it is an insulating dielectric made of a sintered body and / or a sprayed ceramics on both sides of an electrode. In an electrostatic chuck having a structure covered with a layer, the surface roughness Ra of the insulating surface of the insulating dielectric layer is 0.25 μm or less, and the flatness is 20 μm or less. .

【0007】すなわち、本発明者らは前記したような不
利を伴わない静電チャックを開発すべく種々検討した結
果、電極の両側を絶縁性誘電体層で被覆した静電チャッ
クにおける絶縁性誘電体層の吸着面側の表面粗さが0.25
μmを超えており、平面度が20μmを超えるものとする
と、この静電吸着力飽和時間および残留吸着力消滅時
間、換言すれば応答特性が著しく増加することを見出
し、したがってこの絶縁性誘電体層の吸着面側の表面粗
さRaを0.25μm以下とすると共にその平面度を20μm
以下としたところ、この応答特性が飛躍的に速くなり、
処理枚数が多くなるので、高性能な静電チャックを得る
ことができることを確認して本発明を完成させた。以下
にこれをさらに詳述する。
That is, the inventors of the present invention have conducted various studies to develop an electrostatic chuck that does not have the above-mentioned disadvantages, and as a result, the insulating dielectric in the electrostatic chuck in which both sides of the electrode are covered with the insulating dielectric layer is obtained. The surface roughness of the adsorption side of the layer is 0.25
If the flatness exceeds 20 μm and the flatness exceeds 20 μm, it is found that the electrostatic adsorption force saturation time and the residual adsorption force disappearance time, in other words, the response characteristics are significantly increased. The surface roughness Ra of the adsorbing surface is set to 0.25 μm or less and the flatness is 20 μm.
When the following is set, this response characteristic becomes dramatically faster,
The present invention has been completed by confirming that a high-performance electrostatic chuck can be obtained because the number of processed sheets increases. This will be described in more detail below.

【0008】[0008]

【作用】本発明は静電チャックに関するものであり、こ
れは前記したように電極の両側を焼結体および/または
溶射セラミックスよりなる絶縁性誘電体層で被覆した構
造を有する静電チャックにおいて、この絶縁性誘電体層
の吸着面側の表面粗さRaを0.25μm以下、好ましくは
0.10μm以下とすると共に、平面度を20μm以下、好ま
しくは10μm以下、より好ましくは3μm以下としてな
ることを特徴とするものであり、これによれば上記した
応答特性が飛躍的に速くなるので、単位時間当たりの処
理枚数を多くすることができ、性能のよい静電チャック
を得ることができるという有利性が与えられる。
The present invention relates to an electrostatic chuck, which is, as described above, an electrostatic chuck having a structure in which both sides of an electrode are covered with an insulating dielectric layer made of a sintered body and / or a sprayed ceramic, The surface roughness Ra of the insulating surface of the insulating dielectric layer is 0.25 μm or less, preferably
In addition to 0.10 μm or less, the flatness is set to 20 μm or less, preferably 10 μm or less, more preferably 3 μm or less. According to this, the response characteristics described above are dramatically improved. The number of sheets to be processed per unit time can be increased, and an advantage that an electrostatic chuck with good performance can be obtained is given.

【0009】本発明の静電チャックは電極の両側を絶縁
性誘電体層で被覆した構造を有するものとされるが、こ
の電極はアルミニウム、鉄、銅、銀、金、チタン、タン
グステン、モリブデン、白金などの金属、グラファイ
ト、カーボン、炭化けい素、窒化チタン、炭化チタンな
どのセラミックスあるいはこれらの混合物で作られたも
のとすればよく、この形成はスクリーン印刷法、溶射
法、フォトリソグラフィーあるいはメッキなどでおこな
えばよい。また、この電極の構成は電極の一方を吸着さ
れる基板にとり、もう一方を静電チャック内に構成する
単極型のものとすればよいが、これは内部に二つの電極
を対向させる双極式のものであってもよい。
The electrostatic chuck of the present invention is supposed to have a structure in which both sides of an electrode are covered with an insulating dielectric layer. This electrode is made of aluminum, iron, copper, silver, gold, titanium, tungsten, molybdenum, It may be made of a metal such as platinum, a ceramic such as graphite, carbon, silicon carbide, titanium nitride, titanium carbide, or a mixture thereof, which is formed by screen printing, thermal spraying, photolithography or plating. You can do it in. In addition, the structure of this electrode may be a monopolar type in which one of the electrodes is attached to the substrate to be adsorbed and the other is formed in the electrostatic chuck. This is a bipolar type in which two electrodes are opposed to each other. It may be one.

【0010】また、この静電チャックを構成する絶縁性
誘電体層はチャック機能部となるものであるが、これは
焼結体および/または溶射セラミックスよりなるものと
される。したがってこれは焼結体またはプラズマによる
溶射、CVDなどにより作製した混合物であってもよい
が、具体的にはこの主成分は酸化アルミニウム(アルミ
ナ)、窒化アルミニウム、窒化けい素、酸化ジルコニウ
ム、酸化チタン、サイアロン、窒化ほう素、炭化けい素
あるいはこれらの混合物からなるもののセラミックスで
あればよい。
The insulating dielectric layer that constitutes the electrostatic chuck serves as a chuck function portion, which is made of a sintered body and / or a sprayed ceramics. Therefore, this may be a sintered body or a mixture prepared by thermal spraying with plasma, CVD, etc., but specifically, the main component is aluminum oxide (alumina), aluminum nitride, silicon nitride, zirconium oxide, titanium oxide. Ceramics made of sialon, boron nitride, silicon carbide, or a mixture thereof.

【0011】なお、この絶縁性誘電体層の体積固有抵抗
値は、使用する温度により適正な値があり、例えばこれ
を半導体装置に使用するときに保持するウエハーの温度
が20℃以下の時の絶縁性誘電体層の体積固有抵抗値は1
×108 〜1×1013Ω・cm程度であれば静電力が十分発揮
し、デバイスダメージもおこさない。また、ウエハーの
温度が20℃以上の時の絶縁性誘電体層の体積固有抵抗値
は1×1013Ω・cm以上程度であればウエハーに流れるリ
ーク電流も小さく、ウエハー上に描かれた回路を破壊す
ることもない。したがって、この体積固有抵抗値につい
ては、これをそれを使用する温度に最適な値とすれば、
微少なリーク電流が絶縁体とウエハー間に流れジョンセ
ン・ラーベック効果により静電力が強く発生し、良好な
吸着保持状態となり、応答特性の良好なチャック機能部
が得られる。
The volume resistivity value of this insulating dielectric layer has an appropriate value depending on the temperature at which it is used. For example, when the temperature of the wafer held when this is used for a semiconductor device is 20 ° C. or lower. The volume resistivity of the insulating dielectric layer is 1
If it is about × 10 8 to 1 × 10 13 Ω · cm, the electrostatic force is sufficiently exerted and the device is not damaged. If the volume resistivity of the insulating dielectric layer is 1 × 10 13 Ω · cm or more when the temperature of the wafer is 20 ° C or higher, the leak current flowing in the wafer is small and the circuit drawn on the wafer is small. It doesn't destroy. Therefore, for this volume resistivity value, if this is the optimum value for the temperature at which it is used,
A minute leak current flows between the insulator and the wafer, the electrostatic force is strongly generated by the Johnsen-Rahbek effect, and a good adsorption and holding state is obtained, and a chuck function section with good response characteristics can be obtained.

【0012】なお、この静電チャックの静電力は一般に
F=A・ε・(V/t)2 (ここでF:静電力、ε:誘
電率、V:電圧、t:厚さ、A:定数)で表されるの
で、この絶縁体中には高誘電体のセラミックス粉末、例
えばチタン酸バリウム、チタン酸鉛、チタン酸ジルコニ
ウム、PLZTなどを半導体デバイスに影響しない程度
であれば混入してもかまわない。
The electrostatic force of this electrostatic chuck is generally F = Aε (V / t) 2 (where F: electrostatic force, ε: dielectric constant, V: voltage, t: thickness, A: Constant), even if high dielectric ceramic powder such as barium titanate, lead titanate, zirconium titanate, PLZT, etc. is mixed in this insulator, as long as it does not affect the semiconductor device. I don't care.

【0013】この静電チャックに静電力を発揮させるに
は内部の電極に電圧を印加する手段が必要であるため、
被覆するセラミックスの一部に外部から電極まで通じる
電極給電部を設け、この電極給電部へ外部の電源からリ
ード線等を配設することが必要とされる。しかし、この
電極給電部における電極として銅、白金、ニッケルメッ
キや金メッキを施したタングステンなどのように半田付
けが可能な材料を使用した場合には、セラミックスに電
極まで開孔した孔部を通して静電チャック使用温度以上
の融点をもつ半田により電極にリード線を半田付けすれ
ばよく、この電極がグラファイト、タングステン、窒化
チタンなどのように半田付けできないものであるときに
は、セラミックスの熱膨張率にあった合金などでネジ部
をもつピンを孔部を通して電極に銀ロウ付けする構造と
すればよい。
In order to exert an electrostatic force on this electrostatic chuck, a means for applying a voltage to the internal electrodes is required,
It is necessary to provide an electrode power feeding part that communicates from the outside to the electrode on a part of the ceramic to be coated, and to dispose a lead wire or the like from an external power source to the electrode power feeding part. However, when a solderable material such as copper, platinum, nickel-plated or gold-plated tungsten is used as the electrode in this electrode power supply part, electrostatic discharge is performed through the holes formed in the ceramic to the electrode. It suffices to solder the lead wire to the electrode with a solder having a melting point above the chuck operating temperature. When this electrode cannot be soldered like graphite, tungsten, titanium nitride, etc., it has a coefficient of thermal expansion of ceramics. A pin having a threaded portion made of an alloy or the like may be brazed to the electrode through the hole and silver brazed.

【0014】本発明の静電チャックはその縦断面図とし
ての図1に示したように、電極1の両側を焼結体および
/または溶射セラミックスよりなる絶縁性誘電体層2で
被覆した構造を有するもので、これに電極給電部3を設
けたものであり、この表面4が吸着面となるものである
が、実用的にはこれを基板5に接着させて使用すればよ
い。なお、このものは本発明によりこの絶縁性誘電体層
との吸着面4側の表面粗さRaが0.25μm以下とされ、
平面度が20μm以下とされるが、この絶縁性誘電体層の
研摩はダイヤモンド、炭化けい素(グリーンカーボ
ン)、酸化セリウム、酸化アルミニウムなどの研摩砥粒
を用いて行えばよい。
As shown in FIG. 1 as a longitudinal sectional view, the electrostatic chuck of the present invention has a structure in which both sides of an electrode 1 are covered with an insulating dielectric layer 2 made of a sintered body and / or a sprayed ceramics. It has what is provided with the electrode feeding part 3, and this surface 4 serves as an adsorption surface. However, in practice, it may be used by adhering it to the substrate 5. According to the present invention, this has a surface roughness Ra of 0.25 μm or less on the adsorption surface 4 side with the insulating dielectric layer,
The flatness is set to 20 μm or less, and the insulating dielectric layer may be polished by using abrasive grains such as diamond, silicon carbide (green carbon), cerium oxide, and aluminum oxide.

【0015】この表面粗さRaおよび平面度が極めて小
さい場合には本発明の静電チャックの機構の縦断面図と
しての図2に示したようにチャック表面と吸着物との接
触状態が良好であることから、電荷の移動がスムーズに
行なわれ、応答特性が極めて速くなるのであるが、従来
公知の静電チャックではその機構の縦断面図を示した図
3に示したように表面粗さRaと平面度が大きいので電
荷の移動が少なく、したがって応答特性が遅くなるもの
と考えられる。
When the surface roughness Ra and the flatness are extremely small, the contact state between the chuck surface and the adsorbed material is good as shown in FIG. 2 which is a longitudinal sectional view of the mechanism of the electrostatic chuck of the present invention. Therefore, the charge is smoothly transferred and the response characteristics are extremely fast. However, in the conventionally known electrostatic chuck, the surface roughness Ra is as shown in FIG. 3 which is a longitudinal sectional view of the mechanism. Since the flatness is large, the movement of charges is small, and therefore the response characteristics are considered to be slow.

【0016】[0016]

【実施例】つぎに本発明の実施例、比較例をあげるが、
例中における絶縁性誘電体層の表面粗さRaおよび平面
度はつぎの方法による測定値を示したものである。 (表面粗さRa) JIS−B0601による。測定器はD
R-100X31(触針式)[小坂研究所(株)製商品名]を
使用し、サンプル表面を6ヶ所測定し、その平均値(μ
m)を求めた。 (平面度) サンプルの表面の50ヶ所をBH50
6[ミツトヨ(株)製商品名]を用いて、Z軸方向の高
さを(XY軸をサンプル表面として)3回測定して得た
150ヶ所の値(μm)を平均とし て求
めた。 実施例1〜3、比較例1〜2 酸化アルミニウム粉末96重量%とシリカ粉末3重量%お
よびマグネシア1重量%からなる混合物 100重量部に、
ブチラール樹脂8重量部、エタノール60重量部およびフ
タル酸ジオクチル12重量部を添加した後、ボールミル中
で50時間混練してスラリーを作製した。
EXAMPLES Examples and comparative examples of the present invention will be given below.
The surface roughness Ra and the flatness of the insulating dielectric layer in the examples are values measured by the following method. (Surface roughness Ra) According to JIS-B0601. Measuring device is D
R-100X31 (stylus type) [trade name of Kosaka Laboratory Ltd.] was used to measure the sample surface at 6 points, and the average value (μ
m) was calculated. (Flatness) BH50 at 50 points on the surface of the sample
6 [trade name of Mitutoyo Co., Ltd.] was used to obtain the height in the Z-axis direction three times (with the XY-axis as the sample surface).
The value at 150 points (μm) was calculated as the average. Examples 1 to 3, Comparative Examples 1 to 2 To 100 parts by weight of a mixture consisting of 96% by weight of aluminum oxide powder, 3% by weight of silica powder and 1% by weight of magnesia,
After adding 8 parts by weight of butyral resin, 60 parts by weight of ethanol and 12 parts by weight of dioctyl phthalate, they were kneaded in a ball mill for 50 hours to prepare a slurry.

【0017】ついで、このスラリーを真空脱泡機で処理
してその溶剤の一部を飛散させ、粘度30,000センチポイ
ズのものとし、このスラリーからドクターブレードを用
いて厚さ 0.7mmのグリーンシートを作り、このグリーン
シートから直径が 180mmφの円板を2枚切り出し、この
グリーンシート円板1枚にタングステンペーストを用い
てスクリーン印刷で双極型電極を 2.5mmの間隔で同心円
状に印刷した。また、残る1枚のグリーンシート中心部
にφ2mmの孔をあけ電極給電部とした。
Next, this slurry was treated with a vacuum defoaming machine to scatter a part of the solvent so as to have a viscosity of 30,000 centipoise, and a 0.7 mm thick green sheet was prepared from this slurry using a doctor blade. Two circular plates each having a diameter of 180 mm were cut out from this green sheet, and a bipolar electrode was concentrically printed at a distance of 2.5 mm by screen printing using tungsten paste on one of the green sheet circular plates. A hole of φ2 mm was made in the center of the remaining one green sheet to serve as an electrode power feeding part.

【0018】また、この印刷したグリーンシートの印刷
面上に電極給電部を設けたもう一枚のグリーンシートを
重ね合わせ、 100℃に加熱したプレスで80kg/cm2の圧力
をかけて一体化し、その後、水素25%、窒素75%の雰囲
気ガス中で、 1,630℃の温度で焼結したところ、焼結体
が得られたので、この焼結体の両面をダイヤモンドの固
定砥粒#3,000 で研摩し、その切り込み距離を変化させ
て厚さ1mmで表面粗さが0.13μm、0.22μm、0.10μm
で平面度が 6.8μm、 2.7μm、 9.2μmであるもの
(実施例1〜3)、および表面粗さRaが0.35μm、0.
19μmで平面度が120.5μm、 150.6μmであるもの
(比較例1〜2)を製作し、この電極給電部から覗いて
いるタングステン電極にニッケルメッキ、および金メッ
キをほどこし、これにリード線を2本、融点 300℃の半
田で半田付けして静電チャックを製作し、これについて
これらの応答特性を測定したところ、表1に示したとお
りの結果が得られた。
On the printed surface of the printed green sheet, another green sheet provided with an electrode power feeding portion is superposed and integrated with a press heated to 100 ° C. under a pressure of 80 kg / cm 2 . Then, when sintered in an atmosphere gas of 25% hydrogen and 75% nitrogen at a temperature of 1,630 ° C, a sintered body was obtained. Both sides of this sintered body were polished with diamond fixed abrasive grains # 3,000. The thickness is 1mm and the surface roughness is 0.13μm, 0.22μm, 0.10μm.
And flatness of 6.8 μm, 2.7 μm, 9.2 μm (Examples 1 to 3), and surface roughness Ra of 0.35 μm,
We have produced 19μm and flatness of 120.5μm and 150.6μm (Comparative Examples 1 and 2), and the nickel electrode and the gold electrode are applied to the tungsten electrode which is seen from this electrode power supply part, and two lead wires are attached to this. When an electrostatic chuck was manufactured by soldering with a solder having a melting point of 300 ° C. and the response characteristics of the electrostatic chuck were measured, the results shown in Table 1 were obtained.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【発明の効果】本発明は静電チャックに関するものであ
り、これは前記したように電極の両側を焼結体および/
または溶射セラミックスよりなる絶縁性誘電体層で被覆
した構造を有する静電チャックにおいて、この絶縁性誘
電体層の吸着面側の表面粗さRaを0.25μm以下とし、
この平面度を20μm以下としてなることを特徴とするも
のであるが、これによれば前記したように応答特性が飛
躍的に速くすることができて、単位時間当たりの処理枚
数が飛躍的に向上でき、高性能な静電チャックを得るこ
とができるので、これが半導体や液晶の製造プロセスに
有用とされるという有利性が与えられる。
As described above, the present invention relates to an electrostatic chuck, which has a sintered body and / or a sintered body on both sides of an electrode.
Alternatively, in an electrostatic chuck having a structure coated with an insulating dielectric layer made of sprayed ceramics, the surface roughness Ra of the insulating surface of the insulating dielectric layer is 0.25 μm or less,
The feature is that the flatness is set to 20 μm or less. According to this, the response characteristic can be remarkably increased as described above, and the number of processed sheets per unit time is remarkably improved. As a result, a high-performance electrostatic chuck can be obtained, which is advantageous in that it is useful in a semiconductor or liquid crystal manufacturing process.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の静電チャックの一連の縦断面図を示し
たものである
FIG. 1 shows a series of vertical cross-sectional views of an electrostatic chuck of the present invention.

【図2】本発明の静電チャックの機構の縦断面図を示し
たものである
FIG. 2 is a vertical sectional view of the mechanism of the electrostatic chuck of the present invention.

【図3】従来法の静電チャックの機構の縦断面図を示し
たものである
FIG. 3 is a vertical sectional view of a mechanism of a conventional electrostatic chuck.

【符号の説明】[Explanation of symbols]

1…電極 2…絶縁性誘電体層 3…電極給電部 4…吸着面 5…基板 6…ウエーハ 7…電荷の流れ DESCRIPTION OF SYMBOLS 1 ... Electrode 2 ... Insulating dielectric layer 3 ... Electrode power feeding part 4 ... Adsorption surface 5 ... Substrate 6 ... Wafer 7 ... Charge flow

【手続補正書】[Procedure amendment]

【提出日】平成6年6月27日[Submission date] June 27, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0018[Correction target item name] 0018

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0018】また、この印刷したグリーンシートの印刷
面上に電極給電部を設けたもう一枚のグリーンシートを
重ね合わせ、 100℃に加熱したプレスで80kg/cm2の圧力
をかけて一体化し、その後、水素25%、窒素75%の雰囲
気ガス中で、 1,630℃の温度で焼結したところ、焼結体
が得られたので、この焼結体の両面をダイヤモンドの固
定砥粒#3,000 で研摩し、その切り込み距離を変化させ
て厚さ1mmで表面粗さが0.13μm、0.22μm、0.10μm
で平面度が 6.8μm、 2.7μm、 9.2μmであるもの
(実施例1〜3)、および表面粗さRaが0.35μm、0.
19μmで平面度が3.5μm、38.0μmであるもの(比較
例1〜2)を製作し、この電極給電部から覗いているタ
ングステン電極にニッケルメッキ、および金メッキをほ
どこし、これにリード線を2本、融点 300℃の半田で半
田付けして静電チャックを製作し、これについてこれら
の応答特性を測定したところ、表1に示したとおりの結
果が得られた。
On the printed surface of the printed green sheet, another green sheet provided with an electrode power feeding portion is superposed and integrated with a press heated to 100 ° C. under a pressure of 80 kg / cm 2 . Then, when sintered in an atmosphere gas of 25% hydrogen and 75% nitrogen at a temperature of 1,630 ° C, a sintered body was obtained. Both sides of this sintered body were polished with diamond fixed abrasive grains # 3,000. The thickness is 1mm and the surface roughness is 0.13μm, 0.22μm, 0.10μm.
And flatness of 6.8 μm, 2.7 μm, 9.2 μm (Examples 1 to 3), and surface roughness Ra of 0.35 μm,
We manufactured 19 μm flatness 3.5 μm and 38.0 μm (Comparative Examples 1 and 2). Nickel plating and gold plating were applied to the tungsten electrode seen from this electrode power supply part, and two lead wires were attached to this. When an electrostatic chuck was manufactured by soldering with a solder having a melting point of 300 ° C. and the response characteristics of the electrostatic chuck were measured, the results shown in Table 1 were obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 久保田 芳宏 群馬県安中市磯部2丁目13番1号 信越化 学工業株式会社精密機能材料研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Yoshihiro Kubota 2-13-1, Isobe, Annaka-shi, Gunma Shin-Etsu Chemical Co., Ltd. Precision Materials Research Laboratory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電極の両側を焼結体および/または溶射
セラミックスよりなる絶縁性誘電体層で被覆した構造を
有する静電チャックにおいて、この絶縁性誘電体層の吸
着面側の表面粗さRaを0.25μm以下とすると共に、平
面度を20μm以下としてなることを特徴とする静電チャ
ック。
1. An electrostatic chuck having a structure in which both sides of an electrode are covered with an insulating dielectric layer made of a sintered body and / or a sprayed ceramics, and a surface roughness Ra of the insulating dielectric layer on the attracting surface side. Is less than 0.25 μm and the flatness is less than 20 μm.
【請求項2】 電極がアルミニウム、鉄、銅、銀、金、
チタン、タングステン、モリブデン、白金などの金属、
グラファイト、カーボン、炭化けい素、窒化チタン、炭
化チタンなどのセラミックスあるいはこれらの混合物か
らなるものである請求項1に記載した静電チャック。
2. The electrode is aluminum, iron, copper, silver, gold,
Metals such as titanium, tungsten, molybdenum, platinum,
The electrostatic chuck according to claim 1, which is made of ceramics such as graphite, carbon, silicon carbide, titanium nitride and titanium carbide, or a mixture thereof.
【請求項3】 絶縁性誘電体層の成分が、酸化アルミニ
ウム、窒化アルミニウム、窒化けい素、酸化けい素、酸
化ジルコニウム、酸化チタン、サイアロン、窒化ほう
素、炭化けい素あるいはこれらの混合物からなるもので
ある請求項1に記載した静電チャック。
3. The insulating dielectric layer comprises aluminum oxide, aluminum nitride, silicon nitride, silicon oxide, zirconium oxide, titanium oxide, sialon, boron nitride, silicon carbide or a mixture thereof. The electrostatic chuck according to claim 1, wherein
JP8839094A 1994-04-26 1994-04-26 Electrostatic chuck Pending JPH07297265A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP8839094A JPH07297265A (en) 1994-04-26 1994-04-26 Electrostatic chuck
TW083110217A TW287314B (en) 1994-04-26 1994-11-04
KR1019950001027A KR950034652A (en) 1994-04-26 1995-01-21 An electrostatic chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8839094A JPH07297265A (en) 1994-04-26 1994-04-26 Electrostatic chuck

Publications (1)

Publication Number Publication Date
JPH07297265A true JPH07297265A (en) 1995-11-10

Family

ID=13941474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8839094A Pending JPH07297265A (en) 1994-04-26 1994-04-26 Electrostatic chuck

Country Status (3)

Country Link
JP (1) JPH07297265A (en)
KR (1) KR950034652A (en)
TW (1) TW287314B (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09260474A (en) * 1996-03-22 1997-10-03 Sony Corp Electrostatic chuck and wafer stage
EP0863544A2 (en) * 1997-03-06 1998-09-09 Ngk Insulators, Ltd. Substrate for use in wafer attracting apparatus and manufacturing method thereof
JPH11209182A (en) * 1998-01-22 1999-08-03 Sumitomo Metal Ind Ltd Plasma corrosion resistant member
JPH11214491A (en) * 1998-01-22 1999-08-06 Toshiba Ceramics Co Ltd Wafer holder and production thereof
WO1999059201A1 (en) * 1998-05-11 1999-11-18 Applied Materials Inc Polished ceramic chuck for low backside particles in semiconductor plasma processing
WO2001013423A1 (en) * 1999-08-10 2001-02-22 Ibiden Co., Ltd. Semiconductor production device ceramic plate
WO2001054188A1 (en) * 2000-01-21 2001-07-26 Tocalo Co., Ltd. Electrostatic chuck member and method of producing the same
US6342754B1 (en) 1996-12-27 2002-01-29 Canon Kabushiki Kaisha Charge-reducing film, image forming apparatus including said film and method of manufacturing said image forming apparatus
JP2002057207A (en) * 2000-01-20 2002-02-22 Sumitomo Electric Ind Ltd Wafer holder for semiconductor-manufacturing apparatus, manufacturing method of the same and the semiconductor-manufacturing apparatus
KR20020064508A (en) * 2001-02-02 2002-08-09 삼성전자 주식회사 Electrostatic chuck
US6730276B2 (en) 2000-07-24 2004-05-04 Sumitomo Osaka Cement Co., Ltd. Plastic film electrostatic adsorption apparatus and electrostatic adsorption method
WO2005034233A1 (en) * 2003-10-09 2005-04-14 Snt Co., Ltd Electro-static chuck with non-sintered aln and a method of preparing the same
JP2005191581A (en) * 2000-01-20 2005-07-14 Sumitomo Electric Ind Ltd Wafer holder for semiconductor-manufacturing apparatus, its manufacturing method, and semiconductor-manufacturing apparatus
EP1387392A3 (en) * 2002-07-15 2005-09-07 Integrated Dynamics Engineering Electrostatic gripper and method of producing the same
JP2007150351A (en) * 2007-02-15 2007-06-14 Toto Ltd Electrostatic chuck
US7615133B2 (en) 2001-12-04 2009-11-10 Toto Ltd. Electrostatic chuck module and cooling system
JP2010118551A (en) * 2008-11-13 2010-05-27 Tokyo Electron Ltd Electrostatic chuck and substrate processing apparatus
JP2010166086A (en) * 2010-04-12 2010-07-29 Fujitsu Semiconductor Ltd Semiconductor manufacturing apparatus using electrostatic chuck
JP2010177698A (en) * 2010-04-12 2010-08-12 Fujitsu Semiconductor Ltd Method for manufacturing electrostatic chuck
KR20140116015A (en) 2013-03-22 2014-10-01 엔지케이 인슐레이터 엘티디 Ceramic member and member for semiconductor manufacturing equipment
WO2015080135A1 (en) * 2013-11-29 2015-06-04 株式会社東芝 Plasma device part and manufacturing method therefor
KR20170036740A (en) 2014-09-16 2017-04-03 엔지케이 인슐레이터 엘티디 Ceramic structure, member for substrate holding device, and method for manufacturing ceramic structure
WO2019163757A1 (en) * 2018-02-20 2019-08-29 住友大阪セメント株式会社 Electrostatic chuck device and method for producing electrostatic chuck device
JPWO2020261992A1 (en) * 2019-06-28 2020-12-30
WO2022014410A1 (en) * 2020-07-13 2022-01-20 京セラ株式会社 Sample holder

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI254403B (en) 2000-05-19 2006-05-01 Ngk Insulators Ltd Electrostatic clamper, and electrostatic attracting structures
JP3808286B2 (en) * 2000-06-07 2006-08-09 住友大阪セメント株式会社 Electrostatic chuck

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09260474A (en) * 1996-03-22 1997-10-03 Sony Corp Electrostatic chuck and wafer stage
US6342754B1 (en) 1996-12-27 2002-01-29 Canon Kabushiki Kaisha Charge-reducing film, image forming apparatus including said film and method of manufacturing said image forming apparatus
EP0863544A3 (en) * 1997-03-06 2000-01-05 Ngk Insulators, Ltd. Substrate for use in wafer attracting apparatus and manufacturing method thereof
US6491571B1 (en) 1997-03-06 2002-12-10 Ngk Insulators, Ltd. Substrate for use in wafer attracting apparatus and manufacturing method thereof
US6166432A (en) * 1997-03-06 2000-12-26 Ngk Insulators, Ltd. Substrate for use in wafer attracting apparatus and manufacturing method thereof
EP0863544A2 (en) * 1997-03-06 1998-09-09 Ngk Insulators, Ltd. Substrate for use in wafer attracting apparatus and manufacturing method thereof
JPH11209182A (en) * 1998-01-22 1999-08-03 Sumitomo Metal Ind Ltd Plasma corrosion resistant member
JPH11214491A (en) * 1998-01-22 1999-08-06 Toshiba Ceramics Co Ltd Wafer holder and production thereof
WO1999059201A1 (en) * 1998-05-11 1999-11-18 Applied Materials Inc Polished ceramic chuck for low backside particles in semiconductor plasma processing
US7084376B2 (en) 1999-08-10 2006-08-01 Ibiden Co., Ltd. Semiconductor production device ceramic plate
WO2001013423A1 (en) * 1999-08-10 2001-02-22 Ibiden Co., Ltd. Semiconductor production device ceramic plate
US6717116B1 (en) 1999-08-10 2004-04-06 Ibiden Co., Ltd. Semiconductor production device ceramic plate
JP2002057207A (en) * 2000-01-20 2002-02-22 Sumitomo Electric Ind Ltd Wafer holder for semiconductor-manufacturing apparatus, manufacturing method of the same and the semiconductor-manufacturing apparatus
JP4529690B2 (en) * 2000-01-20 2010-08-25 住友電気工業株式会社 Wafer holder for semiconductor manufacturing apparatus, manufacturing method thereof, and semiconductor manufacturing apparatus
JP2005191581A (en) * 2000-01-20 2005-07-14 Sumitomo Electric Ind Ltd Wafer holder for semiconductor-manufacturing apparatus, its manufacturing method, and semiconductor-manufacturing apparatus
JP2001203258A (en) * 2000-01-21 2001-07-27 Tocalo Co Ltd Electrostatic chuck member and its manufacturing method
US6771483B2 (en) 2000-01-21 2004-08-03 Tocalo Co., Ltd. Electrostatic chuck member and method of producing the same
WO2001054188A1 (en) * 2000-01-21 2001-07-26 Tocalo Co., Ltd. Electrostatic chuck member and method of producing the same
US6730276B2 (en) 2000-07-24 2004-05-04 Sumitomo Osaka Cement Co., Ltd. Plastic film electrostatic adsorption apparatus and electrostatic adsorption method
KR20020064508A (en) * 2001-02-02 2002-08-09 삼성전자 주식회사 Electrostatic chuck
US7615133B2 (en) 2001-12-04 2009-11-10 Toto Ltd. Electrostatic chuck module and cooling system
EP1387392A3 (en) * 2002-07-15 2005-09-07 Integrated Dynamics Engineering Electrostatic gripper and method of producing the same
WO2005034233A1 (en) * 2003-10-09 2005-04-14 Snt Co., Ltd Electro-static chuck with non-sintered aln and a method of preparing the same
JP2007150351A (en) * 2007-02-15 2007-06-14 Toto Ltd Electrostatic chuck
JP2010118551A (en) * 2008-11-13 2010-05-27 Tokyo Electron Ltd Electrostatic chuck and substrate processing apparatus
JP2010166086A (en) * 2010-04-12 2010-07-29 Fujitsu Semiconductor Ltd Semiconductor manufacturing apparatus using electrostatic chuck
JP2010177698A (en) * 2010-04-12 2010-08-12 Fujitsu Semiconductor Ltd Method for manufacturing electrostatic chuck
US9177847B2 (en) 2013-03-22 2015-11-03 Ngk Insulators, Ltd. Ceramic member and member for semiconductor manufacturing equipment
KR20140116015A (en) 2013-03-22 2014-10-01 엔지케이 인슐레이터 엘티디 Ceramic member and member for semiconductor manufacturing equipment
JPWO2015080135A1 (en) * 2013-11-29 2017-03-16 株式会社東芝 Plasma device component and method of manufacturing the same
WO2015080135A1 (en) * 2013-11-29 2015-06-04 株式会社東芝 Plasma device part and manufacturing method therefor
US10100413B2 (en) 2013-11-29 2018-10-16 Kabushiki Kaisha Toshiba Component for plasma apparatus and method of manufacturing the same
CN105793467A (en) * 2013-11-29 2016-07-20 株式会社东芝 Plasma device part and manufacturing method therefor
KR20170036740A (en) 2014-09-16 2017-04-03 엔지케이 인슐레이터 엘티디 Ceramic structure, member for substrate holding device, and method for manufacturing ceramic structure
US11011404B2 (en) 2014-09-16 2021-05-18 Ngk Insulators, Ltd. Ceramic structure, member for substrate-holding apparatus, and method for producing the ceramic structure
CN111684574B (en) * 2018-02-20 2023-09-05 住友大阪水泥股份有限公司 Electrostatic chuck device and method for manufacturing electrostatic chuck device
WO2019163757A1 (en) * 2018-02-20 2019-08-29 住友大阪セメント株式会社 Electrostatic chuck device and method for producing electrostatic chuck device
CN111684574A (en) * 2018-02-20 2020-09-18 住友大阪水泥股份有限公司 Electrostatic chuck device and method for manufacturing electrostatic chuck device
JPWO2019163757A1 (en) * 2018-02-20 2021-02-04 住友大阪セメント株式会社 Manufacturing method of electrostatic chuck device and electrostatic chuck device
US11848223B2 (en) 2018-02-20 2023-12-19 Sumitomo Osaka Cement Co., Ltd. Electrostatic chuck device and method for producing electrostatic chuck device
JPWO2020261992A1 (en) * 2019-06-28 2020-12-30
US11948825B2 (en) 2019-06-28 2024-04-02 Ngk Insulators, Ltd. Wafer placement table
JPWO2022014410A1 (en) * 2020-07-13 2022-01-20
WO2022014410A1 (en) * 2020-07-13 2022-01-20 京セラ株式会社 Sample holder

Also Published As

Publication number Publication date
TW287314B (en) 1996-10-01
KR950034652A (en) 1995-12-28

Similar Documents

Publication Publication Date Title
JPH07297265A (en) Electrostatic chuck
JP2938679B2 (en) Ceramic electrostatic chuck
JP2865472B2 (en) Electrostatic chuck
US6272002B1 (en) Electrostatic holding apparatus and method of producing the same
US6351367B1 (en) Electrostatic holding apparatus having insulating layer with enables easy attachment and detachment of semiconductor object
US6122159A (en) Electrostatic holding apparatus
KR102659507B1 (en) Ceramics substrate and electrostatic chuck
EP0506537A1 (en) Electrostatic chuck
JP3767719B2 (en) Electrostatic chuck
JP4023944B2 (en) Manufacturing method of aluminum nitride sintered body and plate heater or electrostatic chuck
JP2001077185A (en) Electrostatic chuck and its manufacture
JP3426845B2 (en) Electrostatic chuck
JPH1187479A (en) Electrostatic chuck
JP4439102B2 (en) Electrostatic chuck
JP2004356350A (en) Electrostatic chuck
JP2960566B2 (en) Electrostatic chuck substrate and electrostatic chuck
JP2004031599A (en) Electrostatic chuck
JPH08236599A (en) Wafer holder
JP2986325B2 (en) Electrostatic chuck
JPH11251417A (en) Electrostatic chuck
JP2003338536A (en) Electrostatic chuck
JP3370532B2 (en) Electrostatic chuck
JP2000031254A (en) Ceramic electrostatic chuck and manufacture thereof
JP2859993B2 (en) Manufacturing method of electrostatic chuck
JPH06302677A (en) Ceramic electrostatic chuck