JP2005057234A - Electrostatic chuck - Google Patents

Electrostatic chuck Download PDF

Info

Publication number
JP2005057234A
JP2005057234A JP2004017577A JP2004017577A JP2005057234A JP 2005057234 A JP2005057234 A JP 2005057234A JP 2004017577 A JP2004017577 A JP 2004017577A JP 2004017577 A JP2004017577 A JP 2004017577A JP 2005057234 A JP2005057234 A JP 2005057234A
Authority
JP
Japan
Prior art keywords
insulating film
film
electrostatic chuck
conductive substrate
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004017577A
Other languages
Japanese (ja)
Other versions
JP4369765B2 (en
Inventor
Tsunehiko Nakamura
恒彦 中村
Kazuichi Kuchimachi
和一 口町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004017577A priority Critical patent/JP4369765B2/en
Publication of JP2005057234A publication Critical patent/JP2005057234A/en
Application granted granted Critical
Publication of JP4369765B2 publication Critical patent/JP4369765B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrostatic chuck inhibiting a rise in temperature by improving the cooling properties of a mounting surface, preventing the occurrence of cracks and dielectric breakdown of an insulating film due to a difference in thermal expansion from a substrate, and having satisfactory wafer attracting/disengaging properties. <P>SOLUTION: There are provided an insulating layer 3 on one main surface of a conductive substrate 2, electrodes for attracting 4a and 4b on its top surface, and an insulating film 5 in such a manner as to cover the electrodes for attracting 4a and 4b. With its top surface as a mounting surface 5a mounting a wafer W, the total thickness of the insulating layer 3 and the insulating film 5 is 20 to 2000μm. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、半導体製造工程や液晶製造工程において、半導体ウェハ(以下、ウェハと称す)や液晶ガラスに微細加工を施すエッチング工程や薄膜を形成するための成膜工程、フォトレジスト膜を露光する露光処理工程等において、ウェハや液晶ガラスを保持する静電チャックに関するものである。   The present invention relates to an etching process for finely processing a semiconductor wafer (hereinafter referred to as a wafer) and liquid crystal glass, a film forming process for forming a thin film, and an exposure for exposing a photoresist film in a semiconductor manufacturing process and a liquid crystal manufacturing process. The present invention relates to an electrostatic chuck that holds a wafer or liquid crystal glass in a processing step or the like.

従来、半導体製造工程において、ウェハに微細加工を施すためのエッチング工程や、薄膜を形成するための成膜工程、又はフォトレジスト膜を露光するための露光処理工程等において、ウェハを保持するために静電気的にウェハを吸着する静電チャックが使用されている。   Conventionally, in a semiconductor manufacturing process, in order to hold a wafer in an etching process for performing fine processing on a wafer, a film forming process for forming a thin film, or an exposure processing process for exposing a photoresist film. An electrostatic chuck that electrostatically attracts the wafer is used.

この静電チャックは、図6に示すようにセラミック基体54の上面に一対の吸着用電極53と、該吸着用電極53に通電する給電端子58を備え、該吸着用電極53を覆うように絶縁膜52が形成され、該絶縁膜52の上面はウェハを載せる載置面52aとなっている。   As shown in FIG. 6, the electrostatic chuck includes a pair of suction electrodes 53 on the upper surface of the ceramic base 54 and a power supply terminal 58 for energizing the suction electrodes 53, and is insulated so as to cover the suction electrodes 53. A film 52 is formed, and the upper surface of the insulating film 52 is a mounting surface 52a on which the wafer is placed.

静電チャック51は、静電気のクーロン力を利用する物体保持装置で、誘電率εの絶縁膜52を厚みrで形成し、載置面52aにウェハを載せ前記吸着用電極53にVボルトの電圧を印加すると、ウェハWと吸着用電極53の間にその電圧の半分のV/2ボルトが印加される。その電圧によりウェハWを引きつける吸着力Fが生じる。   The electrostatic chuck 51 is an object holding device that uses electrostatic coulomb force, and an insulating film 52 having a dielectric constant ε is formed with a thickness r, a wafer is placed on the mounting surface 52a, and a voltage of V volts is applied to the suction electrode 53. Is applied, V / 2 volts, which is half the voltage, is applied between the wafer W and the adsorption electrode 53. The voltage causes an attracting force F that attracts the wafer W.

F=(ε/2)×(V/4r
物体を保持する保持力である静電気力である吸着力Fは、絶縁膜52の厚みrが小さい程大きく、また、電圧Vが大きければ大きい程大きくなる。電圧Vを大きくすればするほど吸着力Fが増大するが、あまり大きくすると絶縁膜52の絶縁が破壊されてしまう。また、絶縁膜52にピンホールなどの空所があると絶縁が破壊される。それで、物体を保持する絶縁膜52の表面は、滑らかであること、ピンホールがないことが求められる。
F = (ε / 2) × (V 2 / 4r 2 )
The adsorption force F, which is an electrostatic force that is a holding force for holding an object, increases as the thickness r of the insulating film 52 decreases, and increases as the voltage V increases. As the voltage V is increased, the attractive force F increases. However, if the voltage V is increased too much, the insulation of the insulating film 52 is destroyed. Further, if there is a void such as a pinhole in the insulating film 52, the insulation is destroyed. Therefore, the surface of the insulating film 52 that holds the object is required to be smooth and free from pinholes.

ところで、通常の静電チャックは、特許文献1に見られるように、電極としてアルミ等の金属を用い、これを覆う絶縁膜としてガラスあるいはベークライト、アクリル、エポキシ等の有機膜を備えたものが使用されている。しかし、これらの絶縁膜は全て耐熱性、耐摩耗性、耐薬品性等の点で問題があるだけでなく、硬度が小さいことから使用時に摩耗粉が発生して半導体ウェハに付着しやすく、半導体ウェハに悪影響を及ぼしやすいなどクリーン度の点でも問題がある。   By the way, as shown in Patent Document 1, a normal electrostatic chuck uses a metal such as aluminum as an electrode, and an insulating film covering the same is provided with an organic film such as glass or bakelite, acrylic or epoxy. Has been. However, these insulating films are not only problematic in terms of heat resistance, wear resistance, chemical resistance, etc., but because of their low hardness, wear powder is easily generated during use and adheres to the semiconductor wafer. There is also a problem in terms of cleanliness, such as being liable to adversely affect the wafer.

また、図4のように溶射成形したセラミック膜を絶縁膜25とした静電チャックが特許文献2に記載されているが、冷却効率が悪いとの問題があった。   Moreover, although the electrostatic chuck which used the thermal spray-molded ceramic film | membrane as the insulating film 25 like FIG. 4 is described in patent document 2, there existed a problem that cooling efficiency was bad.

また、特許文献3にはセラミック基体の主面に吸着用電極を形成し、セラミック基体の主面の全面に数μmの厚みの絶縁膜をスパッタ、イオンプレーティング、真空蒸着で形成する方法が記載されている。   Patent Document 3 describes a method in which an adsorption electrode is formed on the main surface of a ceramic substrate, and an insulating film having a thickness of several μm is formed on the entire main surface of the ceramic substrate by sputtering, ion plating, or vacuum deposition. Has been.

また、エッチングプロセスで使用される静電チャックの要求特性として、プロセスガスやクリーニングガスのハロゲン腐食ガス中での耐プラズマ性、エッチングする膜種によりプロセス温度が異なるため、−20〜200℃という温度範囲でも使用できるものが求められている。   Further, as required characteristics of the electrostatic chuck used in the etching process, the process temperature varies depending on the plasma resistance in the halogen corrosive gas of the process gas and the cleaning gas, and the film type to be etched. What can be used in a range is also required.

更に、超LSIのメモリ容量の拡大に伴って、微細加工が益々進み、耐プラズマ性を必要とするプロセスが拡大している。特に、エッチング用ガスやクリーニング用ガスとして、塩素系ガス、及びフッ素系ガスなどのハロゲン系腐食性ガスが多用されている。クリーニングではウェハの載置面にダミーウェハを載せないでクリーニングを行うウェハレスクリーニングが検討され、ウェハの載置面の耐プラズマ性が強く求められることもある。   Further, with the expansion of the memory capacity of the VLSI, the fine processing is progressing more and more, and the processes that require plasma resistance are expanding. In particular, halogen-based corrosive gases such as chlorine-based gases and fluorine-based gases are frequently used as etching gases and cleaning gases. In cleaning, wafer rescreening is performed in which cleaning is performed without placing a dummy wafer on the wafer mounting surface, and plasma resistance of the wafer mounting surface may be strongly required.

また、エッチング加工するウェハ上の膜種により、静電チャックの使用温度範囲が広く、広い温度範囲で耐久性のあるものが必要である。静電チャックには導電性基体としてアルミニウム合金を用いてその表面をアルミナ溶射膜で作製されたものや導電性基体としてアルミニウム合金を用いてその表面にアルミニウムの陽極酸化膜を形成して絶縁膜とすることで、耐プラズマ性を兼ねた静電チャックが開示されているが、これらは温度が上がるとアルミニウムベースと上記の絶縁膜の熱膨張の差により、クラックが入る問題があった。その対策として、特許文献4のようにセラミックと金属からなる導電性基体23の熱膨張係数を考慮してアルミナ溶射膜25を絶縁膜として、広い温度範囲で使用してもクラックが発生しないものがあった。   In addition, depending on the film type on the wafer to be etched, the electrostatic chuck must have a wide use temperature range and must be durable over a wide temperature range. For electrostatic chucks, an aluminum alloy is used as the conductive substrate and the surface is made of an alumina sprayed film, or an aluminum alloy is used as the conductive substrate to form an anodized aluminum film on the surface. Thus, electrostatic chucks that also have plasma resistance have been disclosed. However, when the temperature rises, there is a problem that cracks occur due to the difference in thermal expansion between the aluminum base and the insulating film. As a countermeasure for this, as in Patent Document 4, in consideration of the thermal expansion coefficient of the conductive base 23 made of ceramic and metal, an alumina sprayed film 25 is used as an insulating film so that cracks do not occur even when used in a wide temperature range. there were.

また、特許文献5には導電性基体としてアルミニウム合金基体の表面にアルミニウムの陽極酸化膜を形成し、その上に耐プラズマ性に優れた非晶質なAl酸化物を0.1〜10μm形成したものがあった。   In Patent Document 5, an aluminum anodic oxide film is formed on the surface of an aluminum alloy substrate as a conductive substrate, and an amorphous Al oxide having excellent plasma resistance is formed on the surface in an amount of 0.1 to 10 μm. There was a thing.

また、特許文献6には、セラミックス内部に吸着用電極を内蔵したものがあるが、冷却機能を備えた導電性基体とシリコーン接着剤等で接合されて一体化されていた。
特開昭59−92782号公報 特開昭58−123381号公報 特開平4−49879号公報 特開平11−265930号公報 特開平8−288376号公報 特開平4−287344号公報
Further, in Patent Document 6, there is one in which an adsorption electrode is built in a ceramic, but it is integrated by being joined to a conductive substrate having a cooling function by a silicone adhesive or the like.
JP 59-92782 A JP 58-123381 A JP-A-4-49879 JP-A-11-265930 JP-A-8-288376 JP-A-4-287344

特許文献4の静電チャック21はセラミックと金属からなる導電性基体23が単極の吸着用電極となることから、ウェハWとの電気的な接続が必要となり、自発的にウェハWを吸着する双極型の吸着用電極を備えることができなかった。   In the electrostatic chuck 21 of Patent Document 4, since the conductive base 23 made of ceramic and metal serves as a single electrode for adsorption, electrical connection with the wafer W is necessary, and the wafer W is adsorbed spontaneously. A bipolar electrode for adsorption could not be provided.

また、プラズマ雰囲気等から加熱されたウェハWの熱を載置面から取り除くことが不十分でウェハWの温度が上昇し、ウェハW面内の温度差が大きくなったり、ウェハWに対し所定の加工処理ができないとの問題があった。   Further, it is insufficient to remove the heat of the wafer W heated from the plasma atmosphere or the like from the mounting surface, the temperature of the wafer W rises, the temperature difference in the wafer W surface increases, There was a problem that processing was not possible.

また、特許文献3や特許文献5に記載の静電チャックの絶縁膜はスパッタやCVD等で作製され、絶縁膜の厚みは数μm以下に限定されていることから吸着電極に電圧を印加すると絶縁膜が絶縁破壊する虞があった。   In addition, the insulating film of the electrostatic chuck described in Patent Document 3 and Patent Document 5 is manufactured by sputtering or CVD, and the thickness of the insulating film is limited to several μm or less. There was a risk that the film would break down.

また、特許文献5には図5に示すようにアルミニウム合金基体24の表面にアルミニウムの陽極酸化膜26を形成し、その上に耐プラズマ性に優れた非晶質なアルミニウム酸化物層22を0.1〜10μm形成したものがあったが、10μm程度の絶縁膜22では成膜中に発生するピンホールは埋まらず下地を侵してしまうという問題があった。また、0.1〜10μm程度ではハードなプラズマ条件ではすぐ浸食されてしまい、実用性に乏しかった。この膜は10μm以上の膜を成膜すると成膜時の内部応力により剥がれると言う問題があった。   In Patent Document 5, an aluminum anodic oxide film 26 is formed on the surface of an aluminum alloy substrate 24 as shown in FIG. 5, and an amorphous aluminum oxide layer 22 having excellent plasma resistance is formed thereon. However, the insulating film 22 having a thickness of about 10 μm has a problem in that the pinhole generated during the film formation is not filled and the base is affected. On the other hand, when the thickness is about 0.1 to 10 μm, it is eroded immediately under hard plasma conditions, and the practicality is poor. This film has a problem that when a film of 10 μm or more is formed, it is peeled off due to internal stress at the time of film formation.

更に、導電性基体としてアルミニウム合金基体24が使用されているため、その上に形成されたアルミニウムの陽極酸化膜26及び非晶質なアルミニウム酸化物層22の熱膨張係数が異なるため、100℃以上の温度で絶縁膜22にクラックが入ってしまうという問題があった。   Further, since the aluminum alloy substrate 24 is used as the conductive substrate, the thermal expansion coefficients of the aluminum anodic oxide film 26 and the amorphous aluminum oxide layer 22 formed thereon are different. There was a problem that the insulating film 22 would crack at a temperature of.

また、上層の非晶質酸化アルミニウム膜22の体積固有抵抗が下層のアルミニウムの陽極酸化膜に対して大きい場合、静電チャック21の導電性基体24とウェハ間の電圧が非晶質酸化アルミニウム膜22側に大きく加わり、非晶質酸化アルミニウム膜22が絶縁破壊することもあった。   In addition, when the volume resistivity of the upper amorphous aluminum oxide film 22 is larger than that of the lower aluminum anodic oxide film, the voltage between the conductive substrate 24 of the electrostatic chuck 21 and the wafer is less than the amorphous aluminum oxide film. The amorphous aluminum oxide film 22 sometimes breaks down due to the large addition to the side 22.

また、非晶質酸化アルミニウム膜22とアルミニウムの陽極酸化膜26の体積固有抵抗が異なることから、電圧を印加しても吸着力がすぐに立ち上がらず一定になるのに時間を要したり、印加する電圧を切ってもすぐに吸着力が0にならずに残留吸着力が発生するなどの吸着/離脱特性の応答性が悪くなってしまうことがあり、ウェハの脱着に必要以上の時間を要し、プロセス制御に支障をきたすことがあった。   Further, since the volume resistivity of the amorphous aluminum oxide film 22 and the aluminum anodic oxide film 26 are different, it takes time for the adsorption force to rise and become constant even when a voltage is applied. Even if the voltage is turned off, the responsiveness of the adsorption / detachment characteristics such as the adsorption force does not become zero immediately but the residual adsorption force may be deteriorated, and it takes more time than necessary to detach the wafer. However, the process control may be hindered.

また、特許文献6に記載の静電チャックは板状セラミックス体の厚みが2mmを超えて大きくウェハWの熱を十分通過させることができないことから冷却効率が悪く、ウェハWの温度が上昇するという問題があった。   In addition, the electrostatic chuck described in Patent Document 6 has a thickness of the plate-like ceramic body exceeding 2 mm and cannot sufficiently pass the heat of the wafer W, so that the cooling efficiency is poor and the temperature of the wafer W rises. There was a problem.

特許文献2や特許文献4のようにアルミナ溶射層を絶縁膜としたものは溶射膜にボイドが多く、そのボイドを有機珪素や無機珪素を使って封孔処理をするがその封孔処理に用いた珪素部分がプラズマでエッチングされ、耐電圧が低下して短期間で静電チャックとしてつかうことができる寿命が短いとの虞があった。   As in Patent Document 2 and Patent Document 4, when the alumina sprayed layer is an insulating film, there are many voids in the sprayed film, and the voids are sealed using organic silicon or inorganic silicon. There was a risk that the silicon portion that had been etched was etched with plasma, the withstand voltage was lowered, and the life that could be used as an electrostatic chuck in a short period was short.

また、上記絶縁膜がウェハで削れてパーティクルを発生し、ウェハの加工歩留まりを低下させるとの問題があった。   In addition, there is a problem in that the insulating film is scraped by the wafer to generate particles, thereby reducing the processing yield of the wafer.

導電性基体の一方の主面に絶縁層と、その上面に吸着用電極と、該吸着用電極を覆うように絶縁膜を備え、その上面をウェハを載せる載置面として、前記絶縁層と絶縁膜との総厚みが20〜2000μmであることを特徴とする。   An insulating layer is provided on one main surface of the conductive substrate, an adsorption electrode is provided on the upper surface thereof, and an insulating film is provided so as to cover the adsorption electrode, and the upper surface is used as a mounting surface on which a wafer is placed. The total thickness with the film is 20 to 2000 μm.

また、前記絶縁膜が前記絶縁層を覆うように形成されていることを特徴とする。   Further, the insulating film is formed so as to cover the insulating layer.

また、前記絶縁層が非晶質セラミックからなることを特徴とする。   The insulating layer is made of an amorphous ceramic.

また、前記絶縁膜は酸化物からなる均一な非晶質セラミックから成り、その厚みが10〜100μmであることを特徴とする。   The insulating film is made of a uniform amorphous ceramic made of an oxide and has a thickness of 10 to 100 μm.

また、上記絶縁膜は、希ガス類元素を1〜10原子%含み、ビッカース硬度が500〜1000HV0.1であることを特徴とする。   The insulating film contains 1 to 10 atomic% of a rare gas element and has a Vickers hardness of 500 to 1000 HV0.1.

また、上記絶縁膜が酸化アルミニウム、酸化イットリウム、酸化イットリウムアルミニウムまたは希土類の酸化物の何れか一つを主成分とすることを特徴とする。   In addition, the insulating film is mainly composed of any one of aluminum oxide, yttrium oxide, yttrium aluminum oxide, or a rare earth oxide.

また、前記導電性基体がアルミニウムまたはアルミニウム合金の何れか一つの金属成分と、炭化珪素または窒化アルミニウムの何れか一つのセラミック成分からなり、該セラミック成分の含有量が50〜90質量%であることを特徴とする。   Further, the conductive substrate is composed of any one metal component of aluminum or aluminum alloy and one ceramic component of silicon carbide or aluminum nitride, and the content of the ceramic component is 50 to 90% by mass. It is characterized by.

また、前記絶縁膜を形成した面以外の前記導電性基体の表面に、アルミニウムの陽極酸化膜またはアルミナ溶射膜からなる保護膜が形成されたことを特徴とする。   Further, a protective film made of an anodized aluminum film or an alumina sprayed film is formed on the surface of the conductive substrate other than the surface on which the insulating film is formed.

また、前記絶縁層がポリイミドからなることを特徴とする。   Further, the insulating layer is made of polyimide.

また、上記絶縁層の厚みが5〜150μmであることを特徴とする。   The insulating layer has a thickness of 5 to 150 μm.

また、前記絶縁膜の表面に点在する凸部を備えることを特徴とする。   In addition, it is characterized in that it has convex portions scattered on the surface of the insulating film.

また、前記凸部の体積固有抵抗が前記絶縁膜の体積固有抵抗より小さいことを特徴とする。   Further, the volume specific resistance of the convex portion is smaller than the volume specific resistance of the insulating film.

また、前記凸部の高さが0.5〜5μmであることを特徴とする。   Moreover, the height of the said convex part is 0.5-5 micrometers, It is characterized by the above-mentioned.

本発明の静電チャックは導電性基体の一方の主面に絶縁層と、その上面に吸着用電極と、該吸着用電極を覆うように絶縁膜を備え、その上面をウェハを載せる載置面として、前記絶縁層と絶縁膜との総厚みが20〜2000μmであることを特徴とすると、プラズマを発生させても載置面の温度変化がなく、絶縁膜のクラックが発生することがなく、絶縁破壊を防止できる。また、ウェハWの離脱特性に優れ、且つ吸着力の大きな静電チャックが得られる。   The electrostatic chuck of the present invention comprises an insulating layer on one main surface of a conductive substrate, an adsorption electrode on its upper surface, and an insulating film so as to cover the adsorption electrode, and a mounting surface on which the wafer is placed. As described above, if the total thickness of the insulating layer and the insulating film is 20 to 2000 μm, there is no temperature change of the mounting surface even when plasma is generated, and no cracks of the insulating film occur. Insulation breakdown can be prevented. Further, an electrostatic chuck having excellent separation characteristics of the wafer W and a large attracting force can be obtained.

更に、保護膜を形成するとプラズマに対する耐久性に優れた静電チャックを提供することができる。   Furthermore, when a protective film is formed, an electrostatic chuck having excellent durability against plasma can be provided.

また、パーティクルの発生の少ない優れた静電チャックが得られる。   In addition, an excellent electrostatic chuck with less generation of particles can be obtained.

以下、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described.

図1は本発明の静電チャック1の一例である概略の構造を示す。金属または導電性基体2の一方の主面に絶縁層3と、その上面に吸着用電極4a、4bと、該吸着用電極4を覆うように絶縁膜5が形成されている。絶縁膜5の上面をウェハを吸着させる載置面5aとする。   FIG. 1 shows a schematic structure as an example of the electrostatic chuck 1 of the present invention. An insulating layer 3 is formed on one main surface of the metal or conductive substrate 2, adsorption electrodes 4 a and 4 b are formed on the upper surface, and an insulating film 5 is formed so as to cover the adsorption electrode 4. The upper surface of the insulating film 5 is used as a mounting surface 5a for attracting the wafer.

絶縁層3はアルミナ等の酸化物セラミックスや窒化物、炭化物等のセラミックスからなることが好ましい。また、絶縁膜5は上記絶縁層3と同一組成物でも良いが、非晶質セラミックスからなることが好ましい。   The insulating layer 3 is preferably made of an oxide ceramic such as alumina, or a ceramic such as nitride or carbide. The insulating film 5 may be made of the same composition as the insulating layer 3, but is preferably made of amorphous ceramics.

導電性基体2が金属のみからなる場合は絶縁層3や絶縁膜5の熱膨張に合わせて導電性基体2の金属を選定するのが好ましい。金属はセラミックに比べて熱膨張率が大きいものが多いことから、導電性基体2の材質としてW、Mo、Tiなどの低熱膨張金属を主成分とする金属が好ましい。   When the conductive substrate 2 is made of only metal, it is preferable to select the metal of the conductive substrate 2 in accordance with the thermal expansion of the insulating layer 3 and the insulating film 5. Since many metals have a larger coefficient of thermal expansion than ceramic, the material of the conductive substrate 2 is preferably a metal mainly composed of a low thermal expansion metal such as W, Mo, or Ti.

また、導電性基体2として金属とセラミックの複合部材を用いる場合は三次元編目構造の多孔質セラミック体を骨格とし、その気孔部に隙間なくアルミニウムやアルミニウム合金を充填した複合材料を使うことが好ましい。このような構造とすることで、絶縁層3や絶縁膜5と導電性基体2の熱膨張係数を近づけることができる。   Further, when a metal / ceramic composite member is used as the conductive substrate 2, it is preferable to use a composite material in which a porous ceramic body having a three-dimensional stitch structure is used as a skeleton and aluminum or an aluminum alloy is filled in the pores without any gaps. . With such a structure, the thermal expansion coefficients of the insulating layer 3 and the insulating film 5 and the conductive substrate 2 can be made closer.

更に、上記の導電性基体2の熱伝導率が約160W/(m・K)と大きな材料が得られ、プラズマ等の雰囲気からウェハWに伝わった熱を導電性基体2を通して取り除くことが容易となり好ましい。   Furthermore, a material having a large thermal conductivity of about 160 W / (m · K) is obtained for the conductive substrate 2 described above, and it becomes easy to remove the heat transferred from the atmosphere such as plasma to the wafer W through the conductive substrate 2. preferable.

そして、導電性基体2には冷却媒体を通す流路9が備えられ、冷却媒体を介して、ウェハWの熱を静電チャック1の外部に取り除くことができることからウェハWの温度を冷却媒体の温度でコントロールすることが容易となった。   The conductive substrate 2 is provided with a flow path 9 through which a cooling medium passes, and the heat of the wafer W can be removed to the outside of the electrostatic chuck 1 through the cooling medium. It became easy to control by temperature.

そして、載置面5aの上にウェハWを載せ、吸着用電極4の間に数百Vの吸着電圧を給電端子6a、6bから印加して、吸着用電極4とウェハWの間に静電吸着力を発現させ、ウェハWを載置面5aに吸着することができる。また、導電性基体2と対向電極(不図示)との間にRF電圧を印加するとウェハWの上方にプラズマを効率的に発生することができる。   Then, the wafer W is placed on the mounting surface 5 a, and a suction voltage of several hundred volts is applied between the suction electrodes 4 from the power supply terminals 6 a and 6 b, and the electrostatic force is applied between the suction electrode 4 and the wafer W. An adsorption force can be developed, and the wafer W can be adsorbed on the mounting surface 5a. Further, when an RF voltage is applied between the conductive substrate 2 and the counter electrode (not shown), plasma can be efficiently generated above the wafer W.

本発明の静電チャック1は絶縁膜5と絶縁層3の総厚みが20〜2000μmであることが特徴である。この厚みとすることにより載置面5aにウェハWから伝わった熱を導電性基体2に逃がすことができる。そして、ウェハWの温度上昇やウェハW面内の温度差が大きくなることを防止することができる。前記総厚みが20μm未満では吸着用電極4と導電性基体2との間で絶縁破壊する虞があり、総厚みが2000μmを越えるとウェハWの熱を十分導電性基体2に伝えることができない虞があるからである。好ましくは30μmから500μmであり、更に好ましくは50〜200μmである。   The electrostatic chuck 1 of the present invention is characterized in that the total thickness of the insulating film 5 and the insulating layer 3 is 20 to 2000 μm. With this thickness, the heat transferred from the wafer W to the mounting surface 5a can be released to the conductive substrate 2. And it can prevent that the temperature rise of the wafer W and the temperature difference in the wafer W surface become large. If the total thickness is less than 20 μm, there is a risk of dielectric breakdown between the adsorption electrode 4 and the conductive substrate 2, and if the total thickness exceeds 2000 μm, the heat of the wafer W may not be sufficiently transmitted to the conductive substrate 2. Because there is. Preferably they are 30 micrometers-500 micrometers, More preferably, they are 50-200 micrometers.

尚、上記絶縁膜5の厚みt1は吸着用電極4の上面から載置面5aの上面までの距離で、載置面5aを垂直に横切る断面において、5箇所の前記距離の平均値で表すことができる。また、上記絶縁層3の厚みt2は、同様に前記断面において5箇所の厚みを測定しその平均値とした。そして、上記絶縁膜5aの厚みt1と絶縁層3の厚みt2を合計した値を総厚みとした。   The thickness t1 of the insulating film 5 is a distance from the upper surface of the adsorption electrode 4 to the upper surface of the mounting surface 5a, and is expressed by an average value of the five distances in a cross section perpendicular to the mounting surface 5a. Can do. In addition, the thickness t2 of the insulating layer 3 was similarly measured by measuring the thickness at five locations in the cross section, and taking the average value. And the value which totaled the thickness t1 of the said insulating film 5a and the thickness t2 of the insulating layer 3 was made into the total thickness.

また、載置面5aにはブラスト加工法等により凹部を形成することもできる。その凹部と連通し導電性基体2の裏面から載置面5aに貫通するガス供給孔を設け、ウェハWと凹部で形成される空間にガス供給孔からガスを供給することができる。そして、ウェハWと載置面5aの間の熱伝導率を高めることもできる。   Further, the mounting surface 5a can be formed with a recess by a blasting method or the like. A gas supply hole communicating with the recess and penetrating from the back surface of the conductive substrate 2 to the mounting surface 5a can be provided, and gas can be supplied from the gas supply hole to a space formed by the wafer W and the recess. And the heat conductivity between the wafer W and the mounting surface 5a can also be raised.

絶縁膜5はアルミナや窒化物、炭化物質のセラミックスからなることが好ましく、その熱伝導率は20W/(m・K)以上であることが好ましい。このような焼結セラミックスからなる絶縁膜5の厚みは10〜1500μmであればウェハWの熱を効率よく導電性基体2に逃がすことができて好ましい。好ましくは100〜1000μmであり、更に好ましくは200〜500μmである。そして、絶縁膜5の熱伝導率が50W/(m・K)以上と大きな絶縁膜5ではその厚みは200〜1500μmであると好ましい。上記絶縁膜5の下限は、載置面5aに垂直で直径近くを横切る断面から絶縁膜5の厚みの最小値で示すことができる。   The insulating film 5 is preferably made of alumina, nitride, or carbonized ceramic, and its thermal conductivity is preferably 20 W / (m · K) or more. The thickness of the insulating film 5 made of such sintered ceramics is preferably 10 to 1500 μm because the heat of the wafer W can be efficiently released to the conductive substrate 2. Preferably it is 100-1000 micrometers, More preferably, it is 200-500 micrometers. The insulating film 5 having a large thermal conductivity of 50 W / (m · K) or more preferably has a thickness of 200 to 1500 μm. The lower limit of the insulating film 5 can be indicated by the minimum value of the thickness of the insulating film 5 from a cross section perpendicular to the mounting surface 5a and crossing near the diameter.

また、焼結セラミックスからなる絶縁層3の厚みは10μm〜1990μmであることが好ましい。絶縁層3の厚みが10μm未満では吸着用電極4と導電性基体2の間の絶縁性を保持できない危険があるからである。1990μmを超えると、載置面5aからの熱を導電性基体2に十分伝えることができなくなる虞があるからである。このような絶縁層3はその熱伝導率が50W/(m・K)以上であると更に好ましい。   The insulating layer 3 made of sintered ceramics preferably has a thickness of 10 μm to 1990 μm. This is because if the thickness of the insulating layer 3 is less than 10 μm, there is a risk that the insulation between the adsorption electrode 4 and the conductive substrate 2 cannot be maintained. This is because if the thickness exceeds 1990 μm, the heat from the mounting surface 5 a may not be sufficiently transmitted to the conductive substrate 2. Such an insulating layer 3 more preferably has a thermal conductivity of 50 W / (m · K) or more.

また、絶縁層3は導電性基体2や絶縁膜5の熱膨張係数に近く絶縁性の優れた絶縁膜5と同じ組成の膜や、ホウ珪酸ガラスやホウ酸ガラスを使用できる。   The insulating layer 3 can be made of a film having the same composition as that of the insulating film 5 which is close to the thermal expansion coefficient of the conductive substrate 2 and the insulating film 5 and has excellent insulating properties, or borosilicate glass or borate glass.

また、絶縁層3は非晶質セラミックスから構成することもできる。ここで、非晶質セラミックスとはアルミナ質、アルミナイットリア酸化物質、窒化物質等のセラミックス結晶組成を基本組成とするものを指す。   The insulating layer 3 can also be composed of amorphous ceramics. Here, the amorphous ceramics refers to those having a basic composition of a ceramic crystal composition such as alumina, alumina yttria oxide material, and nitride material.

絶縁層3が絶縁膜5と同様の非晶質セラミックス組成物からなる場合は、その厚みは10〜100μmが好ましい。10μm未満では絶縁破壊する虞があり、100μmを越えると量産性に劣るからである。   When the insulating layer 3 is made of the same amorphous ceramic composition as the insulating film 5, the thickness is preferably 10 to 100 μm. If the thickness is less than 10 μm, the dielectric breakdown may occur, and if it exceeds 100 μm, the mass productivity is inferior.

また、非晶質セラミックス以外の一般的なガラス組成物を絶縁層3とする場合、絶縁層3の厚みは載置面5aに載せられたウェハWの熱を伝えやすいように1990μm以下が好ましく、且つ導電性基体2と吸着用電極4の間の絶縁性を確保するには、10μm以上が好ましい。更に好ましくは20〜1000μmでより好ましくは50〜300μmである。   Further, when the general glass composition other than the amorphous ceramic is used as the insulating layer 3, the thickness of the insulating layer 3 is preferably not more than 1990 μm so that heat of the wafer W placed on the mounting surface 5a can be easily transferred. In order to ensure insulation between the conductive substrate 2 and the adsorption electrode 4, it is preferably 10 μm or more. More preferably, it is 20-1000 micrometers, More preferably, it is 50-300 micrometers.

また、ガラス組成物からなる絶縁層3はプラズマ雰囲気における耐食性に劣ることから、図2に示すように絶縁膜5が絶縁層3を覆うように形成されていることが好ましい。このように形成することで、静電チャック1の耐食性を増すことができるとともに静電チャック1の信頼性をも高めることができ、静電チャックの寿命も長くなる。   Moreover, since the insulating layer 3 made of the glass composition is inferior in corrosion resistance in a plasma atmosphere, it is preferable that the insulating film 5 is formed so as to cover the insulating layer 3 as shown in FIG. By forming in this way, the corrosion resistance of the electrostatic chuck 1 can be increased, the reliability of the electrostatic chuck 1 can be improved, and the life of the electrostatic chuck is also extended.

本発明の絶縁膜5は、均一な非晶質セラミックから成る絶縁膜5の1層のみから形成することが好ましい。この絶縁膜5は、吸着用電極4から載置面5aの間の体積固有抵抗が一様であることから、絶縁膜5の中を電界が一様に形成され吸着電圧を印加した時に吸着力が素早く発現し一定の吸着力になる。そして、印加する吸着電圧を切ると、すぐに吸着力が0になりウェハWを離脱できる。このように吸着/離脱特性の優れた静電チャック1とすることができる。   The insulating film 5 of the present invention is preferably formed from only one layer of the insulating film 5 made of a uniform amorphous ceramic. Since the insulating film 5 has a uniform volume resistivity between the adsorption electrode 4 and the mounting surface 5a, an adsorption force is applied when an electric field is uniformly formed in the insulation film 5 and an adsorption voltage is applied. Develops quickly and has a constant adsorption force. When the applied suction voltage is cut off, the suction force becomes zero immediately and the wafer W can be detached. Thus, the electrostatic chuck 1 having excellent adsorption / detachment characteristics can be obtained.

また、絶縁膜5を均一な非晶質セラミックからなる絶縁膜5とする理由は、以下のように考えられる。   The reason why the insulating film 5 is the insulating film 5 made of a uniform amorphous ceramic is considered as follows.

結晶質セラミックからなる絶縁膜は結晶格子が強固に結合されていることから、格子間距離が応力で変化し難く、結晶質セラミックからなる絶縁膜を静電チャックの絶縁膜とすると、導電性基体2から上記の絶縁膜に発生する内部応力や熱膨張差などの熱応力を緩和する機能に乏しいが、非晶質セラミックからなる絶縁膜5は結晶質セラミックからなる絶縁膜と異なり低温で形成可能であり比較的低い温度で応力に対して格子間距離が変化する機能があり、内部応力を結晶質セラミックからなる絶縁膜より小さくすることができる。また、非晶質セラミックからなる絶縁膜5は非晶質であるため原子配列が周期的でなく、原子レベルの空間ができやすく不純物を取り込みやすい構造になっている。そのため、非晶質セラミックからなる絶縁膜5と導電性基体2との熱膨張差や成膜時の応力などによる内部応力が発生しても、原子配列が不規則であるのと原子レベルの欠陥が多いことから、絶縁膜5の低い成膜温度で変位することができ、絶縁膜5にかかる応力を低減することができる。そして、その非晶質セラミックからなる絶縁膜5は同等組成の対応する結晶の化学量論組成からずれていることから、原子レベルの欠陥ができやすく絶縁膜5と導電性基体2との間の応力を緩和することが容易となる。   Insulating films made of crystalline ceramic have crystal lattices that are tightly coupled, so the interstitial distance is unlikely to change due to stress, and if the insulating film made of crystalline ceramic is used as the insulating film of an electrostatic chuck, a conductive substrate Although the function to relieve thermal stress such as internal stress and thermal expansion difference generated in the above insulating film from 2 is poor, the insulating film 5 made of amorphous ceramic can be formed at a low temperature unlike the insulating film made of crystalline ceramic. The interstitial distance changes with respect to stress at a relatively low temperature, and the internal stress can be made smaller than that of an insulating film made of crystalline ceramic. Further, since the insulating film 5 made of amorphous ceramic is amorphous, the atomic arrangement is not periodic, and an atomic level space is easily formed and impurities are easily taken in. Therefore, even if an internal stress is generated due to a difference in thermal expansion between the insulating film 5 made of amorphous ceramic and the conductive substrate 2 or a stress at the time of film formation, the atomic arrangement is irregular and defects at the atomic level. Therefore, the insulating film 5 can be displaced at a low deposition temperature, and the stress applied to the insulating film 5 can be reduced. The insulating film 5 made of amorphous ceramic is deviated from the stoichiometric composition of the corresponding crystal having the same composition. Therefore, defects at the atomic level are easily formed between the insulating film 5 and the conductive substrate 2. It becomes easy to relieve stress.

そして、上記非晶質セラミックからなる絶縁膜5の厚みは10〜100μmが好ましい。非晶質セラミックからなる絶縁膜5の厚みが10μm未満では、導電性基体2の表面のボイドやパーティクルの影響を受けて、非晶質セラミックからなる絶縁膜5にピンホールや膜厚が極端に薄いところが発生し、プラズマ中で使用するとその部分が欠陥となり、絶縁膜5を貫通して吸着用電極4を浸食することがあり、絶縁膜5の絶縁破壊による異常放電やパーティクルを発生することがある。そのため、絶縁膜5は少なくとも10μm以上の厚みが必要である。   The thickness of the insulating film 5 made of the amorphous ceramic is preferably 10 to 100 μm. When the thickness of the insulating film 5 made of amorphous ceramic is less than 10 μm, the insulating film 5 made of amorphous ceramic has an extremely large pinhole or film thickness due to the influence of voids and particles on the surface of the conductive substrate 2. When it is used in plasma, the portion becomes a defect, and the adsorption electrode 4 may be eroded through the insulating film 5, and abnormal discharge or particles due to dielectric breakdown of the insulating film 5 may occur. is there. Therefore, the insulating film 5 needs to have a thickness of at least 10 μm.

また、絶縁膜5の厚みが100μmを越えると非晶質セラミックからなる絶縁膜5を成膜する時間が数十時間以上となり量産性に乏しく、また内部応力も大きくなり過ぎるため絶縁膜5が吸着用電極4や絶縁層3、導電性基体2から剥離する虞がある。好ましくは絶縁膜5の厚みは30〜70μmであり、更に好ましくは40〜60μmである。   In addition, if the thickness of the insulating film 5 exceeds 100 μm, the time for forming the insulating film 5 made of amorphous ceramic is several tens of hours or more, and the mass productivity is poor, and the internal stress becomes too large. There is a risk of peeling from the electrode 4, the insulating layer 3, and the conductive substrate 2. Preferably, the thickness of the insulating film 5 is 30 to 70 μm, and more preferably 40 to 60 μm.

尚、本発明において絶縁膜5の厚みが10μm以上とは、導電性基体2の上の絶縁膜5の最小厚みが10μm以上のことであり、厚み100μm以下とは導電性基体2の上の絶縁膜5の平均厚みが100μm以下のことである。尚、平均厚みは絶縁膜5を5等分した面積の中の膜厚を一箇所測定し、それぞれ5箇所の膜厚を平均した値である。   In the present invention, the thickness of the insulating film 5 is 10 μm or more means that the minimum thickness of the insulating film 5 on the conductive substrate 2 is 10 μm or more, and the thickness of 100 μm or less is the insulation on the conductive substrate 2. The average thickness of the film 5 is 100 μm or less. The average thickness is a value obtained by measuring the film thickness in an area obtained by dividing the insulating film 5 into five equal parts and averaging the film thicknesses at five points.

非晶質セラミックからなる絶縁膜5の中には他の元素と反応していない希ガス類元素としてアルゴンが存在しており、希ガス類元素を膜中に多く入れることにより、非晶質セラミックからなる絶縁膜5の変形が容易となり内部応力を緩和する効果が大きくなる。そのため、本発明のような10μm以上の厚みの非晶質セラミックからなる絶縁膜5を吸着用電極4を覆うように絶縁層3を介して導電性基体2に成膜しても絶縁膜5を剥離するような大きな応力の発生を防ぐことができる。   In the insulating film 5 made of amorphous ceramic, argon exists as a rare gas element that does not react with other elements, and by adding a large amount of rare gas elements into the film, the insulating film made of amorphous ceramic The deformation of 5 becomes easy and the effect of relieving internal stress is increased. Therefore, even if the insulating film 5 made of an amorphous ceramic having a thickness of 10 μm or more as in the present invention is formed on the conductive substrate 2 through the insulating layer 3 so as to cover the adsorption electrode 4, the insulating film 5 is formed. Generation of large stresses that cause peeling can be prevented.

絶縁膜5の中の前記アルゴン量のコントロールは成膜時のアルゴンのガス圧力を大きくして、成膜する導電性基体2に印加するマイナスバイアス電圧を大きくすることにより、プラズマ中で電離したアルゴンイオンを絶縁膜5中に多く取り込むことができる。   The argon amount in the insulating film 5 is controlled by increasing the gas pressure of argon at the time of film formation, and increasing the negative bias voltage applied to the conductive substrate 2 to be formed, thereby ionizing argon ionized in the plasma. A large amount of ions can be taken into the insulating film 5.

絶縁膜5中のアルゴン量は1〜10原子%が好ましい。更に好ましくは3〜8原子%である。希ガス類元素の含有量が1原子%以下であると、非晶質セラミックからなる絶縁膜5が充分変位できなくなるため応力を緩和する効果が小さくなり、10μm程度の厚みでもクラックが発生しやすくなる。また、逆に希ガス類元素を10原子%以上とするのは製作上困難である。   The amount of argon in the insulating film 5 is preferably 1 to 10 atomic%. More preferably, it is 3-8 atomic%. When the content of the rare gas element is 1 atomic% or less, the insulating film 5 made of amorphous ceramic cannot be displaced sufficiently, so that the effect of relaxing the stress is reduced, and cracks are easily generated even with a thickness of about 10 μm. On the other hand, it is difficult to manufacture the rare gas element at 10 atomic% or more.

また、前記希ガス類元素としてアルゴンの代わりに他の希ガス類元素を使ってスパッタを行っても同じ効果が得られるが、スパッタ効率とガスのコストを考えると、アルゴンガスはスパッタ効率が高く安価で好ましい。   Further, the same effect can be obtained by performing sputtering using another rare gas element instead of argon as the rare gas element. However, considering sputtering efficiency and gas cost, argon gas is preferable because it has high sputtering efficiency and is inexpensive.

上記絶縁膜5中のアルゴンの定量分析方法としては酸化アルミニウム焼結体に非晶質セラミック膜を20μmの厚みで成膜したものを比較試料として作製し、該試料をラザフォード後方散乱法により分析し、検出した全原子量とアルゴンの原子量を計測して、アルゴンの原子量を全原子量で割った値を原子%として算出した。   As a method for quantitative analysis of argon in the insulating film 5, an aluminum ceramic sintered body formed with an amorphous ceramic film with a thickness of 20 μm was prepared as a comparative sample, and the sample was analyzed by Rutherford backscattering method. The total atomic weight detected and the atomic weight of argon were measured, and the value obtained by dividing the atomic weight of argon by the total atomic weight was calculated as atomic%.

また、非晶質セラミックからなる絶縁膜5は上記のように希ガス類元素を含むことから、類似組成のセラミック焼結体に比べて硬度が小さくなっている。希ガス類元素を多く入れることにより、硬度を小さくすることができ、膜中の内部応力を低下することができる。   Further, since the insulating film 5 made of amorphous ceramic contains a rare gas element as described above, the hardness is smaller than that of a ceramic sintered body having a similar composition. By adding a large amount of rare gas elements, the hardness can be reduced and the internal stress in the film can be reduced.

また、非晶質セラミックからなる絶縁膜5はスパッタ等の成膜工程で形成され絶縁膜5の表面には凹部が存在するが、絶縁膜5の内部にはボイドがほとんど存在しない。そこで、表面の凹部は表面を研磨加工して除去することにより、プラズマに曝される表面積をいつでも最小にすることができ、更に多結晶体のような粒界が存在しないことからエッチングが一様で脱粒も発生し難い。その結果、従来から使われているセラミック多焼結体からなる絶縁膜より各段に耐プラズマ性に優れたものとなる。また、結晶粒界を含むセラミックス多結晶焼結体では面粗さがRa0.02程度までであるが、非晶質セラミック絶縁膜5はRa0.0003程度まで小さくすることが可能であり耐プラズマ性の観点から好ましい。   The insulating film 5 made of amorphous ceramic is formed by a film forming process such as sputtering, and there are concave portions on the surface of the insulating film 5, but there are almost no voids inside the insulating film 5. Therefore, by removing the surface recesses by polishing the surface, the surface area exposed to the plasma can be minimized at any time, and since there is no grain boundary like a polycrystalline body, etching is uniform. It is difficult for threshing to occur. As a result, the plasma resistance of each step is superior to that of a conventionally used insulating film made of a ceramic multi-sintered body. In addition, although the surface roughness of the ceramic polycrystalline sintered body including the crystal grain boundary is up to about Ra0.02, the amorphous ceramic insulating film 5 can be reduced to about Ra0.0003 and is plasma resistant. From the viewpoint of

更に、上記の希ガス類元素を含む非晶質セラミックからなる絶縁膜5のビッカース硬度は500〜1000HV0.1が好ましく、1000HV0.1を超えると内部応力が大きくなり絶縁膜5が剥がれる虞がある。絶縁膜5のビッカース硬度が500HV0.1未満では絶縁膜5の内部応力は小さくなり絶縁膜5の剥離の問題は生じ難いが、硬度が小さ過ぎることから絶縁膜5に大きな傷が入りやすく、この結果として耐電圧低下を発生する。これはウェハWと静電チャック1の載置面5aの間に入り込んだ硬質のゴミにより絶縁膜5に傷が入り、この傷の部分の耐電圧が低下したりすることがある。従って、絶縁膜5のビッカース硬度は500〜1000HV0.1が好ましく、更に好ましくは600〜900HV0.1である。   Furthermore, the Vickers hardness of the insulating film 5 made of an amorphous ceramic containing a rare gas element is preferably 500 to 1000 HV0.1. If it exceeds 1000 HV0.1, the internal stress increases and the insulating film 5 may be peeled off. If the Vickers hardness of the insulating film 5 is less than 500 HV0.1, the internal stress of the insulating film 5 is small and the problem of peeling of the insulating film 5 hardly occurs. However, since the hardness is too small, the insulating film 5 is easily damaged. As a result, a withstand voltage drop occurs. This may cause damage to the insulating film 5 due to hard dust that has entered between the wafer W and the mounting surface 5a of the electrostatic chuck 1, and the withstand voltage of the damaged portion may be reduced. Therefore, the Vickers hardness of the insulating film 5 is preferably 500 to 1000 HV0.1, and more preferably 600 to 900 HV0.1.

また、上記非晶質セラミックからなる絶縁膜5は耐プラズマ性の優れた酸化アルミニウム、酸化イットリウム、酸化イットリウムアルミニウムまたは希土類酸化物で構成されることが好ましい。特に、酸化イットリウムが優れている。   The insulating film 5 made of amorphous ceramic is preferably composed of aluminum oxide, yttrium oxide, yttrium aluminum oxide or rare earth oxide having excellent plasma resistance. In particular, yttrium oxide is excellent.

また、本発明の金属とセラミックからなる導電性基体2は、導電性基体2の熱膨張係数が骨格をなす多孔質セラミック体の熱膨張係数に依存するところが大きく、上記セラミックとして炭化珪素や窒化アルミニウムが好ましい。また、導電性基体2の熱伝導率は気孔部に充填した金属の熱伝導率に依存するところが大きいため、両者の配合比をそれぞれ変えることにより、導電性基体2の熱膨張係数と熱伝導率を適宜に調整することができる。特に、上記金属としてはウェハWに影響の少ないアルミニウムやアルミニウム合金が好ましい。   In the conductive base 2 made of the metal and ceramic of the present invention, the thermal expansion coefficient of the conductive base 2 largely depends on the thermal expansion coefficient of the porous ceramic body forming the skeleton. As the ceramic, silicon carbide or aluminum nitride is used. Is preferred. In addition, since the thermal conductivity of the conductive substrate 2 largely depends on the thermal conductivity of the metal filled in the pores, the thermal expansion coefficient and the thermal conductivity of the conductive substrate 2 can be changed by changing the mixing ratio of the two. Can be adjusted appropriately. In particular, the metal is preferably aluminum or an aluminum alloy that has little influence on the wafer W.

従って、導電性基体2は、アルミニウムまたはアルミニウム合金の何れか一つの金属成分と、炭化珪素または窒化アルミニウムの何れか一つのセラミック成分からなり、該セラミック成分の含有量が50〜90質量%であることが好ましい。   Therefore, the conductive substrate 2 is composed of any one metal component of aluminum or aluminum alloy and one ceramic component of silicon carbide or aluminum nitride, and the content of the ceramic component is 50 to 90% by mass. It is preferable.

導電性基体2のセラミック成分の含有量が50質量%より少なくなると導電性基体2の強度が大きく低下するとともに、導電性基体2の熱膨張係数が多孔質セラミック体よりもアルミニウム合金の熱膨張係数による依存度が大きく導電性基体2の熱膨張係数が大きくなり、非晶質セラミック絶縁膜5との熱膨張差が大きくなり過ぎることから絶縁膜5が剥離する虞がある。   When the content of the ceramic component of the conductive substrate 2 is less than 50% by mass, the strength of the conductive substrate 2 is greatly reduced, and the thermal expansion coefficient of the conductive substrate 2 is higher than that of the porous ceramic body. Therefore, the insulating film 5 may be peeled off because the thermal expansion coefficient of the conductive substrate 2 becomes large and the difference in thermal expansion from the amorphous ceramic insulating film 5 becomes too large.

逆に、導電性基体2のセラミック成分の含有量が90質量%より多くなると、セラミックの開気孔率が小さくなりアルミニウム合金を充分に充填できなくなり、熱伝導や電気伝導が極端に低下してしまい、導電性基体として機能を果たさなくなる。上記セラミックとして窒化珪素や炭化珪素や窒化アルミニウム、アルミナなど低熱膨張で高剛性の多孔質セラミックを用いる。気孔部に隙間なくアルミニウム合金を充填するためには、気孔径が10〜100μmの多孔質セラミック体を用いることが望ましい。   On the contrary, if the content of the ceramic component of the conductive substrate 2 is more than 90% by mass, the open porosity of the ceramic becomes small and the aluminum alloy cannot be sufficiently filled, and heat conduction and electric conduction are extremely lowered. The function as a conductive substrate is not achieved. As the ceramic, a porous ceramic having low thermal expansion and high rigidity such as silicon nitride, silicon carbide, aluminum nitride, or alumina is used. In order to fill the pores with the aluminum alloy without gaps, it is desirable to use a porous ceramic body having a pore diameter of 10 to 100 μm.

なお、多孔質セラミック体の気孔部に金属を充填する方法としては、予め多孔質セラミック体を入れて加熱しておいたプレス機に溶融金属を注入し、加圧プレスすれば良い。   In addition, as a method of filling the pores of the porous ceramic body with metal, the molten metal may be injected into a press machine in which the porous ceramic body has been put in advance and heated, followed by pressure pressing.

SiCの質量比率を50〜90質量%にすることにより、導電性基体2の熱膨張率を11×10−6〜5×10−6/℃程度に変えることができるため、絶縁膜5の熱膨張率や成膜応力に合わせることが可能となる。 Since the thermal expansion coefficient of the conductive substrate 2 can be changed to about 11 × 10 −6 to 5 × 10 −6 / ° C. by setting the mass ratio of SiC to 50 to 90% by mass, the heat of the insulating film 5 It becomes possible to match the expansion coefficient and film formation stress.

また、本発明の静電チャック1が用いられるエッチング工程の腐食性のガスは不記載のカバーリング等で保護された静電チャック1の側面や裏面の雰囲気露出面にも若干侵入するため、プラズマに対する耐食性を高める上で保護膜7があることが好ましい。   Further, since the corrosive gas in the etching process using the electrostatic chuck 1 of the present invention slightly penetrates the side surface of the electrostatic chuck 1 protected by a cover ring or the like not described or the exposed surface of the back surface of the plasma, It is preferable that the protective film 7 is present in order to improve the corrosion resistance against the above.

ウェハ載置面5aに比べて浸食が少ない導電性基体2の側面及び裏面にアルミナ溶射膜やアルミニウムの陽極酸化膜を形成し保護膜7とすることが好ましい。上記のアルミナ溶射膜の厚みは50〜500μm形成することが好ましい。また、上記のアルミニウムの陽極酸化膜の厚みは20〜200μm形成することが好ましい。   It is preferable to form an alumina sprayed film or an anodic oxide film of aluminum on the side surface and the back surface of the conductive substrate 2 that is less eroded than the wafer mounting surface 5a to form the protective film 7. The alumina sprayed film is preferably formed to a thickness of 50 to 500 μm. The thickness of the aluminum anodized film is preferably 20 to 200 μm.

保護膜7としてアルミナの溶射膜を形成する場合は導電性基体2の表面の材質は問わないが、保護膜7としてアルミニウムの陽極酸化膜を形成する場合は導電性基体2の表面がアルミニウム合金である必要がある。前述の多孔質セラミック体にアルミニウム合金を含浸させた導電性基体2に陽極酸化膜を施しても表面のアルミニウム部分のみに陽極酸化膜が成長するだけで部分的にセラミック部分が露出した構造になり、耐プラズマ性が低下し、プラズマ雰囲気と導電性基体2との間の絶縁性が悪くなるため、アルミニウム合金を含浸させる際に、アルミニウム合金を導電性基体2の表面に形成した導電性基体2を作製することが好ましい。そして、アルミニウムの陽極酸化膜を形成することにより、耐プラズマ性を高め、更に表面のアルミニウムを酸化することで表面の絶縁性を備えることができる。   In the case of forming an alumina sprayed film as the protective film 7, the material of the surface of the conductive substrate 2 is not limited. However, in the case of forming an aluminum anodic oxide film as the protective film 7, the surface of the conductive substrate 2 is made of an aluminum alloy. There must be. Even if the conductive substrate 2 obtained by impregnating the above-described porous ceramic body with an aluminum alloy is provided with an anodic oxide film, the anodic oxide film grows only on the surface of the aluminum part and the ceramic part is partially exposed. Since the plasma resistance is lowered and the insulation between the plasma atmosphere and the conductive substrate 2 is deteriorated, the conductive substrate 2 in which the aluminum alloy is formed on the surface of the conductive substrate 2 when impregnated with the aluminum alloy. Is preferably produced. And, by forming an anodic oxide film of aluminum, plasma resistance can be enhanced, and surface insulation can be provided by oxidizing aluminum on the surface.

尚、保護膜7は導電性基体2の表面を覆うものを説明したが、絶縁層3の露出部を同時に覆ってもよいことは言うまでもない。   Although the protective film 7 covers the surface of the conductive substrate 2, it goes without saying that the exposed portion of the insulating layer 3 may be covered simultaneously.

また、絶縁層3は前記のガラスや非晶質膜に代わりポリイミドからなることも好ましい。ポリイミドは樹脂であることから伸縮が容易で導電性基体2と熱膨張係数を合わせる必要がないことから、導電性基体2に含む金属を低膨張係数の金属に限定する必要がなく、自由に選択できることができる。また、ポリイミドは耐絶縁電圧が20kV/mm以上と非常に大きく、シート状に成膜が容易で且つ量産され市販されており、更に厚みを均一にすることができるため載置面からの熱を導電性基体2に一様に伝える事ができることからウェハWの均熱化の点からも優位であり、上記の特性及びコスト面から大きなメリットがある。   The insulating layer 3 is preferably made of polyimide instead of the glass or amorphous film. Since polyimide is a resin, it can be easily expanded and contracted, and there is no need to match the thermal expansion coefficient with that of the conductive substrate 2, so it is not necessary to limit the metal contained in the conductive substrate 2 to a metal with a low expansion coefficient, and it can be freely selected I can do it. Polyimide has a very high withstand voltage of 20 kV / mm or more, can be easily formed into a sheet, is mass-produced, and is commercially available. Further, since the thickness can be made uniform, heat from the mounting surface can be obtained. Since it can transmit uniformly to the electroconductive base | substrate 2, it is advantageous also from the point of the soaking | uniform-heating of the wafer W, and there exists a big merit from the said characteristic and cost side.

絶縁層3がポリイミドからなりその絶縁層3の厚みは5〜150μmが好ましい。5μm未満では絶縁破壊する虞があり、150μmを越えるとシートとして成膜が困難となりポリイミドフィルムの量産性に劣るからである。耐絶縁電圧の向上とその熱伝導率を考慮すると更に好ましいポリイミドからなる絶縁層3の厚みは10〜75μmである。   The insulating layer 3 is made of polyimide, and the thickness of the insulating layer 3 is preferably 5 to 150 μm. If the thickness is less than 5 μm, dielectric breakdown may occur, and if it exceeds 150 μm, film formation becomes difficult as a sheet, resulting in poor mass production of the polyimide film. Considering the improvement of the withstand voltage and the thermal conductivity, the thickness of the insulating layer 3 made of polyimide is more preferably 10 to 75 μm.

また、絶縁膜5の表面に点在する凸部10を備えることでウェハWが凸部10の小さな頂面と接触してパーティクルの発生を減少させることができて好ましい。また、絶縁膜5の上に凸部10を点在させることによりウェハWと絶縁膜5の間に隙間が生じるが、その隙間を5μm以下に小さく調整することで大きな吸着力を保つことができるとともに、ウェハWと静電チャック1の接触面積を小さくすることができることからパーティクルの発生を抑えることができる。   In addition, it is preferable to provide the protrusions 10 scattered on the surface of the insulating film 5 because the wafer W can come into contact with the small top surface of the protrusions 10 to reduce the generation of particles. In addition, a gap is formed between the wafer W and the insulating film 5 by interspersing the convex portions 10 on the insulating film 5, but a large adsorbing force can be maintained by adjusting the gap to be 5 μm or less. In addition, since the contact area between the wafer W and the electrostatic chuck 1 can be reduced, generation of particles can be suppressed.

更に、凸部10の体積固有抵抗を小さくすることにより凸部10に加わる電圧を小さくすることができることから、凸部10の電気的損傷を小さくすることができ、また、凸部10の頂面で吸着力が小さくなり、頂面とウェハWとの摩擦によるパーティクルの発生を抑制することができる。   Furthermore, since the voltage applied to the convex portion 10 can be reduced by reducing the volume specific resistance of the convex portion 10, electrical damage to the convex portion 10 can be reduced, and the top surface of the convex portion 10 can be reduced. Thus, the adsorption force is reduced, and the generation of particles due to the friction between the top surface and the wafer W can be suppressed.

凸部10を形成する面積は絶縁膜5の上面の面積に対して小さいほど接触面積が小さくなるため好ましい。また凸部が小さく、点在させた方が好ましく、凸部10の頂面の面積は絶縁膜5の上面の面積の20%以下、更に好ましくは10%以下であり、点在する1つ1つの凸部10の頂面はφ3以下が良く、好ましくはφ2以下、更に好ましくはφ1以下である。   The smaller the area for forming the convex portion 10 with respect to the area of the upper surface of the insulating film 5, the smaller the contact area. Further, it is preferable that the convex portions are small and interspersed, and the area of the top surface of the convex portion 10 is 20% or less, more preferably 10% or less of the area of the upper surface of the insulating film 5, and the scattered one by one. The top surfaces of the two protrusions 10 are preferably φ3 or less, preferably φ2 or less, and more preferably φ1 or less.

凸部10の高さは大きすぎると吸着力が小さくなり、その高さが小さすぎると絶縁膜5表面に接触する虞がありパーティクルの発生が増加する虞がある。凸部10の高さは0.5〜5ミクロンが好ましく、更に好ましくは1〜3ミクロンである。   If the height of the convex portion 10 is too large, the adsorptive power becomes small, and if the height is too small, there is a possibility that the surface of the insulating film 5 may come into contact with the surface and the generation of particles may increase. The height of the convex portion 10 is preferably 0.5 to 5 microns, more preferably 1 to 3 microns.

凸部10の材質はTiN、TiC、SiCやDLCなどで大きな効果が見られるが、真空中で使われる静電チャックでは、摩耗の小さなDLCがより好ましい。   Although the material of the convex part 10 has a big effect by TiN, TiC, SiC, DLC, etc., DLC with small abrasion is more preferable in the electrostatic chuck used in a vacuum.

次に本発明の静電チャック1の製法について述べる。   Next, a method for manufacturing the electrostatic chuck 1 of the present invention will be described.

まず、アルミナまたは窒化アルミニウムからなるセラミックスグリーンシートを複数枚重ね積層体を作製し、一方の主面にモリブデンペースト又はタングステンペーストからなる吸着用電極4を印刷する。一方、別途セラミックスグリーンシートを複数枚重ね積層体を作製する。そして、加圧して圧着した後、一体に焼結させる。焼結体の外径を研削加工して、その後厚みを2mm以下に研削加工することにより吸着用電極4を埋設させた板状セラミックス体を得る。   First, a plurality of ceramic green sheets made of alumina or aluminum nitride are stacked to form a laminated body, and an adsorption electrode 4 made of molybdenum paste or tungsten paste is printed on one main surface. On the other hand, a plurality of ceramic green sheets are separately stacked to produce a laminate. And after pressurizing and press-bonding, it is sintered together. By grinding the outer diameter of the sintered body and then grinding the thickness to 2 mm or less, a plate-like ceramic body in which the adsorption electrode 4 is embedded is obtained.

上記板状セラミックス体の所定の位置に吸着用電極4を貫通する穴を開け、給電端子6a、6bをロウ付け接合する。そして、アルミニウムからなる導電性基体2とシリコン接着剤やエポキシ接着剤を使い接合し本発明の静電チャック1を得ることができる。   A hole penetrating the adsorption electrode 4 is formed at a predetermined position of the plate-shaped ceramic body, and the power supply terminals 6a and 6b are brazed and joined. The electrostatic chuck 1 of the present invention can be obtained by bonding the conductive base 2 made of aluminum with a silicon adhesive or an epoxy adhesive.

次に、導電性基体2として炭化珪素の多孔質体にアルミニウム合金を含浸させると同時に表面層をアルミニウム合金とした導電性基体2に陽極酸化膜を形成して耐プラズマの保護膜7とし、酸化アルミニウムからなる非晶質セラミック絶縁膜5をスパッタ法により形成した静電チャック1について説明する。   Next, a porous body of silicon carbide is impregnated with an aluminum alloy as the conductive substrate 2, and at the same time, an anodized film is formed on the conductive substrate 2 having a surface layer made of an aluminum alloy to form a plasma-resistant protective film 7 and oxidized. An electrostatic chuck 1 in which an amorphous ceramic insulating film 5 made of aluminum is formed by sputtering will be described.

平均粒径60μm程度の炭化珪素粉末に対し、酸化珪素(SiO)粉末とバインダー及び溶媒を添加混練したあとスプレードライヤーにて顆粒を製作した。そして、この顆粒をラバープレス成形法にて円盤状の成形体を形成したあと、真空雰囲気下にて通常の焼成温度より低い1000℃程度の温度で焼成することにより、気孔率20%を有する、炭化珪素製の多孔質セラミック体を作製し、所望する形状に加工する。 To silicon carbide powder having an average particle size of about 60 μm, silicon oxide (SiO 2 ) powder, a binder and a solvent were added and kneaded, and then granules were produced with a spray dryer. And after forming this disk-shaped molded object by the rubber press molding method, it has a porosity of 20% by firing at a temperature of about 1000 ° C. lower than the normal firing temperature in a vacuum atmosphere. A porous ceramic body made of silicon carbide is produced and processed into a desired shape.

そして、この多孔質セラミック体をプレス機のダイに装填し、このダイを680℃まで加熱したあと、溶融させた純度99%以上のアルミニウム合金をダイに充填し、パンチを降下させて98MPaにて加圧した。そして、この加圧状態のまま冷却することにより、気孔部に金属としてアルミニウム合金が充填された多孔質セラミック体を形成し、ダイのサイズは多孔質セラミック体のサイズより大きめのものを使用すると導電性基体2の表面の全面にアルミニウム合金層が形成され、所定の形状にすることにより導電性基体2を得ることができる。   Then, this porous ceramic body is loaded into a die of a press machine, and after heating the die to 680 ° C., a molten aluminum alloy with a purity of 99% or more is filled into the die, and the punch is lowered at 98 MPa. Pressurized. Then, by cooling in this pressurized state, a porous ceramic body filled with an aluminum alloy as a metal in the pores is formed, and when a die having a size larger than the size of the porous ceramic body is used, the conductive body becomes conductive. An aluminum alloy layer is formed on the entire surface of the conductive substrate 2, and the conductive substrate 2 can be obtained by making it into a predetermined shape.

そして上記導電性基体2の表面のアルミニウム合金層の表面を陽極酸化被膜処理を行いアルミニウムの陽極酸化膜を得ることができる。陽極酸化被膜処理は蓚酸または硫酸等の酸に導電性基体2を陽極として、炭素等を陰極として浸し電気分解すると、アルミニウム合金の表面にγ−Alが被膜して生成する。この被膜は多孔質状であるため、該被膜を沸騰水に浸す、あるいは加熱蒸気と反応させることにより緻密なベーマイト(AlOOH)被膜からなる保護膜7が得られる。 Then, the surface of the aluminum alloy layer on the surface of the conductive substrate 2 is subjected to an anodic oxide film treatment to obtain an aluminum anodic oxide film. In the anodic oxide coating treatment, γ-Al 2 O 3 is formed on the surface of an aluminum alloy by electrolyzing the conductive substrate 2 in an acid such as oxalic acid or sulfuric acid as an anode and carbon or the like as a cathode. Since this film is porous, the protective film 7 made of a dense boehmite (AlOOH) film can be obtained by immersing the film in boiling water or reacting with heated steam.

上記の保護膜7を形成した導電性基体2に絶縁層3を形成するには、絶縁膜5を形成する面の上記保護膜7を切削加工で除去した後、導電性基体2表面の鏡面加工を行い、成膜面として仕上げる。   In order to form the insulating layer 3 on the conductive substrate 2 on which the protective film 7 is formed, the protective film 7 on the surface on which the insulating film 5 is formed is removed by cutting, and then the surface of the conductive substrate 2 is mirror-finished. To finish as a film formation surface.

また、上記導電性基体2に保護膜7としてアルミナ溶射膜を形成する場合は、導電性基体2の表面をブラスト処理等で粗面化したのちにアルミナの溶射を施す方が密着性を大きくできる。更にアルミナの溶射をする前の下地処理としてNi系の金属膜を溶射すると保護膜7との密着性が大きく好ましい。アルミナの溶射膜は、40〜50μm程度のアルミナ粉末を大気プラズマや減圧プラズマで溶融・照射することで形成する。気密性を高めるために減圧プラズマで行うことが好ましい。   In the case where an alumina sprayed film is formed as the protective film 7 on the conductive substrate 2, it is possible to increase adhesion by roughening the surface of the conductive substrate 2 by blasting or the like and then spraying alumina. . Further, when a Ni-based metal film is sprayed as a base treatment before the alumina spraying, the adhesion with the protective film 7 is large and preferable. The alumina sprayed film is formed by melting and irradiating alumina powder of about 40 to 50 μm with atmospheric plasma or reduced pressure plasma. In order to improve hermeticity, it is preferable to use reduced pressure plasma.

溶射膜のみでは開気孔が存在するため、有機珪素化合物や無機珪素化合物を含浸させて加熱することで封孔処理を行い保護膜7とする。   Since there are open pores only in the sprayed film, the protective film 7 is formed by performing a sealing process by impregnating an organic silicon compound or an inorganic silicon compound and heating.

上記導電性基体2の上記仕上げ面に形成する絶縁層3は非晶質ガラス層をコートしても良いし、絶縁膜5と同じ非晶質セラミック膜をプラズマ中でスパッタリングして形成し絶縁層3としても良い。   The insulating layer 3 formed on the finished surface of the conductive substrate 2 may be coated with an amorphous glass layer or formed by sputtering the same amorphous ceramic film as the insulating film 5 in plasma. 3 is also acceptable.

また、絶縁層3としてポリイミドを用いる際は、裏面にシリコーン系やアクリル系、エポキシ系の接着剤を塗布したポリイミドフィルムを導電性基体2の上に配置して真空プレス機にて脱気・加圧して導電性基体2にポリイミドからなる絶縁層3を形成することができる。   When polyimide is used as the insulating layer 3, a polyimide film having a silicone, acrylic or epoxy adhesive applied to the back surface is placed on the conductive substrate 2 and degassed and heated by a vacuum press. The insulating layer 3 made of polyimide can be formed on the conductive substrate 2 by pressing.

また、ポリイミドフィルムを導電性基体2の上に配置して、350℃以上に加熱して真空プレス機に加圧することにより、導電性基体2に融着させることも可能である。   Alternatively, the polyimide film may be disposed on the conductive substrate 2, heated to 350 ° C. or higher and pressurized in a vacuum press machine to be fused to the conductive substrate 2.

また、ポリイミドの液をスピンコータやロールコータ等で導電性基体2上に膜を形成して、窒素中で加熱することで薄いポリイミドの膜を導電性基体2上に形成することができる。   A thin polyimide film can be formed on the conductive substrate 2 by forming a film of the polyimide solution on the conductive substrate 2 using a spin coater, a roll coater, or the like, and heating in nitrogen.

そして、絶縁層3の上にチタンまたは銅や金やニッケルやアルミニウム膜を0.1〜30μm形成し吸着用電極4とすることができる。そして、吸着用電極4を覆うように絶縁膜5を成膜する。   Then, the adsorption electrode 4 can be formed by forming 0.1 to 30 μm of titanium, copper, gold, nickel, or aluminum film on the insulating layer 3. Then, an insulating film 5 is formed so as to cover the adsorption electrode 4.

また、ポリイミドフィルムに銅箔が貼ったものが市販されており、銅箔をエッチングして電極パターンを形成し、その電極パターンと反対面を導電性基体2に貼り付けて、吸着用電極4も同時に形成することもできる。   Also, a polyimide film with a copper foil affixed thereto is commercially available, and the copper foil is etched to form an electrode pattern, and the surface opposite to the electrode pattern is affixed to the conductive substrate 2, and the adsorption electrode 4 is also used. It can also be formed simultaneously.

非晶質セラミックからなる絶縁膜5はスパッタによって作製する。平行平板型のスパッタ装置に絶縁膜5として成膜したい組成のターゲットをセットする。ここでは酸化アルミニウム焼結体をターゲットとし、該ターゲットと対向するように導電性基体2を銅製のホルダーの中にセットする。導電性基体2の裏面とホルダー表面はInとGaからなる液状合金を塗り貼り合わせることにより導電性基体2とホルダーとの間の熱伝達が大きくなり、導電性基体2の冷却効率を上げることができることから良質な非晶質セラミックからなる絶縁膜5を形成することができる。   The insulating film 5 made of amorphous ceramic is produced by sputtering. A target having a composition desired to be formed as the insulating film 5 is set in a parallel plate type sputtering apparatus. Here, the aluminum oxide sintered body is used as a target, and the conductive substrate 2 is set in a copper holder so as to face the target. By applying and bonding a liquid alloy composed of In and Ga on the back surface of the conductive substrate 2 and the holder surface, heat transfer between the conductive substrate 2 and the holder is increased, and the cooling efficiency of the conductive substrate 2 can be increased. As a result, the insulating film 5 made of a high-quality amorphous ceramic can be formed.

このように導電性基体2をスパッタのチャンバー内にセットし、真空度を0.001Paとした後、アルゴンガスを25〜75sccm流す。   Thus, after setting the electroconductive base | substrate 2 in the chamber of a sputter | spatter and making a vacuum degree 0.001Pa, argon gas is flowed 25-75 sccm.

そして、ターゲットとホルダーの間にRF電圧をかけることによりプラズマが発生する。そして、ターゲットのプレスパッタ及びセラミック基体2側のエッチングを数分間行いターゲットと導電性基体2のクリーニングを行う。   Then, plasma is generated by applying an RF voltage between the target and the holder. Then, pre-sputtering of the target and etching on the ceramic substrate 2 side are performed for several minutes to clean the target and the conductive substrate 2.

酸化アルミニウム製の非晶質セラミックからなる絶縁膜5の成膜は上記のRF電力を3〜9W/cmにしてスパッタを行う。また、導電性基体2側には−100〜−200V程度のバイアスをかけてターゲットから電離した分子及び電離したアルゴンイオンを引きつける。しかし、導電性基体2が絶縁されていると電離したアルゴンイオンにより導電性基体2の表面が帯電してしまい、次のアルゴンイオンが入りにくい状態になる。膜中に入ったアルゴンイオンは電荷を放出してアルゴンの状態に戻り、膜中に残留する。アルゴンを膜中に多く取り込むには成膜時に導電性基体2の給電口からInGa層、ホルダーの経路で電荷を逃がし、常にアルゴンを非晶質セラミックからなる絶縁膜5に取り込みやすい状態にしておくことが必要である。 The insulating film 5 made of an amorphous ceramic made of aluminum oxide is sputtered with the RF power set to 3 to 9 W / cm 2 . In addition, a bias of about −100 to −200 V is applied to the conductive substrate 2 side to attract molecules ionized from the target and ionized argon ions. However, if the conductive substrate 2 is insulated, the surface of the conductive substrate 2 is charged by the ionized argon ions, and the next argon ions are difficult to enter. Argon ions entering the film release electric charge, return to the argon state, and remain in the film. In order to take in a large amount of argon into the film, the charge is released from the power supply port of the conductive substrate 2 through the InGa layer and the path of the holder at the time of film formation, so that argon is always easily taken into the insulating film 5 made of amorphous ceramic. It is necessary.

また、導電性基体2の冷却が悪いと部分的に非晶質セラミック絶縁膜5が非晶質から結晶化してしまい、部分的に耐電圧が悪くなったり、耐プラズマ性が悪くなってしまう。導電性基体2の冷却は装置の冷却板に冷却水を流すことで基板ホルダー内を充分冷却して導電性基体2の温度を数十度に保つことが良い。   Further, if the conductive substrate 2 is poorly cooled, the amorphous ceramic insulating film 5 is partially crystallized from amorphous, and the withstand voltage is partially deteriorated or the plasma resistance is deteriorated. The conductive substrate 2 is preferably cooled by flowing cooling water through the cooling plate of the apparatus to sufficiently cool the inside of the substrate holder and maintain the temperature of the conductive substrate 2 at several tens of degrees.

絶縁膜5の成膜レートは3μm/時間にて17時間成膜し、約50μmの膜厚の非晶質セラミックからなる絶縁膜5を作製した。   The insulating film 5 was formed at a rate of 3 μm / hour for 17 hours, and the insulating film 5 made of amorphous ceramic having a thickness of about 50 μm was produced.

その後、非晶質セラミック絶縁膜5の表面をポリッシング等で整えることにより載置面5aを形成し静電チャック1を完成する。載置面5aにはブラスト加工やエッチング加工により凹部を設けることができる。凹部とウェハWの間にはガスが充填されウェハWと載置面5aの間の熱伝導率を高めることができるとともに、非晶質セラミックスからなる載置面5aは表面粗さを小さくすることができることから、ウェハW表面と面接触により吸着することがあり、載置面5aの面積に対し50%以上の凹部を設けると面吸着によるウェハWの離脱特性の悪化を防止することができる。   Thereafter, the mounting surface 5a is formed by preparing the surface of the amorphous ceramic insulating film 5 by polishing or the like, and the electrostatic chuck 1 is completed. The mounting surface 5a can be provided with a recess by blasting or etching. Gas is filled between the recess and the wafer W to increase the thermal conductivity between the wafer W and the mounting surface 5a, and the mounting surface 5a made of amorphous ceramic has a reduced surface roughness. Therefore, it may be adsorbed by surface contact with the surface of the wafer W, and if a recess of 50% or more with respect to the area of the mounting surface 5a is provided, deterioration of the separation characteristics of the wafer W due to surface adsorption can be prevented.

直径298mmで、厚み28mmのSiC多孔質体にアルミニウム合金を含浸させ、側面と上下面に厚み1mmのアルミニウム合金層を設けたSiCが80質量%とアルミ合金が20質量%とからなる直径300mm、厚み30mmの導電性基体を得た。そして、その上面に非晶質セラミックからなる絶縁層を5〜50μmの厚みで成膜した。その後、その上に金メッキにより厚み1μmの吸着電極を形成し、導電性基体を貫通する孔を穿孔し絶縁チューブを介して給電端子を取り付けた後、更にその上に非晶質セラミックとしてアルミナ膜を5〜50μm成膜した。その後、成膜面を研磨加工し載置面として静電チャック試料No.1〜5を作製した。   A SiC porous body having a diameter of 298 mm and a thickness of 28 mm is impregnated with an aluminum alloy, and an aluminum alloy layer having a thickness of 1 mm is provided on the side surface and the upper and lower surfaces. A conductive substrate having a thickness of 30 mm was obtained. And the insulating layer which consists of an amorphous ceramic was formed into a film with the thickness of 5-50 micrometers on the upper surface. Thereafter, an adsorption electrode having a thickness of 1 μm is formed thereon by gold plating, a hole penetrating the conductive substrate is drilled, a power supply terminal is attached through an insulating tube, and an alumina film as an amorphous ceramic is further formed thereon. A film of 5 to 50 μm was formed. Thereafter, the film-forming surface was polished and used as a mounting surface. 1-5 were produced.

また、試料No.1で使ったものと同じ導電性基体の上面にガラスコートした後、金メッキで吸着用電極を形成したのち、全面にアルミナ溶射膜を設けた試料No.6と、陽極酸化膜を生成し、その上に10μmの非晶質酸化アルミニウム膜を形成した試料No.7を作製した。   Sample No. After coating the upper surface of the same conductive substrate as used in 1 and forming an adsorption electrode by gold plating, sample No. 6 having an alumina sprayed film on the entire surface and an anodic oxide film were formed. Sample No. 1 having a 10 μm amorphous aluminum oxide film formed thereon was formed. 7 was produced.

また、アルミナ粉末に重量換算で0.5質量%の酸化カルシウムと酸化マグネシウムを添加し、ボールミルにより48時間混合した。得られたアルミナのスラリーを325メッシュを通し、ボールやボールミル壁の屑を取り除いた後、乾燥機にて120℃で24時間乾燥した。得られたアルミナ粉末にアクリル系のバインダーと溶媒を混合してアルミナのスラリーを作成した。このアルミナスラリーからドクターブレード法にてグリーンテープを作製した。   Further, 0.5% by mass of calcium oxide and magnesium oxide in terms of weight was added to the alumina powder and mixed for 48 hours by a ball mill. The resulting alumina slurry was passed through a 325 mesh to remove balls and ball mill wall debris, and then dried at 120 ° C. for 24 hours in a dryer. The resulting alumina powder was mixed with an acrylic binder and a solvent to prepare an alumina slurry. A green tape was produced from this alumina slurry by the doctor blade method.

そして、上記グリーンテープを複数枚重ね積層体を作製し、一方の主面に炭化タングステンペーストからなる吸着用電極を印刷した。一方、別途セラミックスグリーンシートを複数枚重ね積層体を作製し、加圧して圧着し積層体を作製した。   Then, a plurality of the green tapes were stacked to produce a laminated body, and an adsorption electrode made of a tungsten carbide paste was printed on one main surface. On the other hand, a plurality of ceramic green sheets were separately laminated to produce a laminate, which was pressed and pressed to produce a laminate.

更に、窒素雰囲気で、Wヒータ及びW断熱材からなる焼成炉の中にて1600℃で2時間の焼成を行い、外径φ305mmで厚み2mmのアルミナ質の板状セラミックス体を得た。そして、外形φ300mmで厚みを0.8mmに研削加工し、吸着用電極を貫通する穴を加工し給電端子をロウ付けした。   Further, firing was performed at 1600 ° C. for 2 hours in a firing furnace made of a W heater and a W heat insulating material in a nitrogen atmosphere to obtain an alumina plate-shaped ceramic body having an outer diameter of 305 mm and a thickness of 2 mm. Then, the outer diameter was 300 mm and the thickness was ground to 0.8 mm, the hole penetrating the adsorption electrode was processed, and the power supply terminal was brazed.

一方、直径300mmで厚みが30mmのアルミニウム合金からなる導電性基体に上記板状セラミックス体をシリコン接着剤で接合し静電チャック試料No.8を得た。   On the other hand, the plate-shaped ceramic body was joined to a conductive substrate made of an aluminum alloy having a diameter of 300 mm and a thickness of 30 mm with a silicon adhesive, and electrostatic chuck sample No. 1 was obtained. 8 was obtained.

また、純度99%、平均粒径1.2μmのAlN粉末に、焼結助剤としてCeOを15重量%添加した。更に有機バインダーと溶媒を加えて泥奬を作製し、ドクターブレード法にて厚さ約0.5mmの窒化アルミニウムグリーンシートを複数枚製作した。このうち一枚の窒化アルミニウムグリーンシートには、導体ペーストを吸着用電極の形状にスクリーン印刷した。 Further, 15% by weight of CeO 2 was added as a sintering aid to AlN powder having a purity of 99% and an average particle size of 1.2 μm. Further, an organic binder and a solvent were added to prepare mud, and a plurality of aluminum nitride green sheets having a thickness of about 0.5 mm were manufactured by a doctor blade method. Of these, one aluminum nitride green sheet was screen-printed with a conductive paste in the shape of an adsorption electrode.

上記静電吸着用電極となる導体ペーストには、WC粉末とAlN粉末とを混合して粘度調整した導体ペーストを用いた。   As the conductive paste that becomes the electrode for electrostatic adsorption, a conductive paste in which the viscosity was adjusted by mixing WC powder and AlN powder was used.

そして、窒化アルミニウムグリーンシートを所定の順序で積み重ね、50℃で、4.9kPaの圧力で熱圧着することにより窒化アルミニウムグリーンシート積層体を形成し、切削加工を施して円盤状に形成した。   Then, the aluminum nitride green sheets were stacked in a predetermined order and thermocompression bonded at 50 ° C. with a pressure of 4.9 kPa to form an aluminum nitride green sheet laminate, which was cut into a disk shape.

次いで、窒化アルミニウムグリーンシート積層体を真空脱脂した後、窒素雰囲気下で1850℃の温度で焼成することにより、静電吸着用電極が埋設された窒化アルミニウム質焼結体からなる板状セラミックス体を製作した。   Next, the aluminum nitride green sheet laminate is vacuum degreased and then fired at a temperature of 1850 ° C. in a nitrogen atmosphere to obtain a plate-like ceramic body made of an aluminum nitride-based sintered body with an electrostatic adsorption electrode embedded therein. Produced.

しかる後、得られた板状セラミックス体に研削加工を施して、外形300mm、板厚が1000μmから4000μmで、載置面から吸着用電極までの距離と板状セラミックス体の裏面から吸着用電極の距離が等しくなるように研削加工した後、上記載置面3にラップ加工を施し、その表面粗さを算術平均粗さ(Ra)で0.2μmに仕上げて載置面を形成するとともに、載置面と反対側の表面に、静電吸着用電極と連通する穴を穿孔し、各穴に給電端子を挿入してロウ付けすることにより吸着電極を埋設した板状セラミックス体を得た。   Thereafter, the obtained plate-shaped ceramic body is ground, and the outer shape is 300 mm, the plate thickness is 1000 μm to 4000 μm, the distance from the mounting surface to the adsorption electrode and the back surface of the plate-shaped ceramic body from the adsorption electrode. After grinding so that the distance is equal, lapping is performed on the mounting surface 3 described above, and the surface roughness is finished to 0.2 μm in arithmetic mean roughness (Ra) to form a mounting surface. Holes communicating with the electrostatic chucking electrodes were drilled on the surface opposite to the placement surface, and a feeding terminal was inserted into each hole and brazed to obtain a plate-like ceramic body in which the chucking electrodes were embedded.

そして、上記板状セラミックス体を試料No.1と同じアルミニウム合金とSiCからなる導電性基体にシリコン接着剤で接合し静電チャック試料No.9、10、11とした。   And the said plate-shaped ceramic body is sample No.2. No. 1 is bonded to a conductive substrate made of the same aluminum alloy and SiC with a silicon adhesive as electrostatic chuck sample No. 9, 10, and 11.

そして、載置面の温度変化や絶縁膜の絶縁破壊、クラック、剥離や耐プラズマ性やを評価した。   And the temperature change of a mounting surface, the dielectric breakdown of an insulating film, a crack, peeling, and plasma resistance were evaluated.

何れの試料にも中央部の載置面の中央部直下に熱電対を挿入する穴を設け、熱電対により載置面の温度変化を測定した。また、導電性基体には水冷通路を設け、温調した冷却水を定量供給した。   Each sample was provided with a hole for inserting a thermocouple directly under the center of the mounting surface at the center, and the temperature change of the mounting surface was measured with the thermocouple. In addition, a water cooling passage was provided in the conductive substrate, and a constant amount of temperature-controlled cooling water was supplied.

絶縁膜の絶縁破壊の評価は、吸着用電極に3kV電圧を印加して絶縁破壊の有無を評価した。   The dielectric breakdown of the insulating film was evaluated by applying a 3 kV voltage to the adsorption electrode to evaluate the presence or absence of dielectric breakdown.

また、耐プラズマ性の評価は、静電チャックの側面にカバーリングを設けて側面をカバーして、ウェハ載置面にウェハWを載せない状態で、ハロゲンガスとしてClを60sccm流しながら4Paの真空度として、載置面の上方に配置した対抗電極と導電性基体2の間に2kWの高周波電力を供給しながらプラズマを対抗電極と載置面の間に発生させ100時間載置面にプラズマを曝した。その後、絶縁膜の状態を観察し、絶縁膜が腐食し導電性基体が露出していないものや、載置面の表面に凹凸が発生していないもの、板状セラミックス体と導電性基体との接着状態を観察した。また、プラズマ発生前の温度と発生後1時間後の載置面の温度の差を載置面の温度変化として評価した。 The evaluation of plasma resistance, covering the sides with a cover ring on the side surface of the electrostatic chuck, in a state where not place the wafer W on the wafer mounting surface, 4 Pa while flowing 60sccm the Cl 2 as halogen gas As a degree of vacuum, plasma is generated between the counter electrode and the mounting surface while supplying a high-frequency power of 2 kW between the counter electrode disposed above the mounting surface and the conductive substrate 2, and plasma is applied to the mounting surface for 100 hours. Exposed. Thereafter, the state of the insulating film is observed, and the insulating film is corroded and the conductive substrate is not exposed, the surface of the mounting surface is not uneven, the plate-like ceramic body and the conductive substrate The adhesion state was observed. Further, the difference between the temperature before the plasma generation and the temperature of the mounting surface after 1 hour after the generation was evaluated as the temperature change of the mounting surface.

静電吸着力の測定は常温、真空中で行い、1インチ角のSiウェハを載置面に配置して、ウェハWと導電性基体2に500Vを印加し1分間経過後にSiウェハを引き上げ、その引き上げに要した力をロードセルで測定して、その値を載置面の面積で除して単位面積当たりの静電吸着力とした。また、残留吸着力の測定は真空中で行い、1インチ角のSiウェハを載置面に配置して、500Vを2分間印加した後、電圧を切り3秒後にSiウェハを引き上げ、その引き上げに要した力をロードセルで測定して、その値を載置面の1インチ角の面積で除して単位面積当たりの残留吸着力とした。   The electrostatic attraction force is measured at room temperature and in a vacuum, a 1-inch square Si wafer is placed on the mounting surface, 500 V is applied to the wafer W and the conductive substrate 2, and the Si wafer is pulled up after 1 minute. The force required for the pulling was measured with a load cell, and the value was divided by the area of the mounting surface to obtain an electrostatic adsorption force per unit area. The residual adsorption force is measured in a vacuum, a 1-inch square Si wafer is placed on the mounting surface, 500 V is applied for 2 minutes, the voltage is turned off, and the Si wafer is pulled up after 3 seconds. The required force was measured with a load cell, and the value was divided by the area of 1 inch square of the mounting surface to obtain the residual adsorption force per unit area.

その結果を表1に示す。

Figure 2005057234
The results are shown in Table 1.
Figure 2005057234

本発明の絶縁層と絶縁膜の総厚みが20〜2000μmである試料No.2〜10は載置面の温度変化が5℃以下と小さく、絶縁膜の絶縁破壊、クラックや剥離は見られず優れた特性を示すことが分かった。   Sample No. 2 in which the total thickness of the insulating layer and insulating film of the present invention is 20 to 2000 μm. 2 to 10 show that the temperature change of the mounting surface is as small as 5 ° C. or less, and the dielectric breakdown, cracks and peeling of the insulating film are not seen and show excellent characteristics.

一方、非晶質セラミックからなる絶縁膜の厚みが小さい試料No.1はクラックや剥離は見られなかったが、プラズマにより腐食し導電性基体が露出し短時間で使用できなかった。また、試料No.11は絶縁膜と絶縁層の総厚みが4000μmと大きく、載置面がプラズマで加熱され、載置面の温度が50℃も上昇し、ウェハWを所定の温度で加工処理できないことが分かった。   On the other hand, Sample No. 1 in which the insulating film made of amorphous ceramic had a small thickness did not show cracks or peeling, but could not be used in a short time because it was corroded by plasma and the conductive substrate was exposed. In Sample No. 11, the total thickness of the insulating film and the insulating layer is as large as 4000 μm, the mounting surface is heated by plasma, the temperature of the mounting surface rises by 50 ° C., and the wafer W is processed at a predetermined temperature. I found it impossible.

また、試料No.2〜5は絶縁膜が非晶質セラミックからなることから載置面の温度変化がなく、絶縁膜の絶縁破壊、クラックもなく、対プラズマ性が良好でありより優れた特性を示すことがわかった。   Sample No. Nos. 2-5 show that since the insulating film is made of amorphous ceramic, there is no change in temperature of the mounting surface, there is no dielectric breakdown or cracking of the insulating film, plasma resistance is good, and excellent characteristics are shown. It was.

更に、試料No.2〜4は絶縁膜の厚みが10〜100μmで吸着力が2500N/m以上と大きく残留吸着力は10Pa以下と更に優れた特性を示すことが分かった。 Furthermore, sample no. Nos. 2 to 4 showed that the thickness of the insulating film was 10 to 100 μm, the adsorbing force was as large as 2500 N / m 2 or more, and the residual adsorbing force was 10 Pa or less, showing further excellent characteristics.

また、アルミニウムの陽極酸化膜の上に非晶質アルミナからなる絶縁膜を備えた試料No.11は、吸着力が3500N/mと大きく好ましいが、残留吸着力が300N/mとやや大きく、この残留吸着力がやや大きいのは陽極酸化膜と非晶質アルミニウム酸化膜の体積固有抵抗が異なることが原因と考えられる。 Further, sample No. 1 provided with an insulating film made of amorphous alumina on an anodic oxide film of aluminum. 11 is the suction force is preferably as large as 3500 N / m 2, slightly larger, the volume resistivity of the residual suction force is slightly greater for the anodic oxide film and the amorphous aluminum oxide film residual attracting force between 300N / m 2 Is considered to be due to the difference.

次に導電性基体2は実施例1で用いた直径300mmの複合材料を用いて、絶縁膜5として非晶質酸化アルミニウムを用い、様々な成膜条件を変え、非晶質セラミック絶縁膜5に含まれるアルゴン量を変えた膜を作製し、剥離やクラックの発生の有無を評価した。   Next, the conductive substrate 2 is made of the composite material having a diameter of 300 mm used in Example 1, amorphous aluminum oxide is used as the insulating film 5, and various film forming conditions are changed to form the amorphous ceramic insulating film 5. Films with different amounts of argon were prepared, and the presence or absence of peeling or cracking was evaluated.

尚、剥離やクラックは、静電チャックの上面に実施例1と同様にプラズマを10分間発生しその後10分間停止するプラズマサイクルを500回繰り返した前後で評価した。

Figure 2005057234
The peeling and cracking were evaluated before and after repeating the plasma cycle of generating plasma on the upper surface of the electrostatic chuck for 10 minutes and then stopping for 10 minutes in the same manner as in Example 1.
Figure 2005057234

アルゴン量が0.5原子%と小さい試料No.21は、絶縁膜にクラックが生じた。   Sample No. with small argon amount of 0.5 atomic% In No. 21, a crack occurred in the insulating film.

しかし、本発明の希ガス類元素としてアルゴンを1〜10原子%含む試料No.22〜25は絶縁膜にクラックが発生することが無く、絶縁破壊していないことから希ガス類元素は1〜10原子%が好ましいことが分った。   However, sample No. 1 containing 1 to 10 atomic% of argon as the rare gas element of the present invention. In Nos. 22 to 25, cracks were not generated in the insulating film, and since dielectric breakdown was not caused, it was found that the rare gas elements are preferably 1 to 10 atomic%.

次に導電性基体2は実施例1で用いた直径300mmで厚みが30mmを使い、絶縁膜5として非晶質の酸化アルミニウムを用い、成膜条件を変えて絶縁膜5のビッカース硬度を変えた膜を作製し、剥離やクラックの発生の有無を確認した。   Next, the conductive substrate 2 uses 300 mm in diameter and 30 mm in thickness used in Example 1, uses amorphous aluminum oxide as the insulating film 5, and changes the film formation conditions to change the Vickers hardness of the insulating film 5. A film was prepared, and the presence or absence of peeling or cracking was confirmed.

導電性基体2の上に様々な成膜条件で作った30μmの酸化アルミニウムの非晶質セラミックからなる絶縁膜5を備えたものを評価した。   What provided the insulating film 5 which consists of the amorphous ceramic of 30 micrometer aluminum oxide produced on various film-forming conditions on the electroconductive base | substrate 2 was evaluated.

ビッカース硬度は、JIS R1610の硬さ記号HV0.1に対応し荷重0.98Nを15秒間加えその圧痕の大きさから測定した。

Figure 2005057234
The Vickers hardness was measured from the size of the indentation corresponding to the hardness symbol HV0.1 of JIS R1610 with a load of 0.98 N applied for 15 seconds.
Figure 2005057234

ビッカース硬度が400HV0.1と小さい試料No.31はクラックが発生しなかったが、絶縁破壊が生じた。これは硬度が小さすぎるため膜に傷が入り、そのため絶縁破壊が発生したと考えられる。また、ビッカース硬度が1200HV0.1と大きな試料No.35は絶縁膜にクラックが発生した。これは膜が内部応力を緩和できずにクラックが発生したと考えられる。   Sample No. Vickers hardness as small as 400HV0.1 No cracks occurred in 31 but dielectric breakdown occurred. This is probably because the hardness was too small, so that the film was scratched and, therefore, dielectric breakdown occurred. Further, a sample No. having a large Vickers hardness of 1200 HV0.1. In 35, cracks occurred in the insulating film. This is probably because the film could not relax the internal stress and cracks occurred.

従って、試料No.32〜34のようにビッカース硬度は500〜1000HV0.1が好ましいことが分かった。   Therefore, it was found that the Vickers hardness is preferably 500 to 1000 HV0.1 as in sample Nos. 32 to 34.

非晶質セラミックからなる絶縁膜の材質を酸化アルミニウム、酸化イットリウム、酸化イットリウムアルミニウム、酸化セリウムと変えた試料No.41〜44と比較例として絶縁膜が多結晶アルミナからなる試料No.45をプラズマに曝して絶縁膜のエッチングレートを比較した。   Sample No. in which the material of the insulating film made of amorphous ceramic was changed to aluminum oxide, yttrium oxide, yttrium aluminum oxide, cerium oxide. As a comparative example, Sample Nos. 41 to 44, each of which has an insulating film made of polycrystalline alumina. 45 was exposed to plasma and the etching rate of the insulating film was compared.

その評価方法は、静電チャックの外周表面及び側面にカバーリングを設けて絶縁膜がついていない箇所をカバーして、絶縁膜表面にプラズマを照射した。プラズマの条件としてはハロゲンガスとしてClを60sccm流しながら4Paの真空度として、載置面の上方に配置した対抗電極と導電性基体の間に2kWの高周波電力を供給しながらプラズマを対抗電極と載置面の間に発生させ2時間プラズマに曝した。そして、絶縁膜のエッチングによる磨耗厚みからエッチングレートを算出した。各膜の磨耗厚みを焼結アルミナの磨耗厚みで除した値をエッチングレートとした。その結果を表4に示す。

Figure 2005057234
In the evaluation method, a cover ring was provided on the outer peripheral surface and side surface of the electrostatic chuck to cover a portion where the insulating film was not attached, and the insulating film surface was irradiated with plasma. The plasma condition is that the vacuum is 4 Pa while flowing Cl 2 as halogen gas at 60 sccm, and the plasma is applied to the counter electrode while supplying a high-frequency power of 2 kW between the counter electrode disposed above the mounting surface and the conductive substrate. It was generated between the mounting surfaces and exposed to plasma for 2 hours. And the etching rate was computed from the abrasion thickness by the etching of an insulating film. The value obtained by dividing the wear thickness of each film by the wear thickness of sintered alumina was taken as the etching rate. The results are shown in Table 4.
Figure 2005057234

多結晶アルミナからなる試料No.45のエッチングレートに対して非晶質セラミックからなる酸化アルミニウム膜No.51は0.7と小さく、酸化イットリウムや酸化イットリウムアルミニウム、酸化セリウムなどの非晶質セラミックからなる絶縁膜5のエッチングレートはそれぞれ0.2、0.3、0.3と更に小さく、非常に耐プラズマ性が優れることが分かった。   Sample No. made of polycrystalline alumina For the etching rate of 45, an aluminum oxide film No. 1 made of amorphous ceramic is used. 51 is as small as 0.7, and the etching rates of the insulating film 5 made of amorphous ceramic such as yttrium oxide, yttrium aluminum oxide, and cerium oxide are 0.2, 0.3, and 0.3, respectively, which are much smaller. It was found that the plasma resistance was excellent.

直径298mm、厚み28mmのSiCの含有率を50〜90質量%(残りはアルミニウム合金)に変えた物を用いて、側面と上下面に厚み1mmのアルミニウム合金層を設けた直径300mm、厚み30mmの導電性基体2の上面に非晶質セラミックからなる酸化アルミニウム膜を成膜し、―20℃〜200℃の温度サイクルテストを行ったが、非晶質酸化アルミニウム膜にクラックの発生は見られなかった。   Using an SiC alloy having a diameter of 298 mm and a thickness of 28 mm that was changed to 50 to 90% by mass (the rest being an aluminum alloy), an aluminum alloy layer having a thickness of 1 mm was provided on the side surface and the upper and lower surfaces. An aluminum oxide film made of an amorphous ceramic was formed on the upper surface of the conductive substrate 2, and a temperature cycle test of -20 ° C to 200 ° C was conducted, but no cracks were found in the amorphous aluminum oxide film. It was.

直径298mm、厚み28mmのSiCが80質量%とアルミ合金が20質量%となるSiC多孔質体にアルミニウム合金を含浸させ、側面と上下面に厚み1mmのアルミニウム合金層を設けた直径300mm、厚み30mmの導電性基体2の上面に非晶質酸化アルミニウム、それ以外の面に耐プラズマ保護膜としてアルミニウムの陽極酸化膜を生成したものとアルミナの溶射膜を成膜し作製した静電チャック1を―20℃〜200℃の温度サイクルでテストしたが、保護膜にクラックの発生は見られなかった。   A SiC porous body having a diameter of 298 mm, a thickness of 28 mm of SiC of 80% by mass and an aluminum alloy of 20% by mass is impregnated with an aluminum alloy, and an aluminum alloy layer having a thickness of 1 mm is provided on the side and upper and lower surfaces. An electrostatic chuck 1 produced by forming amorphous aluminum oxide on the upper surface of the conductive substrate 2 and forming an anodic oxide film of aluminum as a plasma-resistant protective film on the other surface and a sprayed film of alumina— Although the test was conducted at a temperature cycle of 20 ° C. to 200 ° C., no crack was found in the protective film.

アルミ合金からなる直径300mm、厚み30mmの導電性基体を作製した。そして、2ミクロンの銅箔が貼られたポリイミドの銅箔をエッチングで吸着用電極を形成して、銅箔の反対面をアルミ合金からなる導電性基体に貼り付け、ポリイミドからなる絶縁層を2〜150μmの厚みで形成した。その後、導電性基体を貫通する孔を穿孔し絶縁チューブを介して給電端子を取り付けた後、更にその上に非晶質セラミックとしてアルミナ膜を50μm成膜した。その後、成膜面を研磨加工し載置面として静電チャック試料No.51〜56を作製した。   A conductive substrate made of an aluminum alloy and having a diameter of 300 mm and a thickness of 30 mm was produced. Then, an adsorption electrode is formed by etching a polyimide copper foil with a 2 micron copper foil, and the opposite surface of the copper foil is attached to a conductive substrate made of an aluminum alloy. It was formed with a thickness of ˜150 μm. Thereafter, a hole penetrating the conductive substrate was drilled and a power supply terminal was attached via an insulating tube, and then an alumina film of 50 μm was formed thereon as an amorphous ceramic. Thereafter, the film-forming surface was polished and used as a mounting surface. 51-56 were produced.

上記の評価する何れの試料にも中央部の載置面の中央部直下に熱電対を挿入する穴を設け、熱電対により載置面の温度変化を測定した。また、導電性基体には水冷通路を設け、温調した冷却水を定量供給した。   Each sample to be evaluated was provided with a hole for inserting a thermocouple directly under the center of the mounting surface at the center, and the temperature change of the mounting surface was measured with the thermocouple. In addition, a water cooling passage was provided in the conductive substrate, and a constant amount of temperature-controlled cooling water was supplied.

そして、実施例1と同様に評価した。   And it evaluated similarly to Example 1. FIG.

その結果を表5に示す。

Figure 2005057234
The results are shown in Table 5.
Figure 2005057234

本発明のポリイミドからなる絶縁層3の厚みが5〜150μmである試料No.52〜56は載置面の温度変化が1℃以下と更に小さく、絶縁膜の絶縁破壊、クラックや剥離は見られず優れた特性を示すことが分かった。   Sample No. in which the insulating layer 3 made of polyimide of the present invention has a thickness of 5 to 150 μm. Nos. 52 to 56 show that the temperature change of the mounting surface is further as small as 1 ° C. or less, and the dielectric breakdown, cracks and peeling of the insulating film are not seen and show excellent characteristics.

一方、絶縁層の厚みが5μmより小さい試料No.51は導電性基体と吸着用電極の間でポリイミドの絶縁層が絶縁破壊してしまった。   On the other hand, in sample No. 51 having a thickness of the insulating layer smaller than 5 μm, the polyimide insulating layer breaks down between the conductive substrate and the adsorption electrode.

本発明の静電チャックの断面図である。It is sectional drawing of the electrostatic chuck of this invention. 本発明の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of this invention. 本発明の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of this invention. 本発明の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of this invention. 従来の静電チャックの断面図である。It is sectional drawing of the conventional electrostatic chuck. 従来の静電チャックの断面図である。It is sectional drawing of the conventional electrostatic chuck. 従来の静電チャックの断面図である。It is sectional drawing of the conventional electrostatic chuck.

符号の説明Explanation of symbols

1、21、51:静電チャック
5、52:絶縁膜
5a、22a、52a:ウェハ載置面
2:導電性基体
7:保護膜
23:複合材料
24:アルミニウム合金基体
25:アルミナ溶射膜
26:陽極酸化膜
27:給電口
1, 21, 51: Electrostatic chuck
5, 52: Insulating films 5a, 22a, 52a: Wafer mounting surface 2: Conductive substrate 7: Protective film 23: Composite material 24: Aluminum alloy substrate 25: Alumina sprayed film 26: Anodized film 27: Feed port

Claims (13)

導電性基体の一方の主面に絶縁層と、その上面に吸着用電極と、該吸着用電極を覆うように絶縁膜を備え、その上面をウェハを載せる載置面として、前記絶縁層と絶縁膜との総厚みが20〜2000μmであることを特徴とする静電チャック。 An insulating layer is provided on one main surface of the conductive substrate, an adsorption electrode is provided on the upper surface thereof, and an insulating film is provided so as to cover the adsorption electrode. The upper surface serves as a mounting surface on which a wafer is placed, and is insulated from the insulating layer. An electrostatic chuck having a total thickness of 20 to 2000 μm with the film. 前記絶縁膜が前記絶縁層を覆うように形成されていることを特徴とする請求項1に記載の静電チャック。 The electrostatic chuck according to claim 1, wherein the insulating film is formed so as to cover the insulating layer. 前記絶縁層が非晶質セラミックからなることを特徴とする請求項1または2に記載の静電チャック。 The electrostatic chuck according to claim 1, wherein the insulating layer is made of an amorphous ceramic. 前記絶縁膜は酸化物からなる均一な非晶質セラミックから成り、その厚みが10〜100μmであることを特徴とする請求項1〜3の何れかに記載の静電チャック。 The electrostatic chuck according to claim 1, wherein the insulating film is made of a uniform amorphous ceramic made of an oxide and has a thickness of 10 to 100 μm. 上記絶縁膜は、希ガス類元素を1〜10原子%含み、ビッカース硬度が500〜1000HV0.1であることを特徴とする請求項1〜4の何れかに記載の静電チャック。 5. The electrostatic chuck according to claim 1, wherein the insulating film contains 1 to 10 atomic% of a rare gas element and has a Vickers hardness of 500 to 1000 HV0.1. 上記絶縁膜が酸化アルミニウム、希土類の酸化物、あるいは窒化物の何れか一つを主成分とすることを特徴とする請求項1〜5の何れかに記載の静電チャック。 6. The electrostatic chuck according to claim 1, wherein the insulating film is mainly composed of any one of aluminum oxide, rare earth oxide, and nitride. 前記導電性基体がアルミニウムまたはアルミニウム合金の何れか一つの金属成分と、炭化珪素または窒化アルミニウムの何れか一つのセラミック成分からなり、該セラミック成分の含有量が50〜90質量%であることを特徴とする請求項1〜6の何れかに記載の静電チャック。 The conductive substrate is composed of any one metal component of aluminum or aluminum alloy and one ceramic component of silicon carbide or aluminum nitride, and the content of the ceramic component is 50 to 90% by mass. The electrostatic chuck according to claim 1. 前記絶縁膜を形成した面以外の前記導電性基体の表面に、アルミナ膜からなる保護膜が形成されたことを特徴とする請求項1〜7の何れかに記載の静電チャック。 The electrostatic chuck according to claim 1, wherein a protective film made of an alumina film is formed on the surface of the conductive substrate other than the surface on which the insulating film is formed. 前記絶縁層がポリイミドからなることを特徴とする請求項1〜2の何れかに記載の静電チャック The electrostatic chuck according to claim 1, wherein the insulating layer is made of polyimide. 前記絶縁層の厚みが5〜150μmであることを特徴とする請求項9に記載の静電チャック The electrostatic chuck according to claim 9, wherein the insulating layer has a thickness of 5 to 150 μm. 前記絶縁膜の表面に点在する凸部を備えることを特徴とする請求項1〜10の何れかに記載の静電チャック The electrostatic chuck according to claim 1, comprising convex portions scattered on the surface of the insulating film. 前記凸部の体積固有抵抗が前記絶縁膜の体積固有抵抗より小さいことを特徴とする請求項11に記載の静電チャック。 The electrostatic chuck according to claim 11, wherein a volume resistivity of the convex portion is smaller than a volume resistivity of the insulating film. 前記凸部の高さが0.5〜5μmであることを特徴とする請求項11または12に記載の静電チャック。 The electrostatic chuck according to claim 11, wherein a height of the convex portion is 0.5 to 5 μm.
JP2004017577A 2003-07-24 2004-01-26 Electrostatic chuck Expired - Fee Related JP4369765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004017577A JP4369765B2 (en) 2003-07-24 2004-01-26 Electrostatic chuck

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003201420 2003-07-24
JP2004017577A JP4369765B2 (en) 2003-07-24 2004-01-26 Electrostatic chuck

Publications (2)

Publication Number Publication Date
JP2005057234A true JP2005057234A (en) 2005-03-03
JP4369765B2 JP4369765B2 (en) 2009-11-25

Family

ID=34379800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004017577A Expired - Fee Related JP4369765B2 (en) 2003-07-24 2004-01-26 Electrostatic chuck

Country Status (1)

Country Link
JP (1) JP4369765B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269826A (en) * 2005-03-24 2006-10-05 Ngk Insulators Ltd Electrostatic chuck, and manufacturing method therefor
JP2006332204A (en) * 2005-05-24 2006-12-07 Toto Ltd Electrostatic chuck
JP2007088492A (en) * 2006-10-26 2007-04-05 Toto Ltd Manufacturing method of electrostatic chuck and electrostatic chuck
JP2008227206A (en) * 2007-03-14 2008-09-25 Tokyo Electron Ltd Placement stage
US7672111B2 (en) 2006-09-22 2010-03-02 Toto Ltd. Electrostatic chuck and method for manufacturing same
KR100997374B1 (en) * 2009-08-21 2010-11-30 주식회사 코미코 Electrode static chuck and method of manufacturing the same
KR101122709B1 (en) 2010-11-08 2012-03-23 주식회사 코미코 Electrode static chuck
CN103325725A (en) * 2012-03-21 2013-09-25 高美科株式会社 Static chuck
WO2014084334A1 (en) * 2012-11-29 2014-06-05 京セラ株式会社 Electrostatic chuck
US9787222B2 (en) 2014-05-29 2017-10-10 Tokyo Electron Limited Electrostatic attraction apparatus, electrostatic chuck and cooling treatment apparatus
US10557190B2 (en) 2013-01-24 2020-02-11 Tokyo Electron Limited Substrate processing apparatus and susceptor
WO2020182637A1 (en) * 2019-03-13 2020-09-17 Asml Holding N.V. Electrostatic clamp for a lithographic apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018006573A (en) * 2016-07-01 2018-01-11 松田産業株式会社 Electrostatic chuck, manufacturing method thereof and reproduction method for electrostatic chuck

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61251588A (en) * 1985-04-26 1986-11-08 株式会社豊田中央研究所 Manufacture of ceramic composite body
JPH05347352A (en) * 1992-06-15 1993-12-27 Tokyo Electron Ltd Electrostatic chuck device and manufacture thereof
JPH08288376A (en) * 1995-04-12 1996-11-01 Kobe Steel Ltd Electrostatic chuck for semiconductor manufacturing equipment
JPH11251417A (en) * 1998-02-27 1999-09-17 Kyocera Corp Electrostatic chuck
JP2002050675A (en) * 1993-04-22 2002-02-15 Applied Materials Inc Protective coating for semiconductor wafer support and method of forming the same
JP2002110773A (en) * 2000-09-29 2002-04-12 Kyocera Corp Electrostatic chuck
JP2003045952A (en) * 2001-05-25 2003-02-14 Tokyo Electron Ltd Holding apparatus, method of manufacturing same, and plasma processing apparatus
JP2003179127A (en) * 2001-12-11 2003-06-27 Taiheiyo Cement Corp Power feed terminal of an electrostatic chuck
JP3965469B2 (en) * 2002-10-30 2007-08-29 京セラ株式会社 Electrostatic chuck
JP4031732B2 (en) * 2003-05-26 2008-01-09 京セラ株式会社 Electrostatic chuck

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61251588A (en) * 1985-04-26 1986-11-08 株式会社豊田中央研究所 Manufacture of ceramic composite body
JPH05347352A (en) * 1992-06-15 1993-12-27 Tokyo Electron Ltd Electrostatic chuck device and manufacture thereof
JP2002050675A (en) * 1993-04-22 2002-02-15 Applied Materials Inc Protective coating for semiconductor wafer support and method of forming the same
JPH08288376A (en) * 1995-04-12 1996-11-01 Kobe Steel Ltd Electrostatic chuck for semiconductor manufacturing equipment
JPH11251417A (en) * 1998-02-27 1999-09-17 Kyocera Corp Electrostatic chuck
JP2002110773A (en) * 2000-09-29 2002-04-12 Kyocera Corp Electrostatic chuck
JP2003045952A (en) * 2001-05-25 2003-02-14 Tokyo Electron Ltd Holding apparatus, method of manufacturing same, and plasma processing apparatus
JP2003179127A (en) * 2001-12-11 2003-06-27 Taiheiyo Cement Corp Power feed terminal of an electrostatic chuck
JP3965469B2 (en) * 2002-10-30 2007-08-29 京セラ株式会社 Electrostatic chuck
JP4031732B2 (en) * 2003-05-26 2008-01-09 京セラ株式会社 Electrostatic chuck

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4482472B2 (en) * 2005-03-24 2010-06-16 日本碍子株式会社 Electrostatic chuck and manufacturing method thereof
JP2006269826A (en) * 2005-03-24 2006-10-05 Ngk Insulators Ltd Electrostatic chuck, and manufacturing method therefor
JP2006332204A (en) * 2005-05-24 2006-12-07 Toto Ltd Electrostatic chuck
US7468880B2 (en) 2005-05-24 2008-12-23 Toto Ltd. Electrostatic chuck
US7760484B2 (en) 2005-05-24 2010-07-20 Toto Ltd. Electrostatic chuck
US7672111B2 (en) 2006-09-22 2010-03-02 Toto Ltd. Electrostatic chuck and method for manufacturing same
JP2007088492A (en) * 2006-10-26 2007-04-05 Toto Ltd Manufacturing method of electrostatic chuck and electrostatic chuck
JP2008227206A (en) * 2007-03-14 2008-09-25 Tokyo Electron Ltd Placement stage
TWI459500B (en) * 2009-08-21 2014-11-01 Komico Ltd Electrostatic chuck and method of manufacturing the same
KR100997374B1 (en) * 2009-08-21 2010-11-30 주식회사 코미코 Electrode static chuck and method of manufacturing the same
WO2011021824A3 (en) * 2009-08-21 2011-07-07 주식회사 코미코 Electrostatic chuck and method for manufacturing same
JP2013502721A (en) * 2009-08-21 2013-01-24 コミコ株式会社 Electrostatic chuck and manufacturing method thereof
KR101122709B1 (en) 2010-11-08 2012-03-23 주식회사 코미코 Electrode static chuck
CN103325725A (en) * 2012-03-21 2013-09-25 高美科株式会社 Static chuck
WO2014084334A1 (en) * 2012-11-29 2014-06-05 京セラ株式会社 Electrostatic chuck
JP6034402B2 (en) * 2012-11-29 2016-11-30 京セラ株式会社 Electrostatic chuck
US10557190B2 (en) 2013-01-24 2020-02-11 Tokyo Electron Limited Substrate processing apparatus and susceptor
US10941477B2 (en) 2013-01-24 2021-03-09 Tokyo Electron Limited Substrate processing apparatus and susceptor
US9787222B2 (en) 2014-05-29 2017-10-10 Tokyo Electron Limited Electrostatic attraction apparatus, electrostatic chuck and cooling treatment apparatus
WO2020182637A1 (en) * 2019-03-13 2020-09-17 Asml Holding N.V. Electrostatic clamp for a lithographic apparatus

Also Published As

Publication number Publication date
JP4369765B2 (en) 2009-11-25

Similar Documents

Publication Publication Date Title
JP4031732B2 (en) Electrostatic chuck
KR100681253B1 (en) Support member for wafer
JP4744855B2 (en) Electrostatic chuck
KR101800337B1 (en) Electrostatic chuck device
JP4482472B2 (en) Electrostatic chuck and manufacturing method thereof
JP4942364B2 (en) Electrostatic chuck, wafer holding member, and wafer processing method
JP2007173596A (en) Electrostatic chuck
JP4369765B2 (en) Electrostatic chuck
JP2008160093A (en) Electrostatic chuck and manufacturing method thereof, and substrate-treating device
JP4879929B2 (en) Electrostatic chuck and manufacturing method thereof
JP2006332204A (en) Electrostatic chuck
US20130265690A1 (en) Electrostatic chuck apparatus
US7672111B2 (en) Electrostatic chuck and method for manufacturing same
JP3145664B2 (en) Wafer heating device
WO2017130827A1 (en) Electrostatic chuck device
US6728091B2 (en) Electrostatic adsorption device
JP4811790B2 (en) Electrostatic chuck
JP2005150370A (en) Electrostatic chuck
JP2005093919A (en) Electrostatic chuck and manufacturing method thereof
JP2005072286A (en) Electrostatic chuck
JP3767719B2 (en) Electrostatic chuck
JP2006060040A (en) Electrostatically chucking plate, and manufacturing method thereof
JP2005093723A (en) Electrostatic chuck
JP5279455B2 (en) Electrostatic chuck
JP2002170871A (en) Electrostatic chuck

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090828

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees