JPH11251417A - Electrostatic chuck - Google Patents

Electrostatic chuck

Info

Publication number
JPH11251417A
JPH11251417A JP4650998A JP4650998A JPH11251417A JP H11251417 A JPH11251417 A JP H11251417A JP 4650998 A JP4650998 A JP 4650998A JP 4650998 A JP4650998 A JP 4650998A JP H11251417 A JPH11251417 A JP H11251417A
Authority
JP
Japan
Prior art keywords
insulator
electrostatic
electrostatic chuck
layer
insulator layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4650998A
Other languages
Japanese (ja)
Other versions
JP3853960B2 (en
Inventor
Koichi Nagasaki
浩一 長崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP4650998A priority Critical patent/JP3853960B2/en
Publication of JPH11251417A publication Critical patent/JPH11251417A/en
Application granted granted Critical
Publication of JP3853960B2 publication Critical patent/JP3853960B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Jigs For Machine Tools (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the deterioration of attractive force, and foreign matters from sticking to an object to be attracted, by forming an insulator layer on an attraction surface on which the object to be attracted is attracted by can electrostatic force, and dispensedly forming a plurality of conductive layers on the insulator layer. SOLUTION: A substratum 1b which is sintered integrally is arranged on a base substratum 1a composed of ceramics, and an insulating member 1 forming a substratum of an electrostatic chuck S is constituted. Via holes reaching an electrostatic electrode 5 and an electrode 7 are formed in the insulating member 1. Conducting lines such as Cu, Au, Ag, W and Mo are connected with the via holes, and power supplying lines 6, 8 are arranged so that terminals are connected with the conducting lines. An insulator layer 3 is formed on an attraction surface which generates an electrostatic attraction force on the insulating member 1 by inputting power in the power supplying line 6. A plurality of conductive layers 4 are dispersedly formed on the insulator layer 3. Thereby the deterioration of attractive force and sticking of foreign matters on an object to be attracted can be prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体製造装置、
液晶表示装置の製造装置などにおいて、シリコン等の半
導体ウエハや液晶表示装置用のガラス板を固定、搬送す
るために用いられる静電チャックに関するものである。
The present invention relates to a semiconductor manufacturing apparatus,
The present invention relates to an electrostatic chuck used for fixing and transporting a semiconductor wafer such as silicon or a glass plate for a liquid crystal display device in a liquid crystal display device manufacturing apparatus and the like.

【0002】[0002]

【従来の技術】近年、半導体製造装置においてシリコン
ウエハ等の半導体ウエハ(以下、ウエハと略す)の固
定、搬送にはクランプリングの代わりに静電チャックが
用いられてきており、電子ビーム描画装置、ドライエッ
チング装置、CVD装置、PVD装置等でシリコンウエ
ハの固定、搬送に静電チャックが有効とされている。
2. Description of the Related Art In recent years, an electrostatic chuck has been used instead of a clamp ring for fixing and transporting a semiconductor wafer (hereinafter abbreviated as a wafer) such as a silicon wafer in a semiconductor manufacturing apparatus. An electrostatic chuck is effective for fixing and transporting a silicon wafer in a dry etching apparatus, a CVD apparatus, a PVD apparatus, and the like.

【0003】このような静電チャックは、絶縁体中に静
電電極を埋設した構造となっており、その吸着力Fは、
F=S/2×ε0 ×εr ×(V/d)2 で表される。
尚、Fは吸着力、Sは静電電極面積、ε0 は真空の誘電
率、εr は絶縁体の比誘電率、Vは印加電圧、dは絶縁
層の厚みである。
[0003] Such an electrostatic chuck has a structure in which an electrostatic electrode is buried in an insulator.
F = S / 2 × ε0 × εr × (V / d) 2
Here, F is the attraction force, S is the area of the electrostatic electrode, ε0 is the dielectric constant of vacuum, εr is the relative dielectric constant of the insulator, V is the applied voltage, and d is the thickness of the insulating layer.

【0004】例えば、図4(a)(b)に単極型の静電
チャックを示すように、円板状等の平板状の絶縁体11
中に静電電極12を埋設し、この静電電極12とウエハ
等の被吸着物14間に電源13より電圧を印加すれば、
絶縁体11の吸着面11aに被吸着物14を静電気力
(クーロン力)により吸着するようになっている。ま
た、この絶縁体11には貫通孔11bが設けられ、この
貫通孔11bから冷却ガス又は加熱ガスを送り込んで、
被吸着物14を冷却又は加熱したり、あるいは貫通孔1
1bから被吸着物14を離脱させるためのプッシャーピ
ンを突き上げるようになっている。尚、同図(b)は
(a)のA−A線における断面図である。
For example, as shown in FIGS. 4 (a) and 4 (b), a single-pole type electrostatic chuck is shown.
When a voltage is applied from a power supply 13 between the electrostatic electrode 12 and an object 14 such as a wafer,
The object 14 is attracted to the attracting surface 11a of the insulator 11 by electrostatic force (Coulomb force). Further, a through hole 11b is provided in the insulator 11, and a cooling gas or a heating gas is supplied from the through hole 11b,
The object 14 is cooled or heated, or the through-hole 1
A pusher pin for detaching the object 14 from 1b is pushed up. FIG. 2B is a sectional view taken along line AA in FIG.

【0005】さらに、静電電極12は、放電を防止する
ために外部には露出しない構造となっている。そのた
め、絶縁体11の外周部および貫通孔11bの周囲は、
内部に静電電極12が存在しない無電極部11cとなっ
ている。
Further, the electrostatic electrode 12 has a structure that is not exposed to the outside in order to prevent discharge. Therefore, the outer peripheral portion of the insulator 11 and the periphery of the through hole 11b
The electrodeless portion 11c has no electrostatic electrode 12 inside.

【0006】なお、図7(a)(b)には単極型の静電
チャックを示したが、双極型の場合は絶縁体11に複数
の静電電極12を備え、互いの静電電極12間に電圧を
印加するようになっている。
FIGS. 7 (a) and 7 (b) show a single-pole type electrostatic chuck. In the case of a bipolar type, a plurality of electrostatic electrodes 12 are provided on an insulator 11 so that the electrostatic electrodes of each other are separated. A voltage is applied between 12.

【0007】上記静電チャックの基体を成す絶縁体11
の材質としては、アルミナ等のセラミックが多用されて
いるが、近年、ハロゲン系プラズマに対する耐食性が高
く、熱伝導率の高い窒化アルミニウム質セラミックを使
用することが提案されている(特開平6−151332
号公報参照)。また、絶縁体11の内部に埋設され抵抗
発熱体等として機能する電極用の導電材としては、タン
グステン(W),モリブデン(Mo)等が用いられる。
そして、絶縁体11の製法としては、W,Mo等の金属
ペーストを窒化アルミニウムのグリーンシート上に所定
のパターンで印刷し、更に他の窒化アルミニウムのグリ
ーンシートを積層して一体焼結するのが一般的である。
An insulator 11 forming a base of the electrostatic chuck.
As a material for the material, ceramics such as alumina are frequently used. In recent years, it has been proposed to use an aluminum nitride ceramic having high corrosion resistance to halogen plasma and high thermal conductivity (Japanese Patent Laid-Open No. 6-151332).
Reference). Tungsten (W), molybdenum (Mo), or the like is used as a conductive material for an electrode buried inside the insulator 11 and functioning as a resistance heating element or the like.
The method of manufacturing the insulator 11 is to print a metal paste such as W, Mo, or the like in a predetermined pattern on a green sheet of aluminum nitride, and to laminate and sinter another green sheet of aluminum nitride. General.

【0008】また、他の従来例として、絶縁体11の吸
着面にガスの流路を設けたり、被吸着体との接触面積を
低減させるために吸着面に溝を設けることが提案されて
いる(特開平4−304941号公報参照)。
As another conventional example, it has been proposed to provide a gas flow path on the adsorption surface of the insulator 11 or to provide a groove on the adsorption surface to reduce the contact area with the object to be adsorbed. (See JP-A-4-304941).

【0009】そして、この静電チャックが組み込まれる
半導体製造装置を用いた製造プロセスは、高真空中で、
しかも300℃以上の高温中で行われることが多い。
A manufacturing process using a semiconductor manufacturing apparatus in which this electrostatic chuck is incorporated is performed in a high vacuum.
Moreover, it is often performed in a high temperature of 300 ° C. or higher.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、上記の
ような真空中かつ高温下で静電チャックを用いた場合、
絶縁体11の表面に導電性の異物が形成され易いという
問題点があった。
However, when an electrostatic chuck is used in a vacuum and at a high temperature as described above,
There is a problem that conductive foreign matter is easily formed on the surface of the insulator 11.

【0011】これは、多結晶体であるセラミックには微
視的に見ると無数の表面欠陥(ボイド)があるためであ
り、そしてセラミックの研削加工時等に発生した有機
物、砥石粒等の研削クズ、アセトン,トルエン,メタノ
ール等の洗浄液が表面のボイド等に残留し、その後洗浄
力のある洗浄を行ってもこれらの異物が完全には除去で
きないからである。
This is because polycrystalline ceramics have a myriad of surface defects (voids) when viewed microscopically, and the grinding of organic substances, grinding stones, etc., generated during the grinding of ceramics and the like. This is because a cleaning solution such as dirt, acetone, toluene, and methanol remains in voids on the surface, and even after performing cleaning with a detergency, these foreign substances cannot be completely removed.

【0012】前記の異物が絶縁体11の表面に存在した
ままで加熱を行うと、その成分が炭化し、導電性の薄膜
や反応層となってしまう。そして、このような導電性の
炭化層が形成されることによる最大の問題点は、半導体
ウエハ等の被吸着体を吸着する静電力が皆無になること
である。
If heating is performed while the foreign matter is present on the surface of the insulator 11, its components are carbonized, resulting in a conductive thin film or reaction layer. The biggest problem caused by the formation of such a conductive carbonized layer is that there is no electrostatic force for adsorbing an object to be adsorbed such as a semiconductor wafer.

【0013】また、上記のような状態で被吸着体を吸着
すると、絶縁体11表面の異物が被吸着体に付着してし
まうという問題点もあり、吸着力の強い静電チャックほ
どこの問題が顕著であった。
Further, when the object to be adsorbed is adsorbed in the above state, there is a problem that foreign substances on the surface of the insulator 11 adhere to the object to be adsorbed. It was remarkable.

【0014】従って、本発明は上記事情に鑑みて完成さ
れたものであり、その目的は、静電チャックの基体を成
すセラミックの絶縁体表面に残留、形成される導電性の
異物による影響、即ち吸着力の劣化、異物の被吸着体へ
の付着という問題を解消することである。
Accordingly, the present invention has been completed in view of the above circumstances, and an object of the present invention is to provide an effect of conductive foreign matters remaining and formed on the surface of a ceramic insulator constituting a base of an electrostatic chuck, that is, An object of the present invention is to solve the problems of deterioration of the attraction force and adhesion of foreign matter to an object to be attracted.

【0015】[0015]

【課題を解決するための手段】本発明の静電チャック
は、静電電極を備えた絶縁体に、静電気力によって被吸
着体を吸着させる吸着面を設けて成る静電チャックにお
いて、前記吸着面に絶縁体層を形成するとともに、該絶
縁体層上に複数の導電層を分散して形成したことを特徴
とする。
According to the present invention, there is provided an electrostatic chuck comprising an insulator provided with an electrostatic electrode and an adsorption surface for adsorbing an object to be adsorbed by an electrostatic force. And a plurality of conductive layers dispersed on the insulator layer.

【0016】本発明において、好ましくは、前記絶縁体
層の厚さは1〜10μm、比抵抗は1×1010Ωcm以
上であり、かつ前記導電層の厚さは1〜10μm、比抵
抗は1×103 Ωcm以下である。
In the present invention, preferably, the thickness of the insulator layer is 1 to 10 μm, the specific resistance is 1 × 10 10 Ωcm or more, and the thickness of the conductive layer is 1 to 10 μm and the specific resistance is 1 to 10 μm. × 10 3 Ωcm or less.

【0017】また、好ましくは、前記絶縁体はアルミ
ナ、窒化アルミニウム又は炭化ホウ素を主成分とするセ
ラミックから成る。
[0017] Preferably, the insulator is made of a ceramic containing alumina, aluminum nitride or boron carbide as a main component.

【0018】本発明は、上記構成により、静電チャック
用の絶縁体表面に残留、形成される導電性の異物による
吸着力の劣化、異物の被吸着体への付着という問題を解
消する。
The present invention solves the problems of deterioration of the attraction force due to conductive foreign matter remaining on the surface of an insulator for an electrostatic chuck and adhesion of foreign matter to an object to be attracted by the above configuration.

【0019】[0019]

【発明の実施の形態】本発明の静電チャックについて以
下に詳細に説明する。図1〜図3は本発明を示し、図1
は円板状等の平板状であり静電チャックSの基体(本
体)を成す絶縁体1の断面図、図2は図1の絶縁体を上
方から見た平面図、図3は吸着力の経時変化を示すグラ
フである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The electrostatic chuck of the present invention will be described in detail below. 1 to 3 show the present invention, and FIG.
Is a cross-sectional view of an insulator 1 which is a flat plate such as a disc and forms a base (main body) of the electrostatic chuck S, FIG. 2 is a plan view of the insulator of FIG. 1 as viewed from above, and FIG. It is a graph which shows a temporal change.

【0020】図1及び図2において、1は静電チャック
Sの基体(本体)を成す絶縁体、1aはセラミックから
成るベース基体、1bはベース基体1a上に配置され一
体的に焼結される基体、3は基体1b上に気相成長法等
で形成された絶縁体層、4は絶縁体層3上に気相成長法
等で形成された導電層、5は静電チャック用の静電電
極、6は静電電極5に電力を供給するための電力供給
線、7は抵抗加熱方式等のヒーター、8はヒーター7に
電力を供給するための電力供給線である。
In FIGS. 1 and 2, reference numeral 1 denotes an insulator forming a base (main body) of the electrostatic chuck S, 1a denotes a base base made of ceramic, and 1b is disposed on the base base 1a and integrally sintered. The base 3 is an insulator layer formed on the base 1b by vapor deposition or the like, 4 is a conductive layer formed on the insulator layer 3 by vapor deposition or the like, and 5 is an electrostatic layer for an electrostatic chuck. The electrode, 6 is a power supply line for supplying power to the electrostatic electrode 5, 7 is a heater of a resistance heating type or the like, and 8 is a power supply line for supplying power to the heater 7.

【0021】本発明の絶縁体層3は、静電チャックを1
Pa以下の真空中で数時間以上にわたり500℃程度に
加熱しつづけた場合に、多結晶体であるセラミック製の
絶縁体1の表面欠陥に残留した研削クズや洗浄液が導電
性の炭化物となり、この導電性の異物による吸着力の劣
化を防止する。即ち、絶縁体層3は前記炭化物を覆うよ
うに形成されてあり、この絶縁体層3が誘電分極層とし
て機能し吸着力が劣化することはない。
The insulator layer 3 of the present invention comprises an electrostatic chuck 1
When heating is continued at about 500 ° C. for several hours or more in a vacuum of Pa or less, grinding dust and cleaning liquid remaining on surface defects of the ceramic insulator 1 which is a polycrystalline substance become conductive carbides. Prevents the adsorption force from deteriorating due to conductive foreign matter. That is, the insulator layer 3 is formed so as to cover the carbide, and the insulator layer 3 functions as a dielectric polarization layer, so that the attraction force does not deteriorate.

【0022】また、導電層4は、被吸着体と絶縁体層3
との間を離隔させるとともに、この導電層4が直接被吸
着体に接する。この場合、被吸着体と接触している導電
層4と被吸着体との間には電位差が生じないため、この
部分では静電吸着力は発生せず、そのため導電層4から
被吸着体に吸着する異物が少なくなる。また、吸着力が
生じる、被吸着体と絶縁体層3との間は間隔があるた
め、絶縁体層3から被吸着体に吸着する異物もほとんど
無く、従って被吸着体に付着する異物の量はきわめて少
ないものとなる。
In addition, the conductive layer 4 is made of a material to be adsorbed and the insulator layer 3.
And the conductive layer 4 is in direct contact with the object to be adsorbed. In this case, there is no potential difference between the conductive layer 4 in contact with the object to be adsorbed and the object to be adsorbed, and no electrostatic attraction force is generated in this portion. The amount of foreign substances adsorbed is reduced. In addition, since there is a gap between the object to be adsorbed and the insulator layer 3 where the attraction force is generated, there is almost no foreign matter adsorbed from the insulator layer 3 to the object to be adsorbed. Is extremely small.

【0023】本発明において、絶縁体1の材質として
は、樹脂等でも良いが、セラミックを用いるのが良い。
好ましくは、アルミナ(Al2 3 )、窒化アルミニウ
ム(AlN)、又は炭化ホウ素(B4 C)を主成分とす
るセラミックであり、これらは高温における機械的特性
が良好であり、高温でも破損しにくい。また、チタン酸
バリウム(BaTiO3 )やチタン酸カルシウム(Ca
TiO3 )などの高誘電率セラミックスを用いれば吸着
力を高くすることができる。その他、アルミナの単結晶
体であるサファイアを主成分とするものも機械的特性を
高くできる。
In the present invention, the material of the insulator 1 may be a resin or the like, but preferably a ceramic.
Preferably, ceramics containing alumina (Al 2 O 3 ), aluminum nitride (AlN), or boron carbide (B 4 C) as a main component, which have good mechanical properties at high temperatures and break even at high temperatures Hateful. Further, barium titanate (BaTiO 3 ) or calcium titanate (Ca
If a high dielectric constant ceramic such as TiO 3 ) is used, the attraction force can be increased. In addition, a material containing sapphire, which is a single crystal of alumina, as a main component can also improve mechanical properties.

【0024】窒化アルミニウムの場合、AlN含有量が
99重量%以上の高純度品が好ましく、焼結体中にほと
んど粒界相が存在せず耐食性に優れたものとなる。より
好ましくは、99重量%以上99.5重量%以下がよ
い。さらに耐食性を向上させるために、Siを1500
ppm以下、好ましくは1000ppm以下含有させる
のが良く、その他不純物としてNa,Ca及びFe等を
合計2000ppm以下含ませてもよい。
In the case of aluminum nitride, a high-purity product having an AlN content of 99% by weight or more is preferable, and the sintered body has almost no grain boundary phase and has excellent corrosion resistance. More preferably, the content is 99% by weight or more and 99.5% by weight or less. In order to further improve corrosion resistance, Si is added at 1500
ppm or less, preferably 1000 ppm or less. In addition, Na, Ca, Fe and the like may be contained in total as 2000 ppm or less as other impurities.

【0025】また、窒化アルミニウムの比抵抗(体積固
有抵抗)は、500℃程度の高温下で1×1010Ωcm
以上が良く、この場合良好な電気的な絶縁体1として機
能する。
The specific resistance (volume resistivity) of aluminum nitride is 1 × 10 10 Ωcm at a high temperature of about 500 ° C.
The above is good, and in this case, it functions as a good electrical insulator 1.

【0026】そして、上記絶縁体1の吸着面に、スパッ
タリング法等の気相成長法により絶縁体層3を形成する
が、その厚さは1〜10μmがよい。1μm未満では、
厚さがばらつき易く、また被覆層として十分機能し得
ず、10μmを超えると絶縁体1との歪みが大きくな
り、吸着力が低下するとともに成膜時間が長すぎ生産性
に劣る。絶縁体層3の材質は、熱膨張率等の点から絶縁
体1と同じセラミックが好ましく、より好ましくは窒化
アルミニウム、アルミナ又は炭化ホウ素を主成分とする
セラミックであり、この場合比抵抗が1×1010Ωcm
以上となる。
Then, an insulator layer 3 is formed on the adsorption surface of the insulator 1 by a vapor deposition method such as a sputtering method, and the thickness is preferably 1 to 10 μm. If it is less than 1 μm,
The thickness tends to vary, and it cannot function sufficiently as a coating layer. If the thickness exceeds 10 μm, the strain with the insulator 1 increases, the adsorption power decreases, and the film formation time is too long, resulting in poor productivity. The material of the insulator layer 3 is preferably the same ceramic as the insulator 1 from the viewpoint of the coefficient of thermal expansion and the like, more preferably a ceramic containing aluminum nitride, alumina or boron carbide as a main component. 10 10 Ωcm
That is all.

【0027】上記絶縁体層3の吸着面上に、PVD法,
CVD法,イオンプレーティング法,スパッタリング法
等の気相成長法、メッキ法、導電ペーストを印刷法で塗
布する塗布法等により、厚さ1〜10μmの導電層4を
形成するが、その平面形状は図2に示す通り、正方形、
長方形、菱形等の方形状、五角形以上の多角形状、その
他円形、楕円形等の対称性を有する形状がよく、その場
合吸着力の制御が行い易い。より好ましくは、同図のよ
うな正方形であり、その一辺を1〜10mmとするのが
よい。1mm未満ではステンレス等のマスキングを用い
た導電層4の形成が困難であり、10mmを超えると非
吸着面積が大きくなりすぎて吸着力が低下し、被吸着体
を吸着するのが困難になる。
On the adsorption surface of the insulator layer 3, a PVD method,
The conductive layer 4 having a thickness of 1 to 10 μm is formed by a vapor deposition method such as a CVD method, an ion plating method, or a sputtering method, a plating method, or a coating method of applying a conductive paste by a printing method. Is a square, as shown in FIG.
A shape having a symmetry such as a rectangular shape such as a rectangle and a rhombus, a polygonal shape having a pentagon or more, and other shapes such as a circle and an ellipse are preferable. More preferably, it is a square as shown in the figure, and one side of the square is 1 to 10 mm. If it is less than 1 mm, it is difficult to form the conductive layer 4 using a masking of stainless steel or the like, and if it exceeds 10 mm, the non-adsorption area becomes too large, the adsorption power is reduced, and it becomes difficult to adsorb the object to be adsorbed.

【0028】そして、この導電層4の個数は、可能な限
り少ない方が高い吸着力を得られるが、少なすぎると被
吸着体を絶縁体層3から浮かせることができないため、
3〜30個が好ましい。また、導電層4の上方からみた
平面における面積は、上記と同様の理由で吸着用の静電
電極5に対して2〜10%がよく、より好ましくは2〜
5%である。更に。その分布に関しては、全体の吸着力
は変化しないので特に限定するものではないが、図2に
示すように一様に分布(分散)させるのが、吸着力を偏
らせず均一化するうえで好ましい。
If the number of the conductive layers 4 is as small as possible, a high attraction force can be obtained. However, if the number is too small, the object to be adsorbed cannot be floated from the insulator layer 3.
Three to thirty are preferred. Further, the area of the conductive layer 4 in a plane viewed from above is preferably 2 to 10% with respect to the electrostatic electrode 5 for adsorption for the same reason as described above, and more preferably 2 to 10%.
5%. Further. The distribution is not particularly limited since the overall attraction force does not change, but it is preferable to uniformly distribute (disperse) as shown in FIG. 2 in order to make the attraction force uniform without unevenness. .

【0029】また、導電層4の厚さが1μm未満だと、
厚さがばらつき易く、絶縁体1と被吸着体との空隙が不
十分であり導電層4以外の部分で被吸着体が接触し易
い。導電層4の厚さが10μmを超えると、吸着力が低
下し易く、また成膜時間が長すぎ生産性に劣るとともに
絶縁体1との歪みが大きくなり、クラックを生じ易い。
When the thickness of the conductive layer 4 is less than 1 μm,
The thickness tends to fluctuate, the gap between the insulator 1 and the to-be-adsorbed body is insufficient, and the to-be-adsorbed body is likely to come into contact with portions other than the conductive layer 4. If the thickness of the conductive layer 4 exceeds 10 μm, the attraction force tends to decrease, and the film formation time is too long, resulting in poor productivity and large distortion with the insulator 1, which tends to cause cracks.

【0030】また、導電層4の材質は絶縁体1との熱膨
張率差による変形を小さくするものがよく、Al,A
g,Cu,Ni等の塑性変形可能なソフトメタル、絶縁
体1と熱膨張率がほぼ同一のTi,W,Mo,Si等及
びWC,TiC,TiN等の前記元素の化合物、合金
等、その他SiC,B4 C等の導電性セラミックまた比
抵抗が1×103 Ωcm以下のダイヤモンド状カーボン
等でもよい。半導体ウエハへの汚染による半導電性等の
特性劣化を防止するうえで、Ti,Al,Si等及びそ
の化合物、合金等がより好ましい。
The material of the conductive layer 4 is preferably one that reduces the deformation due to the difference in thermal expansion coefficient with the insulator 1.
g, Cu, Ni, etc., plastically deformable soft metals; compounds of the above-mentioned elements, such as Ti, W, Mo, Si, etc., and WC, TiC, TiN, etc., having substantially the same thermal expansion coefficient as the insulator 1; alloys, etc. Conductive ceramics such as SiC and B 4 C or diamond-like carbon having a specific resistance of 1 × 10 3 Ωcm or less may be used. In order to prevent deterioration of characteristics such as semiconductivity due to contamination of the semiconductor wafer, Ti, Al, Si, etc. and their compounds, alloys, etc. are more preferable.

【0031】導電層4の比抵抗は、静電気力(クーロン
力)による吸着力を発揮するためには、1×103 Ωc
m以下とするのがよい。
The specific resistance of the conductive layer 4 is set to 1 × 10 3 Ωc in order to exhibit an attraction force by electrostatic force (Coulomb force).
m or less.

【0032】図1における電力供給線6,8について
は、絶縁体1内に静電電極5,電極7に通じるビアホー
ルを設けそのビアホールにCu,Au,Ag,W,Mo
等の導線を接続し、その導線に端子を接続するように構
成することができる。
As for the power supply lines 6 and 8 in FIG. 1, via holes are formed in the insulator 1 so as to communicate with the electrostatic electrodes 5 and the electrodes 7, and Cu, Au, Ag, W, and Mo are formed in the via holes.
And the like, and a terminal may be connected to the conductor.

【0033】本発明で使用する被吸着体は、Si,G
e,GaAs,InAs,InGaAs等の半導体ウエ
ハ、液晶表示装置用のガラス板等であり、その他静電気
力により吸着可能なものであればよい。
The adsorbent used in the present invention is Si, G
e, GaAs, InAs, InGaAs, etc., a semiconductor wafer, a glass plate for a liquid crystal display device, etc., as long as it can be adsorbed by electrostatic force.

【0034】上記実施形態では、被吸着体を一方の電極
とする単極型の静電チャックについて説明したが、電極
2を複数形成しこれらの電極2間に電圧を印加する双極
型の静電チャックについても適用できる。
In the above embodiment, the description has been given of the monopolar electrostatic chuck in which the object to be attracted is one electrode. However, a bipolar electrostatic chuck in which a plurality of electrodes 2 are formed and a voltage is applied between these electrodes 2 is provided. It is also applicable to chucks.

【0035】かくして、本発明は、絶縁体表面に残留、
形成される導電性の異物による吸着力の劣化、異物の被
吸着体への付着が防止されるという作用効果を有する。
Thus, the present invention provides a method for removing
This has the effect of preventing adsorption force from deteriorating due to the formed conductive foreign matter and preventing foreign matter from adhering to the object to be attracted.

【0036】ところで、本発明の静電チャックは、静電
吸着用の電力供給線6に電力を入力すると、絶縁体1上
に載置した被吸着体と静電電極5との間に電位差が生
じ、絶縁体層3と被吸着体との間にクーロンの法則に基
づく静電吸着力が発生する。但し、被吸着体と接触して
いる導電層4と被吸着体との間には電位差が生じないた
め、この部分では静電吸着力は発生しない。
By the way, in the electrostatic chuck of the present invention, when electric power is input to the power supply line 6 for electrostatic attraction, a potential difference between the attracted object placed on the insulator 1 and the electrostatic electrode 5 is generated. As a result, an electrostatic attraction force based on Coulomb's law is generated between the insulator layer 3 and the object to be attracted. However, since there is no potential difference between the conductive layer 4 in contact with the object and the object, no electrostatic attraction force is generated in this portion.

【0037】また、静電チャックを1Pa以下の真空中
で数時間以上にわたり500℃程度に加熱しつづける
と、多結晶体であるセラミックの表面欠陥に残留した研
削クズや洗浄液が導電性の炭化物となってしまう。しか
し、この炭化物を覆うように絶縁体層3を形成している
ため、この絶縁体層3が誘電分極層として機能し吸着力
が劣化することはない。
Further, when the electrostatic chuck is continuously heated to about 500 ° C. for several hours or more in a vacuum of 1 Pa or less, grinding dust and cleaning liquid remaining on the surface defects of the polycrystalline ceramic become conductive carbides. turn into. However, since the insulator layer 3 is formed so as to cover the carbide, the insulator layer 3 functions as a dielectric polarization layer, and the adsorption force does not deteriorate.

【0038】尚、本発明は上記実施形態に限定されるも
のではなく、本発明の要旨を変更しない範囲内で種々の
変更を行っても何等差し支えない。
It should be noted that the present invention is not limited to the above embodiment, and various changes may be made without departing from the scope of the present invention.

【0039】[0039]

【実施例】本発明の実施例を以下に示す。Embodiments of the present invention will be described below.

【0040】(実施例)図1,図2の静電チャックS
を、以下の工程(1)〜(8)により作製し、構成し
た。
(Embodiment) The electrostatic chuck S shown in FIGS. 1 and 2
Was produced and configured by the following steps (1) to (8).

【0041】(1)平均粒径1.2μm程度であり、不
純物としてSiを900ppm含む純度99%のAlN
粉末に、バインダー及び溶媒を添加混合し泥漿を作製し
た後、ドクターブレード法によって厚さ0.4mmのグ
リーンシートを複数枚得た。
(1) AlN having an average particle diameter of about 1.2 μm and a purity of 99% containing 900 ppm of Si as an impurity.
After adding a binder and a solvent to the powder and mixing to prepare a slurry, a plurality of green sheets having a thickness of 0.4 mm were obtained by a doctor blade method.

【0042】(2)2枚のグリーンシートに、比表面積
が2m2 /g以上のW粉末とAlN粉末を混合して粘度
調整した静電電極5用ペーストと電極7用ペーストをス
クリーン印刷し、各静電電極5,電極7用の導電層を形
成した。
(2) A paste for an electrostatic electrode 5 and a paste for an electrode 7 whose viscosity is adjusted by mixing W powder and AlN powder having a specific surface area of 2 m 2 / g or more on two green sheets are screen-printed. A conductive layer for each of the electrostatic electrodes 5 and the electrodes 7 was formed.

【0043】(3)電極7を形成したグリーンシート、
静電電極5を形成したグリーンシート、絶縁体層3を形
成すべきグリーンシートの3枚を積層し、80℃、50
kg/cm2 の圧力で熱圧着した。
(3) a green sheet on which the electrodes 7 are formed,
A green sheet on which the electrostatic electrode 5 is formed and a green sheet on which the insulator layer 3 is to be formed are laminated, and are stacked at 80 ° C. and 50 ° C.
Thermocompression bonding was performed at a pressure of kg / cm 2 .

【0044】(4)その後切削加工を施して円板状とし
た後真空脱脂をし、2000℃程度の真空雰囲気中で焼
成することにより、純度99%以上、Siの含有量が1
000ppm以下、熱伝導率が100W/mKの窒化ア
ルミニウム質焼結体を得た。
(4) Thereafter, a disc is formed by cutting, followed by vacuum degreasing and baking in a vacuum atmosphere of about 2000 ° C., so that the purity is 99% or more and the Si content is 1%.
An aluminum nitride-based sintered body having a thermal conductivity of 100 W / mK or less and 000 ppm or less was obtained.

【0045】(5)静電電極5,電極7への給電方法
は、静電電極5,電極7に導通するビアホールにメタラ
イズ接合した給電端子金具によって行うようにした。
(5) The method of supplying power to the electrostatic electrodes 5 and the electrodes 7 was performed by using power supply terminal fittings which were metallized and joined to via holes connected to the electrostatic electrodes 5 and the electrodes 7.

【0046】(6)前記窒化アルミニウム質焼結体を研
削加工して、外径が約φ8インチ、厚さ10mmのベー
ス基体1aと、厚さ300μmの基体1bとから成る絶
縁体1を作製した。
(6) The aluminum nitride sintered body was ground to prepare an insulator 1 comprising a base substrate 1a having an outer diameter of about 8 inches and a thickness of 10 mm and a substrate 1b having a thickness of 300 μm. .

【0047】(7)絶縁体1の吸着面に対して、スパッ
タリング法により、AlNから成り2μmの厚さの絶縁
体層3を形成した。
(7) The insulator layer 3 made of AlN and having a thickness of 2 μm was formed on the adsorption surface of the insulator 1 by a sputtering method.

【0048】(8)上方よりみた平面形状が一辺が5m
mの正方形であり、厚さが2μmの導電層4を、スパッ
タリング法により図2に示すような状態で絶縁体層3上
に分布させ形成した。導電層4の材質は、塑性変形可能
なソフトメタルであり、半導体ウエハへの汚染もないA
lとした。また、導電層4の設層に際しては、絶縁体層
3上の被成膜部をくり抜いたステンレスのマスクを使用
し、必要な部分のみに成膜されるようにした。
(8) When viewed from above, the planar shape is 5 m on a side
An electrically conductive layer 4 having a square shape of m and a thickness of 2 μm was formed on the insulator layer 3 in a state as shown in FIG. The material of the conductive layer 4 is a soft metal that can be plastically deformed and does not cause contamination of the semiconductor wafer.
l. When the conductive layer 4 was formed, a stainless steel mask in which a portion on which the film was to be formed on the insulator layer 3 was hollowed out was used, and a film was formed only on a necessary portion.

【0049】そして、まず上記静電チャックSを用いて
Siウエハを吸着させたときの導電性の異物の付着状態
について調査した。この静電チャックSを組み込んだ半
導体製造装置用のチャンバーを所定の真空度に真空引き
し、静電チャックSの温度を500℃に昇温し保持し
た。次いで、静電電極5に電圧を印加し、Siウエハを
吸着させた。このとき、Siウエハと接触している導電
層4とSiウエハとの間には電位差が生じないため吸着
力は生じなかった。
First, the state of adhesion of the conductive foreign matter when the Si wafer was sucked using the electrostatic chuck S was investigated. The chamber for the semiconductor manufacturing apparatus in which the electrostatic chuck S was incorporated was evacuated to a predetermined degree of vacuum, and the temperature of the electrostatic chuck S was raised to 500 ° C. and held. Next, a voltage was applied to the electrostatic electrode 5 to attract the Si wafer. At this time, there was no potential difference between the conductive layer 4 in contact with the Si wafer and the Si wafer because no potential difference was generated between them.

【0050】このように、導電層4とSiウエハとの間
には吸着力が生じず、かつ吸着力が発生する部分は空隙
があるため、Siウエハに付着する異物の粒子数は以下
のように激減した。従来、絶縁体1上に直接Siウエハ
を吸着させた場合、Siウエハに吸着した平均粒径0.
1μm以上の粒子が全体で1万個以上あったのに対し
て、本発明では同サイズの粒子が10個以下になった。
尚、導電層4の比抵抗が1×103 Ωcmを超えると導
電層4にも吸着力が発生し、付着した同サイズの粒子が
8000個程度に増加した。よって、導電層4の比抵抗
は1×103 Ωcm以下が好ましい。
As described above, since no attraction force is generated between the conductive layer 4 and the Si wafer and there is a gap at the portion where the attraction force is generated, the number of foreign particles adhering to the Si wafer is as follows. Decreased sharply. Conventionally, when a Si wafer is directly adsorbed on the insulator 1, the average particle diameter of the adsorbed Si wafer is 0.1 mm.
In contrast to 10,000 or more particles of 1 μm or more in total, in the present invention, 10 or less particles of the same size.
When the specific resistance of the conductive layer 4 exceeded 1 × 10 3 Ωcm, an attraction force was generated in the conductive layer 4 as well, and the number of particles of the same size attached increased to about 8,000. Therefore, the specific resistance of the conductive layer 4 is preferably 1 × 10 3 Ωcm or less.

【0051】次に、静電チャックSを500℃に加熱
し、保持し続けて、その吸着力の経時変化を調査した。
比較例として、絶縁体1上に直接Siウエハを吸着させ
るタイプを用いたところ、本発明の静電チャックSはほ
ぼ一定の吸着力を示したのに対し、比較例のものは吸着
力の低下が顕著であった。その結果を図3に示し、同図
において丸印は本発明、三角印は比較例である。
Next, the electrostatic chuck S was heated to 500 ° C. and held, and the change with time in the attraction force was examined.
As a comparative example, when a type in which a Si wafer was directly adsorbed on the insulator 1 was used, the electrostatic chuck S of the present invention showed a substantially constant adsorption force, whereas the electrostatic chuck S of the present invention showed a decrease in the adsorption force Was remarkable. The results are shown in FIG. 3, in which circles indicate the present invention and triangles indicate comparative examples.

【0052】これは、絶縁体1の表面欠陥に残留した研
削クズや洗浄液が加熱とともに導電性の炭化膜となって
しまい、比較例では吸着力が低下するのに比べ、絶縁体
1の吸着面に絶縁体層3が形成された本発明では吸着力
が衰えないためと考えられる。
This is because grinding dust and cleaning liquid remaining on the surface defect of the insulator 1 become a conductive carbonized film upon heating, and the adsorption force of the insulator 1 is reduced in the comparative example. It is considered that in the present invention in which the insulator layer 3 is formed, the attraction force does not decrease.

【0053】[0053]

【発明の効果】本発明は、吸着面に絶縁体層を形成し、
該絶縁体層上に複数の導電層を分散して積層させたこと
により、静電チャックの基体を成すセラミックの絶縁体
表面に残留、形成される導電性の異物が、被吸着体に付
着するのを大幅に低下させることができ、また異物の存
在による吸着力の劣化を抑制、防止する。
According to the present invention, an insulating layer is formed on an adsorption surface,
By dispersing and laminating a plurality of conductive layers on the insulator layer, conductive foreign matters remaining on and forming on the ceramic insulator surface forming the base of the electrostatic chuck adhere to the object to be attracted. Is greatly reduced, and deterioration of the attraction force due to the presence of foreign matter is suppressed and prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の静電チャックSを示し、静電チャック
Sの基体を成す絶縁体の断面図である。
FIG. 1 is a sectional view showing an electrostatic chuck S according to the present invention, and showing an insulator forming a base of the electrostatic chuck S.

【図2】図1の絶縁体の平面図である。FIG. 2 is a plan view of the insulator of FIG. 1;

【図3】本発明の静電チャックS及び比較例の吸着力の
経時変化のグラフである。
FIG. 3 is a graph showing the change over time in the attraction force of the electrostatic chuck S of the present invention and the comparative example.

【図4】従来の静電チャック全体を示し、(a)は絶縁
体の平面図、(b)は静電チャック全体の基本構成の断
面図である。
4A and 4B show a conventional electrostatic chuck as a whole, wherein FIG. 4A is a plan view of an insulator, and FIG. 4B is a cross-sectional view of a basic configuration of the entire electrostatic chuck.

【符号の説明】[Explanation of symbols]

1:絶縁体 1a:ベース基体 1b:基体 3:絶縁体層 4:導電層 5:静電電極 6:電力供給線 7:電極 8:電力供給線 1: Insulator 1a: Base substrate 1b: Base 3: Insulator layer 4: Conductive layer 5: Electrostatic electrode 6: Power supply line 7: Electrode 8: Power supply line

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】静電電極を備えた絶縁体に、静電気力によ
って被吸着体を吸着させる吸着面を設けて成る静電チャ
ックにおいて、前記吸着面に絶縁体層を形成するととも
に、該絶縁体層上に複数の導電層を分散して形成したこ
とを特徴とする静電チャック。
1. An electrostatic chuck comprising an insulator provided with an electrostatic electrode and an adsorption surface for adsorbing an object to be adsorbed by electrostatic force, wherein an insulator layer is formed on the adsorption surface, and the insulator is An electrostatic chuck comprising a plurality of conductive layers dispersedly formed on a layer.
【請求項2】前記絶縁体層の厚さは1〜10μm、比抵
抗は1×1010Ωcm以上であり、かつ前記導電層の厚
さは1〜10μm、比抵抗は1×103 Ωcm以下であ
る請求項1記載の静電チャック。
2. The insulator layer has a thickness of 1 to 10 μm and a specific resistance of 1 × 10 10 Ωcm or more, and the conductive layer has a thickness of 1 to 10 μm and a specific resistance of 1 × 10 3 Ωcm or less. The electrostatic chuck according to claim 1, wherein
【請求項3】前記絶縁体はアルミナ、窒化アルミニウム
又は炭化ホウ素を主成分とするセラミックから成る請求
項1記載の静電チャック。
3. The electrostatic chuck according to claim 1, wherein said insulator is made of a ceramic containing alumina, aluminum nitride, or boron carbide as a main component.
JP4650998A 1998-02-27 1998-02-27 Electrostatic chuck Expired - Fee Related JP3853960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4650998A JP3853960B2 (en) 1998-02-27 1998-02-27 Electrostatic chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4650998A JP3853960B2 (en) 1998-02-27 1998-02-27 Electrostatic chuck

Publications (2)

Publication Number Publication Date
JPH11251417A true JPH11251417A (en) 1999-09-17
JP3853960B2 JP3853960B2 (en) 2006-12-06

Family

ID=12749238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4650998A Expired - Fee Related JP3853960B2 (en) 1998-02-27 1998-02-27 Electrostatic chuck

Country Status (1)

Country Link
JP (1) JP3853960B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004363335A (en) * 2003-06-05 2004-12-24 Sumitomo Electric Ind Ltd Holder for semiconductor or liquid crystal production system and semiconductor or liquid crystal production system mounting it
JP2005057234A (en) * 2003-07-24 2005-03-03 Kyocera Corp Electrostatic chuck
WO2005091356A1 (en) * 2004-03-19 2005-09-29 Creative Technology Corporation Bipolar electrostatic chuck
JP2006049357A (en) * 2004-07-30 2006-02-16 Toto Ltd Electrostatic chuck and equipment mounting it
US7092231B2 (en) 2002-08-23 2006-08-15 Asml Netherlands B.V. Chuck, lithographic apparatus and device manufacturing method
JP2010092976A (en) * 2008-10-06 2010-04-22 Ulvac Japan Ltd Adsorption power recovering method, and method for preventing dropping of adsorption power

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7092231B2 (en) 2002-08-23 2006-08-15 Asml Netherlands B.V. Chuck, lithographic apparatus and device manufacturing method
JP2004363335A (en) * 2003-06-05 2004-12-24 Sumitomo Electric Ind Ltd Holder for semiconductor or liquid crystal production system and semiconductor or liquid crystal production system mounting it
JP4539035B2 (en) * 2003-06-05 2010-09-08 住友電気工業株式会社 HOLDER FOR SEMICONDUCTOR OR LIQUID CRYSTAL MANUFACTURING DEVICE AND SEMICONDUCTOR OR LIQUID CRYSTAL MANUFACTURING DEVICE WITH THE SAME
JP2005057234A (en) * 2003-07-24 2005-03-03 Kyocera Corp Electrostatic chuck
WO2005091356A1 (en) * 2004-03-19 2005-09-29 Creative Technology Corporation Bipolar electrostatic chuck
JPWO2005091356A1 (en) * 2004-03-19 2008-02-07 株式会社クリエイティブ テクノロジー Bipolar electrostatic chuck
JP4684222B2 (en) * 2004-03-19 2011-05-18 株式会社クリエイティブ テクノロジー Bipolar electrostatic chuck
JP2006049357A (en) * 2004-07-30 2006-02-16 Toto Ltd Electrostatic chuck and equipment mounting it
JP2010092976A (en) * 2008-10-06 2010-04-22 Ulvac Japan Ltd Adsorption power recovering method, and method for preventing dropping of adsorption power

Also Published As

Publication number Publication date
JP3853960B2 (en) 2006-12-06

Similar Documents

Publication Publication Date Title
JP4744855B2 (en) Electrostatic chuck
US5324053A (en) Electrostatic chuck
US6104596A (en) Apparatus for retaining a subtrate in a semiconductor wafer processing system and a method of fabricating same
JPH11168134A (en) Electrostatic attracting device and manufacture thereof
JP2007173596A (en) Electrostatic chuck
US7672111B2 (en) Electrostatic chuck and method for manufacturing same
WO2006126503A1 (en) Electrostatic chuck
JPH07297265A (en) Electrostatic chuck
CN102282645A (en) Conductive seal ring electrostatic chuck
US6122159A (en) Electrostatic holding apparatus
JP2021141141A (en) Electrostatic chuck
JP3847198B2 (en) Electrostatic chuck
JP3853960B2 (en) Electrostatic chuck
JP6424563B2 (en) Electrostatic chuck device and method of manufacturing the same
JP4033508B2 (en) Electrostatic chuck
EP0506537A1 (en) Electrostatic chuck
JP2006127900A (en) Annular heater
JP3767719B2 (en) Electrostatic chuck
JP2836986B2 (en) Electrostatic chuck and method of manufacturing the same
JPH10107132A (en) Electrostatic chuck
JP2006066857A (en) Bipolar electrostatic chuck
JP2001077185A (en) Electrostatic chuck and its manufacture
JP2984164B2 (en) Susceptor for semiconductor manufacturing
JP2002313900A (en) Substrate holding structure and substrate processor
JP4439102B2 (en) Electrostatic chuck

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060907

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090915

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130915

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees